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Abstract

A recently developed spatial analytical tool, Geographically Weighted Regression (GWR) was
used to deal with spatial nonstationarity in modeling the crop residue yield potential for North
Central region of the USA. Average of daily mean temperature and total precipitation of crop
growing season were the explanatory variables. In this study, the model performance of
Ordinary Least Squares (OLS) and GWR were compared in terms of coefficient of

determination ( R 2) and corrected Akaike Information Criterion (AICc). Moran’s [ and Geary’s
C were used to test the spatial autocorrelation of OLS and GWR residuals. The explanatory
power of the models was assessed by approximate likelihood ratio test. Furthermore, the test of
spatial heterogeneity of the GWR parameters was conducted by using data sets with small and

large samples. The comparative study of R?and AICc between the models showed that all the
GWR models performed better than the analogous OLS models. Test of spatial autocorrelation
of residuals revealed that the OLS residuals had higher degrees of spatial autocorrelation than
the GWR residuals indicating that GWR mitigated the spatial autocorrelation of residuals.
Results of the approximate likelihood ratio test showed that GWR models performed better than
the OLS models suggesting that the OLS relationship was not constant across the space of
interest. More importantly, it was demonstrated that the data set would have to be large enough
for the individual parameters of GWR models to be spatially heterogeneous.

Keywords: Geographically weighted regression, spatial autocorrelation, spatial heterogeneity,
residuals, crop residue yield potential.

1 Introduction

A traditional modeling technique used in geographical analysis is based on Ordinary Least
Squares (OLS). In this technique, it is assumed that patterns in the data are spatially constant, and
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therefore, the parameter estimates are the same for the whole study area. This technique does not
account for location in the analysis of the relationship between the variables. Therefore, such
parameter estimates can be considered as global statistics [1]. A simple form of the OLS model (in
matrix form) is given by

Y=XB+e (1)

where Y is the #X1 vector of the dependent variable, X is the design matrix of independent
(explanatory) variables, which includes a column of 1s for the intercept, f is the vector of
regression coefficients (global parameter estimates for the independent variables) and € is a
random vector, where € ~ N (0,02] ). The maximum likelihood estimate of f under such
model is given by

B=(X"X)"XTY 2)

However, in practice, there may be situations when the pattern of the data is not spatially constant.
This is referred to spatial nonstationarity [2]. Under spatial nonstationarity, the measurement of a
relationship depends partly on the location where the measurement is taken. Such a relationship
which is nonstationary over space will not be well addressed by OLS regression. The violation of
the assumptions of independence of residuals in spatial data creates additional problems, such as
spatial autocorrelation. Spatial autocorrelation is a phenomenon in which the value of a given
variable at a location is related to the values of the same variable in a nearby location [3].

In an attempt to explore and explain the spatially varying relationships by allowing the model
parameters to vary over space and thus to attempt to overcome some restrictive assumptions of
OLS regression, the concept of Geographically Weighted Regression (GWR) was developed [1].
GWR is an extension of OLS regression in which the parameters are allowed to vary spatially. As
such, spatial relationships between the variables can be examined and patterns can be identified.
GWR is often referred to be a local model because it provides estimates to local statistics and
hence it is more appropriate when the relationships vary spatially [1]. GWR model is defined [2]
as

=2 XBi(p)+e, (3)

where Y is again a #2%1 vector of dependent variables, p ; 1s the coordinates for the observation

I, and &; is the random error term for the ith observation. These ,Bj (p;) contain the local

parameters to be estimated. The concept here is that these expressions would be substituted into
the original model and the resulting expanded model (which may now be nonlinear) is calibrated

(2].

Previous studies have shown that GWR performs better than OLS regression model [4, 5]. GWR
is not recommended in situations with small sample sizes (7~160 in their experiments) [6]. To the
best of our knowledge, no work has been done in the literature to test the spatial heterogeneity of
individual parameters of GWR model when applied to data of small and large samples. Therefore,
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the primary purpose of this research work was to test the spatial heterogeneity of individual
parameters of GWR model when applied to spatially varying data of small and large samples.
Similarly, the secondary purpose of this research work was to test the performance of GWR and
OLS regression models when applied to these data sets. In addition to comparing the
performances of these two models, our third objective was to assess the influence of temperature
and precipitation on crop residue yield potential and to assess the degree of spatial autocorrelation
of OLS and GWR residuals using the outputs generated.

In this study, the spatial dependence of GWR and OLS residuals were compared. The coefficient
of determination (Adjusted R?) and the Akaike Information Criterion (AIC and AICc) were used
to compare the models. The widely accepted rule of thumb [7] that a decrease of 3 in AIC
considered as an improvement was also used to evaluate the performance of the models. In
addition to comparing the models with different independent variables, AICc can also be used to
compare OLS and GWR models (as long as the response variable is the same in the models) and
also in the software that determines the optimal value for the bandwidth; the bandwidth with
lowest AICc value will be used to estimate the parameters [7]. An approximate likelihood ratio
test based on the F' test was used to check for significant improvement of GWR over OLS. A test
of spatial heterogeneity of individual parameters was also used.

In Section 2, the weighting functions and kernel bandwidths for GWR were discussed. Section 3
had a comparative study of GWR and OLS models. In addition, the test of spatial heterogeneity of
individual parameters of GWR and the outputs from GWR model were discussed. In section 4,
OLS and GWR regressions were used to model the crop residue yield potential data of South
Dakota and the ten states of the North-Central region (Illinois, Indiana, Iowa, Minnesota,
Montana, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming) of the USA for the
years 1970, 1980, and 2008 and evaluated their corresponding model performances. Summary of
this study was given in Section 5.

2 Weighting Functions and Kernel Bandwidths

The basic methodology behind GWR is that a weighted distance decay function W; is used for

model calibration [1, 2]. One of the methods for such calibration is to take a point p; and to fit a
weighted OLS regression with observations within the circle weighted as 1 and zero otherwise.

That is, the weight W); for a given P, assigned to observation j would be

“)

Wi

1 if dl,j <r
0 otherwise

where d ; 1s the distance between locations of observations 7 and j and r is the radius of the

circle.

A variety of weighting functions are available [2]. In all of these, it is assumed that the weight
decreases with an increase in distance between the observations. One of the weighting functions
could be an exponential function given by
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d,
w, = exp(— —’j Q)

r

where d i is, as before, the distance between locations of observations i and j, and 7 is the kernel
bandwidth.

Another weighting function commonly used in practice is to calculate the weight by using a
Gaussian distance decay function (also referred to as the Continuous Weighting Function) given
by

4>

w; =exp| ——5 (6)

22

where the values of W), decay gradually with distance to the extent that when d j= 3r, the weight
virtually decreases to zero [8]. Results from GWR are not very sensitive to the choice of the
weighting function, provided that it is smooth and follows a distance decay property [2]. In this
paper, the weights w;; are calculated at each calibration location using the Gaussian distance

decay function given by (6).

The kernel bandwidth parameter 7 is first estimated from the data to fit a GWR model. At
present, there are three methods for this: direct assignment of the bandwidth of number of nearest
neighbors [9], cross validation process (an iterative process that finds the kernel bandwidth that
minimizes the prediction error of all the response variables using a subset of data for prediction)
[10, 11], and a corrected Akaike Information Criterion (AICc) [1]. As of now, the most commonly
used approach is cross validation, and this method was used in our analysis. The vector of
estimated regression coefficients is given by

XWX X WY ()

:B,' =
where W, is a square matrix of weights relative to the position i and is given by

w 0 0 0
3 w, 0 0
W= 0
0 0 Wy

and contains the geographical weights in its main diagonal and 0 in its off diagonal elements, N
is the number of observations, X VVIX is the geographically weighted variance covariance

matrix [7], and Y is the vector of values of the response variables.
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At present, GWR can be run using GWR3.0 or R. In both of these, fixed and adaptive bandwidth
kernels can be chosen. The former computes a bandwidth which is held constant over space while
the latter adapts the bandwidth distance according to the density of the data (the denser the data,
the smaller the bandwidth and vice versa) [1, 5, 12]. In this study, an adaptive kernel bandwidth is
chosen since sample densities varied over the study area. The data analyses were done using the
spgwr package [13] for GWR in the statistical software package R, version 3.0.1 [14].

3 Model Comparisons

The comparison between OLS and GWR models was performed by comparing their R*and AIC
/AICc using a small data set (crop residue data of 66 counties of South Dakota, U.S. for the years
1970, 1980, and 2008) to those with a larger data set (crop residue yield potential data of 743
counties of ten states of the North-Central region (Illinois, Indiana, lowa, Minnesota, Montana,
Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming) of the USA for the years 1970,

1980, and 2008). The conventional interpretation of R’ is that a larger value has greater
explanatory power. While comparing two models using AIC, the model with lower AIC value is
considered to be a better model. More precisely, if the AIC values for two models differ by at
least 3, then the model with the smaller AIC. will be considered to be the better model.
Furthermore, the results of an approximate likelihood ratio test (also called goodness of fit test)
based on the F test [1] was used to assess the model improvement of GWR over OLS models. A
statistically significant result from the F test (at a given level of significance) indicates that the
GWR model performs better than the analogous OLS model.

Residual Analyses were conducted for both of the models, which included histograms of the OLS
and GWR residuals. Global Moran’s [ and Geary’s C statistics (which are special cases of the
general cross product statistic applied to continuous data) were calculated to test the presence of
spatial autocorrelation of the residuals. These statistics are particularly useful with spatial data
whose covariance structures are defined by neighborhoods, a common situation for lattice data.
Similar to the coefficient of correlation, the values of global Moran’s / also range from -1 to 1
where the value of 1 and -1 indicate perfect positive spatial autocorrelation and perfect negative
spatial autocorrelation, respectively. A global Moran’s / with a value of 0 indicates no spatial
autocorrelation. On the other hand, the values of Geary’s C range from 0 to 2. It should be noted
that Geary’s C is interpreted much differently than Moran’s [ statistic. First, Geary’s C has a mean
of 1 under the null hypothesis of no spatial autocorrelation, and can never be negative. Second,
values of Geary’s C between 0 and 1 indicate positive autocorrelation, whereas values of C greater
than 1 indicate negative spatial autocorrelation. The calculations of Moran’s 7 and Geary’s C were
performed using the spdep package [15] in the statistical software package R, version 3.0.1 [14].
Spatial plots were used to detect the pattern of the OLS and GWR residuals.

3.1 Test of Spatial Heterogeneity of Individual Parameters of GWR

The individual parameter estimates of the GWR model are considered spatially heterogeneous if
the inter-quartile range (difference between the third quartile and the first quartile) of GWR
coefficients is greater than the range of values at £ 1 standard deviations of the respective global
estimates estimates i.e., (5;-0; of GWR coefficients is greater than the range of
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b, —18.D.,b, +15.D.) of OLS estimates which is simply twice the standard deviation
1 1 ply
(S.D.) of the OLS estimates [1,4,16].

3.2 Outputs from GWR

The spatial variation in parameter estimates, also considered as the main output from GWR, were
used to see the variations in relationships revealed by these coefficients. In addition, histograms of
the parameter estimates were used to detect the spatial variation revealed by theses coefficients.
Scatter plots of estimated GWR coefficients for the pairs of predictor variables of the regression
model were used to visualize the nature of dependence in the estimated coefficients [17].

4 Applications

4.1 Data

The data set was obtained from the USDA National Agricultural Statistics Service [18]. North-
Central region of the USA was selected for this observational study which included the states of
Illinois, Indiana, Iowa, Minnesota, Montana, Nebraska, North Dakota, South Dakota, Wisconsin,
and Wyoming. This selected region is located between 37.0 and 49.0 degrees north latitude and
84.8 and 116.0 degrees west longitude [19]. The data set consisted of the variables: County names,
FIPS ID of the county, crop residue yield potential, temperature, and precipitation for the years
1970-2008. The county level dry crop residue yield potential (Mg ha™') was calculated using crop
yield data collected from the USDA-NASS, 2009 [19]. The average daily mean temperature (°C)
and total precipitation (mm) of crop growing season (April — October) were the climate
parameters used as independent (predictor) variables to model the county level crop residue
potential (response / dependent variable) in this study. This climate data was obtained from the
monthly gridded Parameter-elevation Regressions on Independent Slopes Model (PRISM)
weather data [20]. For this analysis, the subset of the data for the three years 2008, 1980, and 1970
was considered. The response variable crop residue yield potential was closely normal and several
transformations were attempted to normalize it. However, none of the transformations perfectly
normalized it, and so it was kept as is for further analysis. Transformations were not attempted for
the predictor variables. The data set had missing values of these variables for 56, 3, and 5 counties
for 2008, 1980, and 1970 data respectively. Some examples of the counties with the missing data
were Corson, Custer, Lawrence, Shannon, and Stanley. An imputation technique was used to
estimate the missing values of crop residue yield potential, temperature, and precipitation. Thus,
we had a complete data set for all 743 counties of the ten states of the North-Central region of the
USA.

The original version of the data set with crop residue yield potential, temperature and precipitation
for the years 1970 to 2008, has already been analyzed by averaging over time and then
Conditional Autoregressive and Simultaneous Autoregressive models [21] were fit [22]. To the
best of our knowledge, this dataset has not been analyzed using GWR yet.
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4.2 Results and Discussion

OLS and GWR regression models were fit for the crop residue yield potential as a function of two
climate variables (temperature and precipitation) for small as well as large data sets (66 counties
of South Dakota and 743 counties of ten states of the North-Central region of the USA) for the
years 1970, 1980, and 2008. In all the cases, the value of Moran’s / and Geary’s C for residuals
(Table 1) indicated that there was a positive autocorrelation of OLS residuals. For instance, for the
year 1970, the value of Moran’s / for OLS residuals was 0.33 while that of Geary’s C was 0.63
(both agreeing on positive autocorrelation of residuals). On the other hand, the values of Moran’s /
and Geary’s C (Table 1) indicated that there was a negative autocorrelation of GWR residuals, for
example, the value of Moran’s / for GWR residuals was -0.12 and Geary’s C was 1.11 (both
agreeing on small negative autocorrelation of residuals).It should also be noted that in all the
years, the degree of autocorrelation of OLS residuals was higher than that of GWR residuals
indicating that GWR mitigated the autocorrelation of residuals. This was also supported by the
spatial plot of OLS and GWR residuals (Figs. 1 and 2). In addition, there was more variability of
OLS residuals than GWR residuals, for instance, in 2008 data, the OLS residuals ranged from -
5.286 to 7.1 while the GWR residuals ranged from -4.23 to 3.35. The variances of OLS and GWR
were 3.92 and 0.84 respectively. These numbers helped us quantify the visible relationships
between the two map patterns illustrated in Figs. 1 and 2. The residuals under all the OLS models
were non normal, while the residuals under all the GWR models were almost normal (based on
histograms, Fig. 3). Significant improvements in the fit of both the OLS and GWR models were

observed for all models on comparing R?and AICc. In all cases, the values of R?under GWR
models were higher than those of the corresponding OLS models (Table 1) indicating the higher
explanatory power of the GWR models over the analogous OLS models. In addition, all the GWR
models had smaller AICc values than the analogous OLS models (Table 1).

Table 1. Comparison of OLS and GWR

Data Year Moran’s / Geary’s C Adjusted R* AICc
OLS GWR OLS GWR OLS GWR OLS GWR
66 1970 0.33 -0.12 0.63 1.11 0.08 0.74 57.00 37.63
counties 1980 0.54 0.05 045 099 045 094 13253 11141
2008 0.58 -0.01 040 0095 0.01 0.74 287.48  237.50
743 1970 0.62 -0.07 039 1.06 022 0.84 2645.44 1955.68
counties 1980 047 -0.05 053 1.06 046 0.87 2606.92 2047.67

2008 043 0.21 0.56 0.96 0.39 0.87 3131.34 2412.15
The adjusted R’ for GWR models are the mean values of the corresponding R’ values. Moran’s I and Geary’s
C for OLS residuals (italicized) had statistically significant p-values at the 0.05 level. The p-values for the
Moran’s I and Geary’s C for GWR residuals were not statistically significant.

The GWR models in all cases performed better than the corresponding OLS models, according to
the approximate likelihood ratio test (Table 2) with extremely small p-values in each case
suggesting that the ordinary least squares relationship between crop residue yield potential,
temperature, and precipitation was not constant across the study area. Table 2 also showed the
significant improvements in explained variance (reduced sum of squared errors) by the GWR
models over the analogous OLS models.
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Table 2. Goodness of fit test for improvement in model fit of GWR over OLS

Source F-statistic  P-value
Data Year OLS GWR GWR
residuals  residuals improvement
1970 8.12 2.40 5.73 3.54 6.7¢-06
66 counties 1980 25.50 3.09 22.40 5.11 7.1e-08
2008 266.76 72.65 194.11 7.14 1.0e-11
1970 1514.04 317.75 1196.29 7.53 <2.2e-16
743 counties 1980 1437.55 336.52 1101.03 5.88 <2.2e-16
2008 2911.72 626.50 2285.22 8.27 <2.2e-16
Note: Fe 22852/22645 -3 27f0r 743 counties of 2008 data as given by GWR output.

T 6265/51355

It was observed that the inter-quartile ranges (IQR) of GWR coefficients were greater than twice
the standard deviations of their respective global estimates for small data set with 66 counties of
South Dakota for the years 1970 and 1980 (Table 3). But the IQRs of the intercept and
precipitation of GWR coefficients were less than twice the standard deviations of their respective
global estimates in the year 2008 model for the small data set. On the other hand, for the large data
set with 743 counties of the North-Central region of the USA in all the years, the IQRs of all the
GWR coefficients were greater than twice the standard deviations of their respective global
estimates. Thus, the parameters for intercept and precipitation for the small data set were not
spatially heterogeneous in the 2008 model. However, all the parameters of models for the large
data set were spatially heterogeneous. We again repeated the experiment by fitting the GWR
model for a data set with 194 counties of the two states Illinois and Indiana of the USA (results
not shown). We observed that the IQRs of GWR coefficients were greater than twice the standard
deviations of their respective global coefficients. Hence, a caution needs to be exercised when
using GWR for the purpose of assessing spatial heterogeneity of parameters when analyzing small
data sets.

Table 3. Test of spatial heterogeneity of individual parameters

Data Year Variable S.D.(Global) 2S.D.(Global) IQR (GWR) Results
Intercept 0.74 0.148 2.134 Q3-Q>2 S.D.
1970 Temp 0.041 0.082 0.136 Q;-Q>2S.D.
Precpt 0.0011 0.0022 0.004 Q;-Q>2S.D.
66 Intercept 1.44 2.88 9.394 Q;-Q>2S.D.
Counties 1980 Temp 0.08 0.16 0.649 Q;-Q>2S.D.
Precpt 0.0013 0.0026 0.006 Q;-Q>2S.D.
Intercept 5.6 11.2 8.31 Q;3-Q<2S.D.
2008 Temp 0.335 0.670 0.691 Q3-Q>2S.D.
Precpt 0.007 0.014 0.011 Q;-Q<2S.D.
Intercept 0.34 0.68 10.59 Q;-Q>2S.D.
1970 Temp 0.027 0.054 0.67 Q;-Q>2S.D.
Precpt 0.0004 0.0008 0.006 Q;-Q>2S.D.
743 Intercept 0.36 0.72 11.58 Q;3-Q>2S.D.
Counties 1980 Temp 0.022 0.044 0.75 Q;-Q;>2S.D.
Precpt 0.0003 0.0006 0.008 Q3-Q>2S.D.
Intercept 0.52 1.04 20.2 Q;3-Q>2S.D.
2008 Temp 0.04 0.08 1.43 Q5-Q,>2S.D.
Precpt 0.0005 0.001 0.012 Q;-Q;>2S.D.

Note: Temp and Precpt stand for temperature and precipitation respectively.



British Journal of Mathematics & Computer Science 4(1), 1-21, 2014

for the ten north central states of the US. Top to

, 1980, and 1970

Fig. 1. Spatial distribution of OLS residuals

bottom: 2008
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Fig. 2. Spatial distribution of GWR residuals for the ten north central states of the US. Top
to bottom: 2008, 1980, and 1970

10
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The normality of OLS and GWR residuals for all the models was compared using histograms (Fig.
3). It was found that the GWR residuals for all the models were more closely normally distributed
than OLS residuals. It supported our previous conclusion that GWR had the ability to better model
spatially varying data. In addition, the non-normality of OLS residuals implied that the
assumptions of OLS regression models were not satisfied, raising a question about the validity of
these models. When the assumptions of OLS models are violated, the results of such models could
be misleading, and statistical inferences provided by such models could be spurious. In addition,
the strong autocorrelation of OLS residuals suggests that the OLS relationship between crop
residue yield potential, temperature, and precipitation was not stationary. Moreover, the lower
degree of spatial autocorrelation of GWR residuals implied that the GWR models were more
trustworthy. Hence, the non-normality and spatial autocorrelation of the OLS residuals and lower
values of the coefficients of determination of OLS models supported the assertion that GWR
modelled the spatially varying data more efficiently than the analogous OLS models.
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Fig. 3. Histogram of residuals. Top to bottom: 2008, 1980, and 1970; left to right: OLS,
and GWR
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The histograms of estimated GWR coefficients for the years 2008, 1980, and 71970 are given in
Fig. 4. These histograms allowed the distributions of the coefficients to be easily compared for the
three years. The distributions for intercept were right skewed, which indicated that a few counties
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Fig. 4. Histogram of estimated GWR coefficients. Top to bottom: 2008, 1980, and 1970; left
to right: coefficients of intercept, temperature, and precipitation

12



British Journal of Mathematics & Computer Science 4(1), 1-21, 2014

had much larger intercepts than other counties. The distributions for temperature coefficients were
left skewed, which indicated that a few counties had larger negative coefficients for temperature
than other counties. The distributions for precipitation coefficients were left skewed for 2008,
somewhat symmetrical for 1980, and right skewed for 1970. This indicates that the shape of the
distribution of coefficients for precipitation has changed over time.

As recommended by [17], scatter plots of estimated GWR coefficients for the pairs of predictor
variables of the regression model were used to visualize the nature of dependence in the estimated
coefficients. Fig. 5 showed the scatter plots for the pairs of the three regression terms: intercept,
temperature, and precipitation. The vertical and the horizontal dashed reference lines denote the
levels of analogous global parameter estimates (Table 4 has the parameter estimates for the OLS
regression models for 2008, 1980, and 1970 models). The Pearson product moment correlation
coefficients for the pairs of the regression terms were given in Table 5. These results strongly
agreed with the scatter plots from Fig. 5. There was negative correlation between the coefficients
of correlations (with the exception of the coefficients between intercept and precipitation for
1970). The degree of correlation between intercept and temperature was very strong. The
correlations between the other pairs of regression terms were comparatively weaker. The scatter
plots showed that there was large variation around the OLS estimates for intercept; however, there
was small variation around the OLS estimates for temperature and precipitation. Furthermore, the
estimated GWR coefficients do not center on their analogous OLS estimates. The strong
correlation between the coefficients of intercept and temperature could signal the presence of local
collinearity in the GWR model which could lead to complications on the statistical inference
drawn from these GWR coefficients.

bl

-0.06
-0.08

-40 0 20 40 S0 &0 -4 -2 a 2 —40 0 20 40 s0 &0
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Fig. S (a). Scatter plots of estimated GWR coefficients for 2008 model
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Fig. 5 (c). Scatter plots of estimated GWR coefficients for 1970 model
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Table 4. Parameter estimates for the OLS regression models

Year Intercept Temperature Precipitation
2008 -1.16 0.393 0.005
1980 -1.888 0.195 0.007
1970 0.145 0.126 0.003

Table 5. Correlation coefficients between the estimated GWR coefficients

Year cor(by,b;) cor(b;,b,) cor(by,b,)
2008 -0.911 -0.144 -0.234
1980 -0.955 -0.097 -0.152
1970 -0.951 -0.333 0.0734

The spatial variation of the estimated GWR coefficients for the years 2008, 1980 and 1970 for
intercept, temperature, and precipitation were shown in Figs. 6, 7, and 8 respectively. The spatial
variations in relationship shown by these distributions were interesting. A comparative study of
Figs. 6 and 7 showed a clear inverse map pattern between intercept and temperature (as one would
expect, since the correlation coefficients between intercept and temperature from Table 5 were
large and negative in all the cases):in general, when the intercept parameter was high, the
temperature parameter was low and vice versa. On the other hand, there was no clear pattern
between the maps of intercept and precipitation and temperature and precipitation (Figs. 7 and 8,
as the coefficients of correlations between both the pairs are small in both the cases). Thus, the
correlation coefficients given in Table 5 helped us quantify the three map patterns illustrated in
Figs. 6, 7, and 8. For instance, the coefficients of correlations between temperature and
precipitation in the years 2008 and 1980 were small. Due to this, there was not much difference in
the patterns of the plots of temperature and precipitations for these years.
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Fig. 6. Spatial distribution of estimated GWR coefficients for intercept for the ten north
central states of the US. Top to bottom: 2008, 1980, and 1970
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Fig. 7. Spatial distribution of estimated GWR coefficients for temperature for the ten north
central states of the US. Top to bottom: 2008, 1980, and 1970

17
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Fig. 8. Spatial distribution of estimated GWR coefficients for precipitation for the ten north
central states of the USA. Top to bottom: 2008, 1980, and 1970

5 Summary

In this study, OLS and GWR models were fit for crop residue yield potential of South Dakota,
United States for the years 2008, 1980, and 1970 and the performance of these models were
compared. The same analyses were repeated with a larger data set (crop residue yield potential
data of ten states of the North-Central region of the USA).The approximate likelihood ratio test
(also called the goodness of fit test) suggested that all the GWR models performed better than the
analogous OLS regression models indicating that OLS relationship between crop residue yield
potential, temperature, and precipitation was not constant across the study area. The coefficients
of determination in all the GWR models were higher than in the analogous OLS models,
indicating that GWR models had higher power at explaining spatially varying relationships than
the analogous OLS models. All the GWR models had smaller AIC. values than those of the
analogous OLS models by at least 3 indicating that GWR models performed better and provided
more parsimonious results than the analogous OLS models. In this study, the residuals of all the
GWR models were approximately normally distributed while those of OLS models were not
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normally distributed. Moran’s / and Geary’s C statistics showed that the degree of autocorrelation
of OLS residuals were higher than that of GWR residuals indicating that GWR mitigated the
autocorrelation of residuals.

Out of the three cases of our analysis, two of the three parameters of GWR model (using small
data set for 2008) were not spatially heterogeneous. This could be due to the small sample size,
which increases the possibility of spurious correlations between local coefficients [6]. In the other
two cases, i.e. 1980 and 1970; all the parameters of the GWR model were spatially heterogeneous
for small and large data sets. GWR should not be practiced for data with small sample size; and
serious caution should be exercised when interpreting the results from such outputs [6].

In our case, there was strong (negative) correlation between the estimated GWR coefficients of
intercept and temperature. However, the correlations between the other pairs of coefficients were
weaker. The strong correlation between the GWR coefficients of intercept and temperature could
be the result of local collinearity in the model. This could be investigated using maps of
approximate local regression coefficient correlations [17]; local variance inflation factors (VIFs),
variance-decomposition proportions and the associated condition indices [23, 24] as diagnostic
tools for collinearity when estimating GWR coefficients.
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