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Abstract For any positive integer n, the F.Smarandache LCM function SL(n) is defined
as the smallest positive integer k such that n | [1,2,--- k], where [1,2,--- ,k] denotes the
least common multiple of 1,2, --- | k. The main purpose of this paper is using the elementary
methods to study the mean value properties of P(n)SL(n) and p(n)SL(n), and give two

sharper asymptotic formulas for them.
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§1. Introduction and Results

For any positive integer n, the famous F.Smarandache LCM function SL(n) defined as the
smallest positive integer k such that n | [1, 2, ---, k], where [1, 2, ---, k] denotes the least
common multiple of 1, 2, ---, k. For example, the first few values of SL(n) are SL(1) = 1,
SL(2) =2, SL(3) =3, SL(4) =4, SL(5) =5, SL(6) =3, SL(7) =7, SL(8) =8, SL(9) =9,
SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) = 5, ---. About the
elementary properties of SL(n), some authors had studied it, and obtained some interesting
results, see reference [2] and [3].

For example, Lv Zhongtian [4] studied the mean value properties of SL(n), and proved
that for any fixed positive integer k£ and any real number z > 1, we have the asymptotic formula
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where ¢; (i =2,3,---,k) are computable constants.
Jianbin Chen [5] studied the value distribution properties of SL(n), and proved that for
any real number x > 1, we have the asymptotic formula
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where ((s) is the Riemann zeta-function, and P(n) denotes the largest prime divisor of n.
The main purpose of this paper is using the elementary methods to study the mean value
properties of P(n)SL(n) and p(n)SL(n), and give two sharper asymptotic formulas for them.

That is, we shall prove the following two conclusions:
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Theorem 1. For any real number z > 1, we have the asymptotic formula
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where P(n) denotes the largest prime divisor of n, and ¢; (i = 1,2,--- ,k) are computable
constants.

Theorem 2. For any real number = > 1, we have the asymptotic formula

3 p(n)SL(n) = 2* - Ek: " yo <,f+1x> ,
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where p(n% denotes the smallest prime divisor of n, b; (i = 1,2, - , k) are computable constants
and b; = 3
Whether there exist an asymptotic formula for ; 5{) é?jl) and 7;( S{JL((nn)) is an open

problem.

§2. Proof of the theorems

In this section, we shall use the elementary methods to complete the proof the theorems.
First we prove Theorem 1. In fact for any positive integer n > 1, let n = p{"p5? - - pS* be

the factorization of n into prime powers, then from [2] we know that
SL(n) = max{p}", p3*, -, ps°}- (1)

Now we consider the summation

Z P(n)SL(n). (2)
n<w
We separate all integer n in the interval [1, z] into four subsets A, B, C and D as follows:

A: P(n) > /nand n=m- P(n), m < P(n);

B: n3 < P(n) < vnand n=m- P2(n), m < n3;

C: ni < p1 < P(n) < v/nand n=m-p; - P(n), where p; is a prime;

D: P(n) < ns.

It is clear that if n € A, then from (1) we know that SL(n) = P(n). Therefore, by the

Abel’s summation formula (See Theorem 4.2 of [6]) and the Prime Theorem (See Theorem 3.2
of [7]):
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where a; (i =1,2,...,k) are computable constants and a; = 1.
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We have

> P(n)SL(n

neA

where ((s) is the Riemann zeta-function, by =

Similarly, if n € C, then we also have SL(n) =

Z P(n)SL(n
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where h; (1 =1,2,---
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, k) are computable constants.

Now we estimate the error terms in set B. Using the same method of proving (3),we have
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Finally, we estimate the error terms in set D. For any integer n € D, let SL(n)
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assume that o > 1. This time note that P(n) < n%, we have
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Combining (2), (3), (4), (5) and (6) we may immediately obtain the asymptotic formula
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where P(n) denotes the largest prime divisor of n, and ¢; (i = 1,2,--- ,k) are computable

constants.
This proves Theorem 1.

Now we prove Theorem 2. We separate all integer n in the interval [1, z] into four subsets

A, B, C and D as follows: A: n=1; B: n=p* a>1;C: n=p{"p3?, a; > 1, (i = 1,2); D:
n=nppy?--p%, ;> 1, (i=1,2,---,5), s > 3. p(n) denotes the smallest prime divisor of
n, p(1) = 0 and SL(1) = 1. Then we have

Y p(n)SL(n) =Y p(n)SL(n)+ Y p(n)SL(n) + Y p(n)SL(n). (7)

n<x neB neC neD

Obviously if n € B, then from (1) we know that SL(n) = p®. Therefore,
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where by = =, b; (i =2,3,--- , k) are computable constants.
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If n € C, then n = p{" p3?, where p; < p2, and SL(n) > /n, so we have

> pm)SL(n) = > SLpyps*)p
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Finally, we estimate the error terms in set D, this time, n = p{"'p3? - - - p®, where s > 3.
Therefore, n3 < SL(n) <+/n, and p(n) < ns, so we have
Z p(n)SL(n) < Z nin? Lz, (10)

neD n<x

Combining (1), (7), (8), (9) and (10) we may immediately obtain the asymptotic formula

k
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where p(n) denotes the smallest prime divisor of n, and by = =, b; (i = 2,3,--- , k) are com-

1
3 )
putable constants.

This completes the proof of Theorem 2.
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