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Abstract: This paper surveys the applications of Smarandache’s notion to graph theory

appeared in International J.Math.Combin. from Vol.1,2008 to Vol.3,2009. In fact, many

problems discussed in these papers are generalized in this paper. Topics covered in this

paper include: (1)What is a Smarandache System? (2)Vertex-Edge Labeled Graphs with

Applications: (i)Smarandachely k-constrained labeling of a graph; (ii)Smarandachely super

m-mean graph; (iii)Smarandachely uniform k-graph; (iv)Smarandachely total coloring of a

graph; (3)Covering and Decomposing of a Graph: (i)Smarandache path k-cover of a graph;

(ii)Smarandache graphoidal tree d-cover of a graph; (4)Furthermore.
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§1. What is a Smarandache System?

A Smarandache System first appeared in [1] is defined in the following.

Definition 1.1([1]) A rule in a mathematical system (Σ;R) is said to be Smarandachely denied

if it behaves in at least two different ways within the same set Σ, i.e., validated and invalided,

or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2([2]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathe-

matical systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃) with

Σ̃ =
m⋃

i=1

Σi, and R̃ =
m⋃

i=1

Ri.
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Definition 1.3([3]) An axiom is said to be Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969).

Example 1.1 Let us consider an Euclidean plane R2 and three non-collinear points A,B and

C. Define s-points as all usual Euclidean points on R2 and s-lines any Euclidean line that

passes through one and only one of points A,B and C, such as those shown in Fig.1.1.

(i) The axiom (A5) that through a point exterior to a given line there is only one parallel

passing through it is now replaced by two statements: one parallel, and no parallel. Let L be

an s-line passes through C and is parallel in the Euclidean sense to AB. Notice that through

any s-point not lying on AB there is one s-line parallel to L and through any other s-point

lying on AB there is no s-lines parallel to L such as those shown in Fig.1(a).

(ii) The axiom that through any two distinct points there exist one line passing through

them is now replaced by; one s-line, and no s-line. Notice that through any two distinct s-

points D,E collinear with one of A,B and C, there is one s-line passing through them and

through any two distinct s-points F,G lying on AB or non-collinear with one of A,B and C,

there is no s-line passing through them such as those shown in Fig.1(b).
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E

l1

(a) (b)

Fig.1

Definition 1.4 A combinatorial system CG is a union of mathematical systems (Σ1;R1),(Σ2;R2),

· · · , (Σm;Rm) for an integer m, i.e.,

CG = (
m⋃

i=1

Σi;
m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1,Σ2, · · · ,Σm},

E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

§2. Vertex-Edge Labeled Graphs with Applications

2.1 Application to Principal Fiber Bundles

Definition 2.1 A labeling on a graph G = (V,E) is a mapping θL : V ∪ E → L for a label set

L, denoted by GL.



110 Linfan Mao

If θL : E → ∅ or θL : V → ∅, then GL is called a vertex labeled graph or an edge labeled

graph, denoted by GV or GE, respectively. Otherwise, it is called a vertex-edge labeled graph.

Example:
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Fig.2

Definition 2.2([4]) For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a

combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is

a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomor-

phism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)), a combinatorial fan-space with {n1(p), n2(p),

· · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}, and
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}, de-

noted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).

A combinatorial manifold M̃ is finite if it is just combined by finite manifolds with an

underlying combinatorial structure G without one manifold contained in the union of others.

Certainly, a finitely combinatorial manifold is indeed a combinatorial manifold. Examples of

combinatorial manifolds can be seen in Fig.3.

M3
B1 T2

(a)

T2

B1 B1

(b)

Fig.3

Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and d, d ≥ 1 an integer. We

construct a vertex-edge labeled graph Gd[M̃(n1, n2, · · · , nm)] by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where V1 = {ni −manifolds Mni in M̃(n1, · · · , nm)|1 ≤ i ≤ m} and V2 = {isolated intersection

points OMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤ i, j ≤ m}. Label ni for each
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ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where E1 = {(Mni ,Mnj ) labeled with dim(Mni
⋂
Mnj ) | dim(Mni

⋂
Mnj) ≥ d, 1 ≤ i, j ≤ m}

and E2 = {(OMni ,Mnj ,Mni), (OMni ,Mnj ,Mnj ) labeled with 0|Mni tangent Mnj at the point

OMni ,Mnj for 1 ≤ i, j ≤ m}.

Now denote by H(n1, n2, · · · , nm) all finitely combinatorial manifolds M̃(n1, n2, · · · , nm)

and G[0, nm] all vertex-edge labeled graphs GL with θL : V (GL) ∪ E(GL) → {0, 1, · · · , nm}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs

and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u, v) ∈ E(G), τ2(e) ≤ min{τ1(u), τ1(v)}.

Then we know a relation between sets H(n1, n2, · · · , nm) and G([0, nm], [0, nm]) following.

Theorem 2.1([1]) Let 1 ≤ n1 < n2 < · · · < nm,m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) defines a vertex-edge labeled graph

G([0, nm]) ∈ G[0, nm]. Conversely, every vertex-edge labeled graph G([0, nm]) ∈ G[0, nm] defines

a finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) with a 1−1 mapping θ : G([0, nm]) →
M̃ such that θ(u) is a θ(u)-manifold in M̃ , τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)

⋂
θ(w))

for ∀u ∈ V (G([0, nm])) and ∀(v, w) ∈ E(G([0, nm])).

Definition 2.3([4]) A principal fiber bundle consists of a manifold P action by a Lie group G ,

which is a manifold with group operation G ×G → G given by (g, h) → g◦h being C∞ mapping,

a projection π : P →M , a base pseudo-manifold M , denoted by (P,M,G ), seeing Fig.4 (where

V = π−1(U)) such that conditions (1), (2) and (3) following hold.

(1) there is a right freely action of G on P,, i.e., for ∀g ∈ G , there is a diffeomorphism

Rg : P → P with Rg(p) = pg for ∀p ∈ P such that p(g1g2) = (pg1)g2 for ∀p ∈ P , ∀g1, g2 ∈ G

and pe = p for some p ∈ P , e ∈ G if and only if e is the identity element of G .

(2) the map π : P →M is onto with π−1(π(p)) = {pg|g ∈ G }.

(3) for ∀x ∈ M there is an open set U with x ∈ U and a diffeomorphism TU : π−1(U) →
U × G of the form TU (p) = (π(p), sU (p)), where sU : π−1(U) → G has the property sU (pg) =

sU (p)g for ∀g ∈ G , p ∈ π−1(U).
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Question For a family of k principal fiber bundles P1(M1,G1), P2(M2,G2),· · · , Pk(Mk,Gk)

over manifolds M1, M2, · · · , Mk, how can we construct principal fiber bundles on a smoothly

combinatorial manifold consisting of M1,M2, · · · ,Mk underlying a connected graph G?

The answer is YES. The technique is by voltage assignment on labeled graphs defined as follows.

Definition 2.4([4]) A voltage labeled graph on a vertex-edge labeled graph GL is a 2-tuple

(GL;α) with a voltage assignments α : E(GL) → Γ such that

α(u, v) = α−1(v, u), ∀(u, v) ∈ E(GL),

with its labeled lifting GLα defined by

V (GLα) = V (GL) × Γ, (u, g) ∈ V (GL) × Γ abbreviated to ug;

E(GL
α) = { (ug, vg◦h) | for ∀(u, v) ∈ E(GL) with α(u, v) = h }

with labels ΘL : GLα → L following:

ΘL(ug) = θL(u), and ΘL(ug, vg◦h) = θL(u, v)

for u, v ∈ V (GL), (u, v) ∈ E(GL) with α(u, v) = h and g, h ∈ Γ.

For a voltage labeled graph (GL, α) with its lifting GL
α, a natural projection π : GLα → GL

is defined by π(ug) = u and π(ug, vg◦h) = (u, v) for ∀u, v ∈ V (GL) and (u, v) ∈ E(GL) with

α(u, v) = h. Whence, (GLα , π) is a covering space of the labeled graph GL. A voltage labeled

graph with its labeled lifting are shown in Fig.4.4, in where, GL = CL
3 and Γ = Z2.
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Now we show how to construct principal fiber bundles over a combinatorial manifold M̃ .
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Construction 2.1 For a family of principal fiber bundles over manifolds M1,M2, · · · , Ml,

such as those shown in Fig.6,

PM1?
M1

PM2

M2

? PMl

Ml

?? ? ?H◦1
H◦2

H◦l

ΠM1
ΠMl

ΠM2

Fig.6

where H◦i
is a Lie group acting on PMi

for 1 ≤ i ≤ l satisfying conditions PFB1-PFB3, let M̃

be a differentiably combinatorial manifold consisting of Mi, 1 ≤ i ≤ l and (GL[M̃ ], α) a voltage

graph with a voltage assignment α : GL[M̃ ] → G over a finite group G, which naturally induced

a projection π : GL[P̃ ] → GL[M̃ ]. For ∀M ∈ V (GL[M̃ ]), if π(PM ) = M , place PM on each

lifting vertex MLα in the fiber π−1(M) of GLα [M̃ ], such as those shown in Fig.7.

PM PM PM

︸ ︷︷ ︸
π−1(M)?

M

Fig.7

Let Π = πΠMπ−1 for ∀M ∈ V (GL[M̃ ]). Then P̃ =
⋃

M∈V (GL[M̃ ])

PM is a smoothly combinato-

rial manifold and LG =
⋃

M∈V (GL[M̃ ])

HM a Lie multi-group by definition. Such a constructed

combinatorial fiber bundle is denoted by P̃Lα(M̃,LG).

For example, let G = Z2 and GL[M̃ ] = C3. A voltage assignment α : GL[M̃ ] → Z2 and its

induced combinatorial fiber bundle are shown in Fig.8.
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Then we know the existence result following.

Theorem 2.2([4]) A combinatorial fiber bundle P̃α(M̃,LG) is a principal fiber bundle if and

only if for ∀(M ′,M ′′) ∈ E(GL[M̃ ]) and (PM ′ , PM ′′ ) = (M ′,M ′′)Lα ∈ E(GL[P̃ ]), ΠM ′ |PM′∩PM′′
=

ΠM ′′ |PM′∩PM′′
.

2.2 Smarandachely k-constrained labeling of a graph

In references [5]-[6], the Smarandachely k-constrained labeling on some graph families are dis-

cussed.

Definition 2.5 A Smarandachely k-constrained labeling of a graph G(V,E) is a bijective map-

ping f : V ∪ E → {1, 2, .., |V | + |E|} with the additional conditions that |f(u) − f(v)| ≥ k

whenever uv ∈ E, |f(u) − f(uv)| ≥ k and |f(uv) − f(vw)| ≥ k whenever u 6= w, for an integer

k ≥ 2. A graph G which admits a such labeling is called a Smarandachely k-constrained total

graph, abbreviated as k − CTG.

An example for k = 5:

11 1 7 13 3 9 15 56 12 2 8 14 4 10

Fig.9: A 5-constrained labeling of a path P7.

Definition 2.6 The minimum positive integer n such that the graph G ∪Kn is a k − CTG is

called k-constrained number of the graph G and denoted by tk(G), the corresponding labeling is

called a minimum k-constrained total labeling of G.

Problem 2.1 Determine tk(G) for ∀k ∈ Z+ and a graph G.

≫Update Results for Problem 2.1 obtained in [5]-[6]:

Case 1. k = 1

In fact, t1(G) = 0 for any graph G since any bijective mapping f : V ∪ E → {1, 2, .., |V | +
|E|} satisfies that |f(u)−f(v)| ≥ 1 whenever uv ∈ E, |f(u)−f(uv)| ≥ 1 and |f(uv)−f(vw)| ≥ 1

whenever u 6= w.

Case 2. k = 2

(1) t2(Pn)=





0 if n = 2,

1 if n = 3,

0 else.

Proof Let V (Pn) = {v1, v2, ..., vn} and E(Pn) = {vivi+1|1 ≤ i ≤ n− 1}. Consider a total

labeling f : V ∪E −→ {1, 2, 3, ..., 2n−1} defined as f(v1) = 2n−3; f(v2) = 2n−1; f(v1v2) = 2;

f(v2v3) = 4; and f(vk) = 2k − 5, f(vkvk+1) = 2k, for all k ≥ 3. This function f serves as a

Smarandachely 2-constrained labeling for Pn, for n ≥ 4. Further, the cases n = 2 and n = 3
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are easy to prove. �

2n-3 2n-1 1 3 2n-7 2n-5
2 4 6 2n-2

1 5

2 4

3
6 1 7

2 4

3 5

Fig.10

(2) t2(Cn) = 0 if n ≥ 4 and t2(C3) = 2.

Proof If n ≥ 4, then the result follows immediately by joining end vertices of Pn by an

edge v1vn , and, extending the total labeling f of the path as in the proof of the Theorem 2.4

above to include f(v1v2) = 2n.

Consider the case n = 3. If the integers a and a + 1 are used as labels, then one of them

is assigned for a vertex and other is to the edge not incident with that vertex. But then, a+ 2

can not be used to label the vertex or an edge in C3. Therefore, for each three consecutive

integers we should leave at least one integer to label C3. Hence the span of any Smarandachely

2-constrained labeling of C3 should be at least 8. So t2(C3) ≥ 2 . Now from the Figure 3 it is

clear that t2(C3) ≤ 2 . Thus t2(C3) = 2. �

(3) t2(Kn) = 0 if n ≥ 4.

(4) t2(W1,n) = 0 if n ≥ 3.

(6) t2(Km,n)=





2 if n = 1 and m = 1,

1 if n = 1 and m ≥ 2,

0 else.

Case 3. k ≥ 3

(1) tk(K1,n)=





3k − 6, if n = 3,

n(k − 2), otherwise.
if k.n ≥ 3.

Proof For any Smarandachely k-constrained labeling f of a star K1,n, the span of f , after

labeling an edge by the least positive integer a is at least a+nk. Further, the span is minimum

only if a = 1. Thus, as there are only n + 1 vertices and n edges, for any minimum total

labeling we require at least 1 + nk − (2n+ 1) = n(k − 2) isolated vertices if n ≥ 4 and at least

1 +nk− 2n = n(k− 2)+ 1 if n = 3. In fact, for the case n = 3, as the central vertex is incident

with each edge and edges are mutually adjacent, by a minimum k-constrained total labeling,

the edges as well the central vertex can be labeled only by the set {1, 1 + k, 1 + 2k, 1 + 3k}.
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Suppose the label 1 is assigned for the central vertex, then to label the end vertex adjacent to

edge labeled 1 + 2k is at least (1 + 3k) + 1 (since it is adjacent to 1, it can not be less than

1 + k). Thus at most two vertices can only be labeled by the integers between 1 and 1 + 3k.

Similar argument holds for the other cases also.

Therefore, t(K1,n) ≥ n(k − 2) for n ≥ 4 and t(K1,n) ≥ n(k − 2) + 1 for n = 3.

To prove the reverse inequality, we define a k-constrained total labeling for all k ≥ 3, as

follows:

(1) When n = 3, the labeling is shown in the Fig.11 below

1

1 + 2k 1 + 3k 1 + k

2

3

3k

Fig.11

(2) When n ≥ 4, define a total labeling f as f(v0vj) = 1 + (j − 1)k for all j, 1 ≤ j ≤ n.

f(v0) = 1 + nk, f(v1) = 2 + (n− 2)k, f(v2) = 3 + (n− 2)k,and for 3 ≤ i ≤ (n− 1),

f(vi+1)=





f(vi) + 2, if f(vi) ≡ 0(mod k),

f(vi) + 1, otherwise.

and the rest all unassigned integers between 1 and 1 + nk to the n(k − 2) isolated vertices,

where v0 is the central vertex and v1, v2, v3, ..., vn are the end vertices.

The function so defined is a Smarandachely k-constrained labeling of K1,n ∪ K̄n(k−2), for

all n ≥ 4. �

(2) Let Pn be a path on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Pn)=





0 if k ≤ k0,

2(k − k0) − 1 if k > k0 and 2n ≡ 0(mod 3),

2(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).

(3) Let Cn be a cycle on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Cn) =





0 if k ≤ k0,

2(k − k0) if k > k0 and 2n ≡ 0 (mod 3),

3(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).
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2.3 Smarandachely Super m-Mean Graph

The conception of Smarandachely edge m-labeling on a graph was introduced in [7].

Definition 2.7 Let G be a graph and f : V (G) → {1, 2, 3, · · · , |V | + |E(G)|} be an injection.

For each edge e = uv and an integer m ≥ 2, the induced Smarandachely edge m-labeling f∗
S is

defined by

f∗
S(e) =

⌈
f(u) + f(v)

m

⌉
.

Then f is called a Smarandachely super m-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} =

{1, 2, 3, · · · , |V | + |E(G)|}. A graph that admits a Smarandachely super mean m-labeling is

called Smarandachely super m-mean graph.

Particularly, if m = 2, we know that

f∗(e) =





f(u)+f(v)
2 if f(u) + f(v) is even;

f(u)+f(v)+1
2 if f(u) + f(v) is odd.

Example: A Smarandache super 2-mean graph P 2
6

1 2 3 5 7 8 9 11 13 14 15

4 6 10 12

Fig.12

Problem 2.2 Find integers m and graphs G such that G is a Smarandachely super m-mean

graph.

≫Update Results for Problem 2.2 Obtained in [7]:

Now all results is on the case of Smarandache super 2-mean graphs.

(1) A H-graph of a path Pn is the graph obtained from two copies of Pn with vertices

v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices vn+1

2

and un+1

2

if n is odd and the

vertices vn
2
+1 and un

2
if n is even. Then

A H-graph G is a Smarandache super 2-mean graph.

(2) The corona of a graph G on p vertices v1, v2, . . . , vp is the graph obtained from G by

adding p new vertices u1, u2, . . . , up and the new edges uivi for 1 ≤ i ≤ p, denoted by G⊙K1.

If a H-graph G is a Smarandache super 2-mean graph, then G ⊙ K1 is a Smarandache

super 2-mean graph.
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(3) For a graph G, the 2-corona of G is the graph obtained from G by identifying the center

vertex of the star S2 at each vertex of G, denoted by G⊙ S2.

If a H-graph G is a Smarandache super 2-mean graph, then G⊙S2 is a Smarandache super

2-mean graph.

(4) Cycle C2n is a Smarandache super 2-mean graph for n ≥ 3.

(5) Corona of a cycle Cn is a Smarandache super 2-mean graph for n ≥ 3.

(6) A cyclic snake mCn is the graph obtained from m copies of Cn by identifying the vertex

v(k+2)j
in the jth copy at a vertex v1j+1

in the (j + 1)th copy if n = 2k + 1 and identifying the

vertex v(k+1)j
in the jth copy at a vertex v1j+1

in the (j + 1)th copy if n = 2k.

The graph mCn-snake, m ≥ 1, n ≥ 3 and n 6= 4 has a Smarandache super 2-mean labeling.

(7) A Pn(G) is a graph obtained from G by identifying an end vertex of Pn at a vertex of

G.

If G is a Smarandache super 2-mean graph then Pn(G) is also a Smarandache super 2-mean

graph.

(8) Cm × Pn for n ≥ 1,m = 3, 5 are Smarandache super 2-mean graphs.

Problem 2.3 For what values of m (except 3,5) the graph Cm × Pn is a Smarandache super

2-mean graph?

2.4 Smarandachely Uniform k-Graphs

The conception of Smarandachely Uniform k-Graph was introduced in the reference [8].

Definition 2.7 For an non-empty subset M of vertices in a graph G = (V,E), each vertex u

in G is associated with the set fo
M (u) = {d(u, v) : v ∈M, u 6= v}, called its open M-distance-

pattern.

A graph G is called a Smarandachely uniform k-graph if there exist subsets M1,M2, · · · ,Mk

for an integer k ≥ 1 such that fo
Mi

(u) = fo
Mj

(u) and fo
Mi

(u) = fo
Mj

(v) for 1 ≤ i, j ≤ k and

∀u, v ∈ V (G). Such subsets M1,M2, · · · ,Mk are called a k-family of open distance-pattern

uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called

the Smarandachely odpu-number of G, denoted by odS
k (G).

Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform

(odpu-) graph. In this case, its odpu-number odS
k (G) of G is abbreviated to od(G).

Problem 2.4 Determine which graph G is Smarandachely uniform k-graph for an integer

k ≥ 1.

≫Update Results for Problem 2.4 Obtained in [8]:

(1) A connected graph G is an odpu-graph if and only if the center Z(G) of G is an odpu-set.

(2) Every self-centered graph is an odpu-graph.
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(3) A tree T has an odpu-set M if and only if T is isomorphic to P2.

(4) If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.

(5) A block graph G is an odpu-graph if and only if G is complete.

(6) A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a

subset M ⊂ V (G) with |M | ≥ 2 such that the induced subgraph 〈M〉 is complete, 〈V −M〉 is

not complete and any vertex in V −M is adjacent to all the vertices of M.

Problem 2.5 Determine the Smarandachely odpu-number odS
k (G) of G for an integer k ≥ 1.

≫Update Results for Problem 2.5 obtained in [8]:

(1) For every positive integer k 6= 1, 3, there exists a graph G with odpu-number k.

(2) If a graph G has odpu-number 4, then r(G) = 2.

(3) The number 5 cannot be the odpu-number of a bipartite graph.

(4) Let G be a bipartite odpu-graph. Then od(G) = 2 if and only if G is isomorphic to P2.

(5) od(C2k+1) = 2k.

(6) od(Kn) = 2 for all n > 2.

2.5 Smarandachely Total Coloring of a graph

The conception of Smarandachely total k-coloring of a graph following is introduced by Zhongfu

Zhang et al. in [9].

Definition 2.8 Let f be a total k−coloring on G. Its total-color neighbor of a vertex u of

G is denoted by Cf (x) = {f(x)|x ∈ TN (u)}. For any adjacent vertices x and y of V (G), if

Cf (x) 6= Cf (y), say f a k AVSDT-coloring of G (the abbreviation of adjacent-vertex-strongly-

distinguishing total coloring of G).

The AVSDT-coloring number of G, denoted by χast(G) is the minimal number of colors

required for an AVSDT-coloring of G

Definition 2.9 A Smarandachely total k-coloring of a graph G is an AVSDT-coloring with

|Cf (x)\Cf (y)| ≥ k and |Cf (y)\Cf (x)| ≥ k.

The minimum Smarandachely total k-coloring number of a graph G is denoted by χk
ast(G).

Obviously, χast(G) = χ1
ast(G) and

· · · ≤ χk+1
ast (G) ≤ χk

ast(G) ≤ χk−1
ast (G) ≤ · · · ≤ χ1

ast(G)

by definition.

Problem 2.6 Determine χk
ast(G) for a graph G.

≫Update Results for Problem 2.6 obtained in [9]:

χ1
ast(Sm +Wn) = m+ n+ 3 if min{m,n} ≥ 5.



120 Linfan Mao

It should be noted that the number χk
ast(G) of graph families following are determined for

integers k ≥ 1 by Zhongfu Zhang et al. in references [10]-[15].

(1) 3-regular Halin graphs;

(2) 2Pn, 2Cn, 2K1,n and double fan graphs for integers n ≥ 1;

(3) Pm + Pn for integers m,n ≥ 1;

(4) Pm ∨ Pn for integers m,n ≥ 1;

(5) Generalized Petersen G(n, k);

(6) k-cube graphs.

§3. Covering and Decomposing of a Graph

Definition 3.1 Let P be a graphical property. A Smarandache graphoidal P (k, d)-cover of

a graph G is a partition of edges of G into subgraphs G1, G2, · · · , Gl ∈ P such that E(Gi) ∩
E(Gj) ≤ k and ∆(Gi) ≤ d for integers 1 ≤ i, j ≤ l.

The minimum cardinality of Smarandache graphoidal P (k, d)-cover of a graph G is de-

noted by Π
(k,d)
P

(G).

Problem 3.1 determine Π
(k,d)
P

(G) for a graph G.

3.1 Smarandache path k-cover of a graph

The Smarandache path k-cover of a graph was discussed by S. Arumugam and I.Sahul Hamid

in [16].

Definition 3.2 A Smarandache path k-cover of a graph G is a Smarandache graphoidal P

(k,∆(G))-cover of G with P=path for an integer k ≥ 1.

A Smarandache path 1-cover of G such that its every edge is in exactly one path in it is

called a simple path cover.

The minimum cardinality of simple path covers of G is called the simple path covering

number of G and is denoted by Π
(1,∆(G))
P

(G).

If do not consider the condition E(Gi)∩E(Gj) ≤ 1, then a simple path cover is called path

cover of G, its minimum number of path cover is denoted by π(G) in reference. For examples,

πs(Kn) = ⌈n
2 ⌉ and πs(T ) = k

2 , where k is the number of odd degree in tree T .

Problem 3.2 determine Π
(k,d)
P

(G) for a graph G.

≫Update Results for Problem 3.2 Obtained in [10]:

(1) Π
(1,∆(G))
P

(T ) = π(T ) = k
2 , where k is the number of vertices of odd degree in T .

(2) Let G be a unicyclic graph with cycle C. Let m denote the number of vertices of degree

greater than 2 on C. Let k be the number of vertices of odd degree. Then
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Π
(1,∆(G))
P

(G) =





3 if m = 0

k
2 + 2 if m = 1

k
2 + 1 if m = 2

k
2 if m ≥ 3

(3) For a wheel Wn = K1 + Cn−1, we have

Π
(1,∆(G))
P

(Wn) =





6 if n = 4
⌊

n
2

⌋
+ 3 if n ≥ 5

Proof Let V (Wn) = {v0, v1, . . . , vn−1} and E(Wn) = {v0vi : 1 ≤ i ≤ n− 1}∪ {vivi+1 : 1 ≤
i ≤ n− 2} ∪ {v1vn−1}.

If n = 4, then Wn = K4 and hence Π
(1,∆(G))
P

(Wn)(Wn) = 6.

Now, suppose n ≥ 5. Let r =
⌊

n
2

⌋

If n is odd, let

Pi = (vi, v0, vr+i), i = 1, 2, . . . , r.

Pr+1 = (v1, v2, . . . , vr),

Pr+2 = (v1, v2r, v2r−1, . . . , vr+2) and

Pr+3 = (vr, vr+1, vr+2).

If n is even, let

Pi = (vi, v0, vr−1+i), i = 1, 2, . . . , r − 1.

Pr = (v0, v2r−1),

Pr+1 = (v1, v2, . . . , vr−1),

Pr+2 = (v1, v2r−1, . . . , vr+1) and

Pr+3 = (vr−1, vr, vr+1).

Then Π
(1,∆(G))
P

(Wn) = {P1, P2, . . . , Pr+3} is a simple path cover of Wn. Hence πs(Wn) ≤
r + 3 =

⌊
n
2

⌋
+3. Further, for any simple path cover ψ of Wn at least three vertices on

C = (v1, v2, . . . , vn−1) are terminal vertices of paths in ψ. Hence t ≤ q − k
2 − 3, so that

Π
(1,∆(G))
P

(Wn) = q − t ≥ k
2 + 3 =

⌊
n
2

⌋
+ 3. Thus Π

(1,∆(G))
P

(Wn) =
⌊

n
2

⌋
+ 3. �

A. Nagarajan, V. Maheswari and S. Navaneethakrishnan discussed Smarandache path 1-

cover in [17].

Definition 3.3 A Smarandache path 1-cover of G such that its every edge is in exactly two

path in it is called a path double cover.

Define G ∗H with vertex set V (G)× V (H) in which (g1, h1) is joined to (g2, h2) whenever

g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H); G◦ H , the weak product of graphs G, H with vertex
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set V (G)×V (H) in which two vertices (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G)

and h1h2 ∈ E(H) and

γ2(G) = min { |ψ| : ψ is a path double cover of G }.

(4) Let m ≥ 3.

γ2(Cm ◦K2) =





3 if m is odd;

6 if m is even.

(5) Let m,n ≥ 3. γ2(Cm ◦ Cn) = 5 if at least one of the numbers m and n is odd.

(6) Let m,n ≥ 3.

γ2(Pm ◦ Cn) =





4 if n ≡ 1 or 3(mod 4)

8 if n ≡ 0 or 2(mod 4)

(7) γ2(Cm ∗K2) = 6 if m ≥ 3 is odd.

(8) γ2(Pm ∗K2) = 4 for m ≥ 3.

(9) γ2(Pm ∗K2) = 5 for m ≥ 3.

(10) γ2(Cm × P3) = 5 if m ≥ 3 is odd.

(11) γ2(Pm ◦K2) = 4 for m ≥ 2.

(12) γ2(Km,n) = max{m,n}.
(13)

γ2(Pm × Pn) =





3 if m=2 or n=2;

4 if m,n ≥ 2.

(14) γ2(Cm × Cn) = 5 if m ≥ 3, n ≥ 3 and at least one of the numbers m and n is odd.

(15) γ2(Cm ×K2) = 4 for m ≥ 3.

3.2 Smarandache graphoidal tree d-cover of a graph

S.Somasundaram, A.Nagarajan and G.Mahadevan discussed Smarandache graphoidal tree d-

cover of a graph in references [18]-[19].

Definition 3.4 A Smarandache graphoidal tree d-cover of a graph G is a Smarandache graphoidal

P (|G|, d)-cover of G with P=tree for an integer d ≥ 1.

The minimum cardinality of Smarandache graphoidal tree d-cover of G is denoted by

γ
(d)
T (G) = Π

(|G|,d)
P

(G). If d = ∆(G), then γ
(d)
T (G) is abbreviated to γT (G).

Problem 3.3 determine γT (G) for a graph G, particularly, γT (G).

≫Update Results for Problem 3.3 Obtained in [12-13]:

Case 1: γT (G)

(1) γT (Kp) = ⌈p
2⌉;

(2) γT (Km,n) = ⌈m+n
3 ⌉ if m ≤ n < 2m− 3.

(3) γT (Km,n) = m if n > 2m− 3.
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(4) γT (Pm × Pn) = 2 for integers m,n ≥ 2.

(5) γT (Pn × Cm) = 2 for integers m ≥ 3, n ≥ 2.

(6) γT (Cm × Cn) = 3 if m,n ≥ 3.

Case 2: γ
(d)
T (G)

(1)

γ
(d)
T (Kp) =





p(p−2d+1)
2 if d < p

2 ,

⌈p
2⌉ if d ≥ p

2

if p ≥ 4.

(2) γ
(d)
T (Km,n) = p+ q − pd = mn− (m+ n)(d− 1) if n,m ≥ 2d.

(3) γ
(d)
T (K2d−1,2d−1) = p+ q − pd = 2d− 1.

(4) γ
(d)
T (Kn,n) = ⌈ 2n

3 ⌉ for d ≥ ⌈ 2n
3 ⌉ and n > 3.

(5) γ
(d)
T (Cm × Cn) = 3 for d ≥ 4 and γ

(2)
T (Cm × Cn) = q − p.

§5. Furthermore

In fact, Smarandache’s notion can be used to generalize more and more conceptions and

problems in classical graph theory. Some of them will appeared in my books Automorphism

Groups of Maps, Surfaces and Smarandache’s Geometries (Second edition), Smarandache Multi-

Space Theory (Second edition) published in forthcoming, or my monograph Graph Theory – A

Smarandachely Type will be appeared in 2012.
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