Lesson Open Access

Bibliometric solutions for identifying potential collaborators

Nicolás Robinson-García; Daniel Torres-Salinas

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">bibliometrics</subfield>
  <controlfield tag="005">20190410042253.0</controlfield>
  <controlfield tag="001">904575</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Navarra &amp; Univ Granada (ec3metrics and medialabugr)</subfield>
    <subfield code="a">Daniel Torres-Salinas</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3761517</subfield>
    <subfield code="z">md5:f10b6e1e5c8cbd6625d1bb21463bd4ad</subfield>
    <subfield code="u">https://zenodo.org/record/904575/files/Bibliometric Solutions for Identifying Potential Collaborators.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-21</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:904575</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Georgia Tech / Ec3metrics</subfield>
    <subfield code="a">Nicolás Robinson-García</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bibliometric solutions for identifying potential collaborators</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Bibliometric indicators and methodologies are commonly used for benchmarking institutions and individuals, and analyzing their research performance. Their potential for identifying partners and promoting collaboration is many times overseen by research institutions. In this presentation we will discuss different indicators and methodologies that can be used to spot institutions, research groups and individuals working on similar research fronts. By using different visualization techniques, we will provide examples on how to present these data in an appealing way which can inform university and research managers. These types of analyses are useful when searching for potential partners or designing strategies to establish scientific collaboration networks.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.904574</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.904575</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">lesson</subfield>
All versions This version
Views 146146
Downloads 7373
Data volume 274.6 MB274.6 MB
Unique views 138138
Unique downloads 6969


Cite as