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A note on dual quaternions and matrices of

dual quaternions
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Sakarya 54187, Türkiye

E-mail: agungor@sakarya.edu.tr msarduvan@sakarya.edu.tr

Abstract In this paper, it is investigated eigenvalues and eigenvectors of the dual Hamilton

operators. Moreover, it is examined a special type dual quaternion equation using these

eigenvalues and eigenvectors. Finally, it is given the nth power of a dual quaternion.

Keywords Dual quaternion, dual matrix equation, normal matrix, eigenvalue, rank.

§1. Introduction and preliminaries

Quaternions were invented by Sir William Rowan Hamilton as an extension to the complex
numbers. Until the middle of the 20th century, the practical use of quaternions was minimal in
comparison with other methods. But, currently, this situation has changed. Today, quaternions
play a significant role in several areas of the physical science; namely, in differential geometry, in
analysis and synthesis of mechanism and machines, simulation of particle motion in molecular
physics, and quaternionic formulation of equation of motion in theory of relativity. Moreover,
quaternions are used especially in the area of computer vision, computer graphics, animation,
and to solve optimization problems involving the estimation of rigid body transformations (see,
for example, [1, 4, 6, 8, 19]).

Each element of the set

D =
{
ã = a + εa∗ : a, a∗ ∈ R and ε 6= 0, ε2 = 0

}
= {ã = (a, a∗) : a, a∗ ∈ R}

is called a dual number. A dual number ã = a + εa∗ can be expressed in the form ã =
Re (ã) + εDu (ã), where Re (ã) = a and Du (ã) = a∗. The conjugate of ã = a + εa∗ is defined
as ã = a − εa∗. Summation and multiplication of two dual numbers are defined as similar to
the complex numbers. However, it will not be forgotten that ε2 = 0. Thus, D is a commutative
ring with a unit element [11]. Clifford introduced dual numbers to form bi-quaternions (called
dual quaternions nowadays) for studying noneuclidean geometry [5]. First applications of dual
numbers to mechanics was generalized by Kothelnikov [15] and Study [20] in their principle of
transference. Recently, dual numbers have been applied to study the kinematics, dynamics, and
calibration of open-chain robot manipulators. Moreover, dual numbers are useful for analytical
treatment in kinematics and dynamics of spatial mechanisms (see, for example, [7, 16, 17, 18]).
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Furthermore, each element of the set

CD =
{

ẑ = ã + b̃i : ã, b̃ ∈ D and i2 = −1
}

is called a dual complex number. A dual complex number ẑ = ã + b̃i can be expressed in the
form ẑ = Du (ẑ) + iIm (ẑ), where Du (ẑ) = ã and Im (ẑ) = b̃. The conjugate of ẑ = ã + b̃i

is defined as ẑ = ã − b̃i. Summation and multiplication of any two dual complex numbers
ẑ = ã + b̃i and ŵ = c̃ + d̃i are defined in the following ways,

ẑ + ŵ = (ã + c̃) +
(
b̃ + d̃

)
i

and
ẑ.ŵ =

(
ã + b̃i

)(
c̃ + d̃i

)
=

(
ãc̃− b̃d̃

)
+

(
ãd̃ + b̃c̃

)
i.

The dual complex numbers defined as the dual quaternions were considered as a general-
ization of complex numbers by Ata and Yayli [3].

In this paper, it is assumed that the reader is already familiar regular quaternions, otherwise
(see, for example, [10, 13, 22, 24]). The matrix representation of spatial displacements of rigid
bodies has an important role in kinematics and the mathematical description of displacements.
Veldkamp and Yang-Freudenstein investigated the use of dual numbers, dual numbers matrix,
and dual quaternions in instantaneous spatial kinematics in [21] and [23], respectively. Agrawal
[2] worked on Hamilton operators and dual quaternions in kinematics. In [2], the algebra of
dual quaternions is developed by using two Hamilton operators. Properties of these operators
are used to find some mathematical expressions for screw motion.

Each element of the set

HD =
{

Q̃ = ã0 + ã1i + ã2j + ã3k : ã0, ã1, ã2, ã3 ∈ D
}

is called a dual quaternion, where i, j, and k are special elements of HD satisfying

i2 = j2 = k2 = ijk = −1

and

ij = k = −ji , jk = i = −kj , ki = j = −ik.

A dual quaternion Q̃ = ã0 + ã1i + ã2j + ã3k is pieced into two parts with real part
R

(
Q̃

)
:= ã0 and imaginary part =

(
Q̃

)
:= ã1i + ã2j + ã3k. Summation and multiplication of

any two dual quaternions Q̃ = ã0 + ã1i + ã2j + ã3k and P̃ = b̃0 + b̃1i + b̃2j + b̃3k are defined as

Q̃ + P̃ =
(
ã0 + b̃0

)
+

(
ã1 + b̃1

)
i +

(
ã2 + b̃2

)
j +

(
ã3 + b̃3

)
k

and

Q̃P̃ =
(
ã0b̃0 − ã1b̃1 − ã2b̃2 − ã3b̃3

)
+

(
ã1b̃0 + ã0b̃1 − ã3b̃2 + ã2b̃3

)
i

+
(
ã2b̃0 + ã3b̃1 + ã0b̃2 − ã1b̃3

)
j +

(
ã3b̃0 − ã2b̃1 + ã1b̃2 + ã0b̃3

)
k.



Vol. 7 A note on dual quaternions and matrices of dual quaternions 3

Thus, with this multiplication operator, HD is called dual quaternion algebra [12]. The
conjugate of Q̃ = ã0 + ã1i + ã2j + ã3k is defined as Q̃ = ã0 − ã1i − ã2j − ã3k. For any two
quaternions Q̃ and P̃ we have Q̃P̃ = P̃ Q̃.

In this paper, it is employed a matrix oriented approach to the dual quaternions topic,
by representing dual quaternions as four-dimensional vectors and the multiplication of dual
quaternions as matrix-by-vector product, since this approach might be easier to grasp than the
traditional axiomatic point of view.

The purpose of this paper is mainly three fold: first to investigate eigenvalues and eigenvec-
tors of the dual Hamilton Operators, second to examine a special type dual quaternion equation
using these eigenvalues and eigenvectors, and finally to give the nth power of a dual quaternion.

§2. Basic properties of the dual fundamental matrices

It is nearby to identify a dual quaternion Q̃ ∈ HD with a dual vector q̃ ∈ D4. It will be
denoted such an identification by the symbol “ ∼= ” i.e.,

Q̃ = ã0 + ã1i + ã2j + ã3k ∼= q̃ = (ã0, ã1, ã2, ã3)
′
,

where the prime superscript stands for the transpose. Then addition in HD becomes the
componentwise addition of vectors in D4, and multiplication can be represented by an ordinary
matrix-by-vector product

Q̃P̃ ∼= Lq̃p̃ or P̃ Q̃ ∼= Rq̃p̃,

where the matrices Lq̃ and Rq̃ called Hamilton operators, are given by

Lq̃ =




ã0 −ã1 −ã2 −ã3

ã1 ã0 −ã3 ã2

ã2 ã3 ã0 −ã1

ã3 −ã2 ã1 ã0




, Rq̃ =




ã0 −ã1 −ã2 −ã3

ã1 ã0 ã3 −ã2

ã2 −ã3 ã0 ã1

ã3 ã2 −ã1 ã0




. (1)

Since these operators play a crucial role in the subsequent considerations, they will be
called as the left and right fundamental matrices, respectively. It will be discussed their main
features in this and next sections.

It can be written following identities as a direct consequence of the above fundamental
matrices.

L1 = R1 = I4,

Li = E1, Lj = E2, Lk = E3,

Ri = F1, Rj = F2, Rk = F3,

where I4 is a 4 × 4 identity matrix. Note that the properties of En and Fn (n = 1, 2, 3) are
identical to that of dual quaternionic units i, j, k. Since Lq̃ and Rq̃ are linear in their elements,
it follows that

Lq̃ = ã0L1 + ã1Li + ã2Lj + ã3Lk = ã0I4 + ã1E1 + ã2E2 + ã3E3 = Lq + εLq∗ , (2)
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Rq̃ = ã0R1 + ã1Ri + ã2Rj + ã3Rk = ã0I4 + ã1F1 + ã2F2 + ã3F3 = Rq + εRq∗ , (3)

where q = (a0, a1, a2, a3)
′, q∗ = (a∗0, a

∗
1, a

∗
2, a

∗
3)
′ ∈ R4.

Using the definitions of the fundamental matrices, the multiplication of the two dual quater-
nions Q̃ and P̃ is given by

r̃ = Lq̃p̃ = Rp̃q̃. (4)

Real part, imaginary part, and conjugate of a dual quaternion Q̃ is shown as

R
(
Q̃

) ∼= ã0e1, e1 :=




1

0

0

0




, =
(
Q̃

) ∼= q̃∗ :=




0

ã1

ã2

ã3




,

and

¯̃Q ∼= ¯̃q :=




ã0

−ã1

−ã2

−ã3




= Cq̃, C :=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




.

In the sequel, it will be represented a dual number ã by ãe1 whenever appropriate.
In the following theorem, some properties associated with the dual fundamental matrices

and some identities are presented.
Theorem 2.1. Let Q̃, P̃ be dual quaternions, α̃, β̃ be dual numbers, and L and R be the

dual fundamental matrices as defined in (1), then the following identities hold:
(i) Q̃ = P̃ ⇔ Lq̃ = Lp̃ ⇔ Rq̃ = Rp̃.

(ii) Lα̃q̃+β̃p̃ = α̃Lq̃ + β̃Lp̃, Rα̃q̃+β̃p̃ = α̃Rq̃ + β̃Rp̃.

(iii) Lq̃L′q̃ = L′q̃Lq̃, Rq̃R′
q̃ = R′

q̃Rq̃, L¯̃q= L′q̃, R¯̃q= R′
q̃.

(iv) det (Lq̃) = det (Rq̃) = ‖q̃‖4, L−1
q̃ = 1

‖q̃‖2 L
′
q̃ , R−1

q̃ = 1
‖q̃‖2 R

′
q̃ , 0 6= q̃ ∈ D4 (where ‖·‖

denotes the Euclidean norm of a dual vector).

(v) tr (Lq̃) = tr (Rq̃) = 4ã0.

(vi) Rq̃ = CL′q̃C, Lq̃ = CR′
q̃C, C−1 = C′ = C, C2 = I4.

(vii) Q̃ ¯̃Q =
∣∣∣Q̃

∣∣∣
2

,
∣∣∣Q̃P̃

∣∣∣
2

=
∣∣∣Q̃

∣∣∣
2 ∣∣∣P̃

∣∣∣
2

, Q̃P̃ = ¯̃P ¯̃Q.

(viii) Lq̃Lp̃ = LLq̃p̃, Rq̃Rp̃ = RRq̃p̃, Lq̃Rp̃ = Rp̃Lq̃.

Proof. The parts (i)-(vi) can be proved by the using (1)-(4) and simple matrix computa-
tion.

Using the identification with dual vectors in D4, it is seen that

Q̃ ¯̃Q ∼= Lq̃
¯̃q = R¯̃qq̃ = ‖q̃‖2 e1

∼=
∣∣∣Q̃

∣∣∣
2

= ã2
0 + ã2

1 + ã2
2 + ã2

3,

∣∣∣Q̃P̃
∣∣∣
2

= ‖Lq̃p̃‖2 = p̃′L′q̃Lq̃p̃ = p̃′ ‖q̃‖2 L−1
q̃ Lq̃p̃ = ‖q̃‖2 ‖p̃‖2 =

∣∣∣Q̃
∣∣∣
2 ∣∣∣P̃

∣∣∣
2

,
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and
Q̃P̃ ∼= C (Lq̃p̃) = (CLq̃) p̃ = (R′

q̃C) p̃ = R′
q̃ (Cp̃) = R¯̃q (Cp̃) = R¯̃q

¯̃p ∼= ¯̃P ¯̃Q,

which completes the part (vii).
Moreover, using the associative property of dual quaternion’s multiplication it is clear that

the following identities hold:
(
Q̃P̃

)
R̃ = Q̃

(
P̃ R̃

)
= Q̃P̃ R̃,

R̃
(
P̃ Q̃

)
=

(
R̃P̃

)
Q̃ = R̃P̃ Q̃,

Q̃
(
R̃P̃

)
=

(
Q̃R̃

)
P̃ = Q̃R̃P̃ .

In terms of the fundamental matrices, the above identities can be written as (5)(6)(7)
respectively.

(Lq̃p̃) r̃ = LLq̃p̃r̃ = q̃ (Lp̃r̃) = Lq̃ (Lp̃r̃) = Lq̃Lp̃r̃, (5)

(Rq̃p̃) r̃ = RRq̃p̃r̃ = q̃ (Rp̃r̃) = Rq̃ (Rp̃r̃) = Rq̃Rp̃r̃, (6)

q̃ (Rp̃r̃) = Lq̃ (Rp̃r̃) = Lq̃Rp̃r̃ = (Lq̃r̃) p̃ = Rp̃ (Lq̃r̃) = Rp̃Lq̃r̃. (7)

Since the column r̃ is arbitrary, (5), (6) and (7) relations employ the part (viii).

§3. Eigenvalues and eigenvectors of the fundamental ma-

trices

Theorem 3.1. For q̃ = (ã0, ã1, ã2, ã3)
′ ∈ D4, the eigenvalues of the fundamental matrix

Lq̃ are given by ã0 ± i ‖q̃∗‖, where in case ‖q̃∗‖ 6= 0 each eigenvalue occurs with algebraic
multiplicity 2, and otherwise the eigenvalue ã0 has algebraic multiplicity 4.

Proof. For q̃ = (ã0, ã1, ã2, ã3)
′ ∈ D4 consider the eigenvalue-eigenvector equation

Lq̃ẑ = λ̂ẑ , ẑ 6= 0,

where λ̂ ∈ CD is an eigenvalue, and 0 6= ẑ ∈ C4
D is a corresponding eigenvector of Lq̃.

The matrix Lq̃ can be written as Lq̃ = ã0I4 + Lq̃∗ . Consequently, the eigenvalues of Lq̃

are obtained by adding ã0 to the eigenvalues of Lq̃∗ . If µ̂ is an eigenvalue of Lq̃∗ , then µ̂2 is an
eigenvalue of L2

q̃∗ . From
L2

q̃∗ = −‖q̃∗‖2 I4,

we conclude that µ̂2 = −‖q̃∗‖2. Hence, the eigenvalues of Lq̃∗ can only be µ̂ = i ‖q̃∗‖ or
µ̂ = −i ‖q̃∗‖. But the dual complex eigenvalues of the dual matrix Lq̃∗ occur in conjugate
pairs, so that Lq̃∗ has two eigenvalues i ‖q̃∗‖ and two eigenvalues −i ‖q̃∗‖. So, the proof is
completed.
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Corollary 3.1. For q̃ = (ã0, ã1, ã2, ã3)
′ ∈ D4, the eigenvalues of the fundamental matrix

Rq̃ are given by ã0 ± i ‖q̃∗‖, where in case ‖q̃∗‖ 6= 0 each eigenvalue occurs with algebraic
multiplicity 2, and otherwise the eigenvalue ã0 has algebraic multiplicity 4.

Proof. The eigenvalues of Rq̃ = CL′q̃C coincide with the eigenvalues of L′q̃, which in
turn coincide with the eigenvalues of Lq̃. So, the proof is clear from Theorem 3.1.

Let us now turn our attention to the eigenvectors of Lq̃. From Theorem 2.1 (iii) Lq̃ is
nondefective, which means that geometric and algebraic multiplicity of the eigenvalues of Lq̃

coincide. Therefore, in case ‖q̃∗‖ 6= 0 the eigenspaces associated with the eigenvalues ã0+i ‖q̃∗‖
and ã0 − i ‖q̃∗‖ both have dimension 2.

Theorem 3.2. Let ‖q̃∗‖ 6= 0 for q̃ = (ã0, ã1, ã2, ã3)
′ ∈ D4. Then the eigenspaces of Lq̃

corresponding to ã0 + i ‖q̃∗‖ and ã0 − i ‖q̃∗‖ are:

{
Lĝŷ : ŷ ∈ C4

D

}
and

{
Lĥŷ : ŷ ∈ C4

D

}
,

respectively, where ĝ = i ‖q̃∗‖ e1 + q̃∗ and ĥ = −i ‖q̃∗‖ e1 + q̃∗.
Proof. This can be verified by calculating Lq̃Lĝŷ − (ã0 + i ‖q̃∗‖)Lĝŷ and Lq̃Lĥŷ −

(ã0 − i ‖q̃∗‖)Lĥŷ, which both yield the zero vector for any ŷ ∈ C4
D.

Observe that we admit dual complex entries in the matrices Lĝ and Lĥ, as distinct from
our former procedure where only dual entries were considered.

§4. Application to the equation R̃Q̃ = P̃ R̃ + C̃

Two dual quaternions Q̃ and P̃ are called similar if there exists a nonzero dual quaternion
Ũ such that

Ũ−1 P̃ Ũ = Q̃.

Similarity will be denoted by Q̃ ∼ P̃ and it can be shown that “ ∼ ” is an equivalence
relation on H.

Now, let us consider the dual quaternion equation

R̃Q̃ = P̃ R̃ + C̃,

where Q̃, P̃ , C̃ ∈ HD are given.
Using matrix representation, it is seen that the above equation is equivalent to Rq̃r̃ =

Lp̃r̃ + c̃, which can be written as
(Rq̃ − Lp̃) r̃ = c̃.

Lemma 4.1. The equation R̃Q̃ = P̃ R̃ + C̃ is uniquely solvable with respect to R̃ if and
only if Q̃ 6∼ P̃ .

Proof. Transferring this notion to matrix notation with Q̃ ∼= q̃ and P̃ ∼= p̃, it is obtained
that

Q̃ ∼ P̃ ⇔ ∃ 0 6= ũ ∈ D4 : Lp̃ũ = Rq̃ũ ⇔ Rq̃ − Lp̃ is singular. (8)

Since the dual matrix equation (Rq̃ − Lp̃) r̃ = c̃ is uniquely solvable if and only if Rq̃−Lp̃

is nonsingular. So the proof is complete.
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Lemma 4.2. Two dual quaternions Q̃ and P̃ are similar if and only if R
(

Q̃
)

= R
(
P̃

)

and
∣∣∣=

(
Q̃

)∣∣∣ =
∣∣∣=

(
P̃

)∣∣∣.
Proof. Since the two commuting normal matrices Rq̃ and Lp̃ can be simultaneously

unitarily diagonalizable [14, Theorem 2.5.4, 2.5.5], each eigenvalue of Rq̃ −Lp̃ is the difference
of an eigenvalue of Rq̃ and an eigenvalue of Lp̃, i.e., the eigenvalues of the crucial matrix
Rq̃ − Lp̃ are given by

(
ã0 − b̃0

)
± i (‖q̃∗‖ − ‖p̃∗‖) and

(
ã0 − b̃0

)
± i (‖q̃∗‖+ ‖p̃∗‖) .

Moreover, a matrix is singular if and only if at least one of its eigenvalues is 0. So, the
proof is completed.

We will proceed by considering the solutions to the dual matrix equation (Rq̃ − Lp̃) x̃ = c̃
and then collect our findings in terms of dual quaternions. Since Rq̃ − Lp̃ is normal, its rank
equals the number of its nonzero eigenvalues. Hence,

rank (Rq̃ − Lp̃) ∈ {0, 2, 4} . (9)

Theorem 4.1. Let Q̃, P̃ , C̃ ∈ HD.
(i) The equation R̃Q̃ = P̃ R̃+ C̃ is uniquely solvable with respect to R̃ if and only if Q̃ 6∼ P̃ ,

in which case the solution is given by

R̃ = m̃−1
(
C̃ ¯̃Q− P̃ C̃

)
, m̃ = 2

[
R

(
P̃

)
−R

(
Q̃

)]
P̃ +

∣∣∣Q̃
∣∣∣
2

−
∣∣∣P̃

∣∣∣
2

.

(ii) If ¯̃Q = Q̃ ∼ P̃ , a necessary and sufficient condition for solvability is C̃ = 0, in which
case any R̃ ∈ HD is a solution.

(iii) If ¯̃Q 6= Q̃ ∼ P̃ , a necessary and sufficient condition for solvability is C̃ ¯̃Q = P̃ C̃, in
which case all solutions are given by

R̃ =
1

4
∣∣∣=

(
Q̃

)∣∣∣
2

(
P̃ C̃ − C̃Q̃

)
+ Z̃− 1∣∣∣=

(
Q̃

)∣∣∣
2=

(
P̃

)
Z̃=

(
Q̃

)
,

where Z̃ ∈ HD is arbitrary.
Proof. A matrix has the same eigenvalues with its transpose. From Theorem 2.1 (iii),

the normal matrix R¯̃q−Lp̃ has the same eigenvalues as Rq̃−Lp̃ and therefore the same rank.
From (8), Q̃ 6∼ P̃ if and only if rank (Rq̃ − Lp̃) = 4 and so the unique solution is given by
r̃ = (Rq̃ − Lp̃)−1 c̃, where the matrix (Rq̃ − Lp̃)−1 may as well be expressed as

(Rq̃ − Lp̃)−1 = (Rq̃ − Lp̃)−1 (
R¯̃q − Lp̃

)−1 (
R¯̃q − Lp̃

)

=
[(

R¯̃q − Lp̃

)
(Rq̃ − Lp̃)

]−1 (
R¯̃q − Lp̃

)

= L−1
m̃

(
R¯̃q − Lp̃

)
,

m̃ = 2
(
b̃0 − ã0

)
p̃ +

(
‖q̃‖2 − ‖p̃‖2

)
I4.

This completes the part (i). Hence, from (9) it remains to consider the cases rank (Rq̃ − Lp̃) =
0 or rank (Rq̃ − Lp̃) = 2. Let’s consider rank (Rq̃ − Lp̃) = 0, then it is obvious that (Rq̃ − Lp̃) x̃ =
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c̃ is solvable if and only if c̃ = 0, in which case any vector r̃ ∈ D4 is a solution. So, the part (ii)
is completed.

Finally, let rank (Rq̃ − Lp̃) = 2, then ã0 = b̃0 and ‖q̃∗‖ = ‖p̃∗‖ but ‖q̃∗‖ 6= 0, since
otherwise all eigenvalues of Rq̃ − Lp̃ would be 0. Now, the matrix difference Rq̃ − Lp̃ can be
expressed as

Rq̃ − Lp̃ = Rq̃∗ − Lp̃∗ ,

where the commuting matrices Rq̃∗ and Lp̃∗ satisfy

Rq̃∗ = −R¯̃q∗
= −‖q̃∗‖2 R−1

q̃∗ and Lp̃∗ = −L¯̃p∗
= −‖q̃∗‖2 L−1

p̃∗ .

Using these properties and noting that also R¯̃q − Lp̃ = R¯̃q∗
− Lp̃∗ , the following can be

seen by exploiting simple matrix calculus.
If there exists a vector r̃ such that (Rq̃ − Lp̃) r̃ = c̃, then c̃ satisfies (Rq̃ − Lp̃) c̃ = 0.

Conversely, if c̃ satisfies
(
R¯̃q − Lp̃

)
c̃ = 0, then it follows that

(Rq̃ − Lp̃) r̃ = c̃ for r̃ = − 1
4 ‖q̃∗‖2

(Rq̃ − Lp̃) c̃.

Furthermore, every vector

r̃ =

(
I4 − 1

‖q̃∗‖2
Lp̃∗Rq̃∗

)
w̃, w̃ ∈ D4,

satisfies (Rq̃ − Lp̃) r̃ = 0. On the other hand, if (Rq̃ − Lp̃) r̃ = 0, then

r̃ =

(
I4 − 1

‖q̃∗‖2
Lp̃∗Rq̃∗

)
1
2
r̃.

So, the proof is complete.

§5. Powers of a dual quaternion

Let’s consider again the equation (Rq̃ − Lp̃) r̃ = 0 for the case rank (Rq̃ − Lp̃) = 2 (which
implies ‖q̃∗‖ 6= 0). Then the dimension of the space of all its solutions with respect to r̃, the
null space of Rq̃ − Lp̃ is 2. Hence, this space can be written as

{
r̃ : r̃ = λ̃ r̃1 + µ̃ r̃2 , λ̃ , µ̃ ∈ D

}
,

where r̃1 and r̃2 are two linearly independent nonzero vectors satisfying

(Rq̃ − Lp̃) r̃1 = (Rq̃ − Lp̃) r̃2 = 0.

In case p̃ 6= ¯̃q this is true for the orthogonal vectors

r̃1 = ‖q̃∗‖2 e1 − Lp̃∗ q̃∗ and r̃2 = q̃∗ + p̃∗.
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In other words, for two given quaternions ¯̃Q 6= Q̃ ∼ P̃ 6= ¯̃Q, all quaternions R̃ satisfying
R̃Q̃ = P̃ R̃ are

R̃ = λ̃

[∣∣∣=
(
Q̃

)∣∣∣
2

−=
(
P̃

)
=

(
Q̃

)]
+ µ̃

[
=

(
Q̃

)
+ =

(
P̃

)]
, λ̃, µ̃ ∈ D.

As a direct consequence, all quaternions R̃ which commute with a quaternion Q̃ 6= ¯̃Q are given
by

R̃ = γ̃ + δ̃=
(
Q̃

)
,

where γ̃ and δ̃ are arbitrary numbers in D.
Theorem 5.1. For a dual quaternion Q̃ ∈ HD, let α̂ = R

(
Q̃

)
+ i

∣∣∣=
(
Q̃

)∣∣∣. Then the nth

power, n ∈ N, of Q̃ is given by

Q̃n = λ̃n + µ̃n

∣∣∣=
(
Q̃

)∣∣∣ ,

where λ̃n = Du (α̂n) and µ̃n =
(
1
/∣∣∣=

(
Q̃

)∣∣∣
)

Im (α̂n) in case Q̃ 6= ¯̃Q, while µ̃n can be chosen
arbitrarily otherwise.

Proof. It is obvious that the nth power an of a dual quaternion Q̃ commutes with Q̃,
where n ∈ N and Q̃0 := 1. Hence, we can write

Q̃n = λ̃n + µ̃n

∣∣∣=
(
Q̃

)∣∣∣ ,

for some dual numbers λ̃n and µ̃n, where in the trivial case Q̃ = ¯̃Q we have λ̃n =
(
R

(
Q̃

))n

and µ̃n ∈ D arbitrary.
For determining λ̃n and µ̃n in the nontrivial case Q̃ 6= ¯̃Q, it is seen from Q̃n+1 = Q̃Q̃n and

the identification of Q̃n with its corresponding real vector λ̃ne1 + µ̃nq̃∗ for any n ∈ N, that the
pairs

(
λ̃n, µ̃n

)
obey the following system of linear homogeneous first-order difference equations

λ̃n+1 = λ̃nã0 − µ̃n ‖q̃∗‖2 , µ̃n+1 = ã0µ̃n + λ̃n,

with initial values λ̃0 = 1 and µ̃0 = 0. Observe that ‖q̃∗‖ 6= 0 due to Q̃ 6= ¯̃Q. The two equations
can be written as

w̃n+1 = Aw̃n, A =


 ã0 −‖q̃∗‖2

1 ã0


 , w̃n =


 λ̃n

µ̃n


 .

From Theorem 3.1, the eigenvalues of the nonsingular matrix A are σ̂1 = ã0 + i ‖q̃∗‖ and
σ̂2 = ã0 − i ‖q̃∗‖ with corresponding eigenvectors ẑ1 = (i ‖q̃∗‖ , 1)′ and ẑ2 = (i ‖q̃∗‖ ,−1)′.
Using

w̃0 =


 1

0


 = k (ẑ1 + ẑ2) , k =

−i

2 ‖q̃∗‖ ,
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it follows from Theorem 5.10.1 in [9] that w̃n = k (σ̂n
1 ẑ1 + σ̂n

2 ẑ2) , k = −i
2‖q̃∗‖ . Thus, we arrive

at

 λ̃n

µ̃n


 =


 Du

[(
ã0 + i ‖q̃∗‖2

)n]

(1/‖q̃∗‖) Im
[(

ã0 + i ‖q̃∗‖2
)n]


 ,

where for a number α̂ = β̃ + iγ̃ ∈ CD we use Du (α̂) = β̃ and Im (α̂) = γ̃.
A further way of expressing the nth power of a quaternion is to directly exploit that the

quaternion Q̃ is similar to α̂, namely

Q̃ = Ũ α̂Ũ−1,

where in case Q̃ 6= ¯̃Q the dual quaternion Ũ may be chosen as nonzero

Ũ = λ̃
[∣∣∣=

(
Q̃

)∣∣∣−
∣∣∣=

(
Q̃

)∣∣∣ i
]

+ µ̃
[∣∣∣=

(
Q̃

)∣∣∣ i +
∣∣∣=

(
Q̃

)∣∣∣
]

with arbitrary λ̃, µ̃ ∈ D. Thus

Q̃n = Ũ α̂nŨ−1.

Writing α̂n = Du (α̂n) + iIm (α̂n) and utilizing

Ũ iŨ−1 =
1∣∣∣=
(
Q̃

)∣∣∣

∣∣∣=
(
Q̃

)∣∣∣ , Q̃ 6= ¯̃Q,

one easily obtains the assertion of Theorem 5.1.
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§1 Introduction

H. Weyl [20] examined the spectra of all compact perturbations of a hermitian operator
on Hilbert space and found in 1909 that their intersection consisted precisely of those points
of the spectrum which were not isolated eigenvalues of finite multiplicity. This Weyl’s theorem
has since been extended to hyponormal and to Toeplitz operators (Coburn [8]), to seminormal
and other operators (Berberian [2], [3]) and to Banach spaces operators (Istrătescu [12], Oberai
[16]). Variants have been discussed by Harte and Lee [11] and Rakoc̆evic̀ [17], M. Berkani and
J. J. Koliha [6]. In this note we show how generalized Weyl’s theorem follows from the equality
of the Drazin spectrum and a variant of the Weyl’s spectrum.

Recall that the Weyl’s spectrum of a bounded linear operator T on a Banach space X is
the intersection of the spectra of its compact perturbations:

σw(T ) =
⋂
{σ(T + K) : K ∈ K(X)} . (1)

Equivalently λ ∈ σw(T ) iff T − λI fails to be Fredholm of index zero. The Browder spectrum
is the intersection of the spectra of its commuting compact perturbations:

σb(T ) =
⋂
{σ(T + K) : K ∈ K(X) ∩ comm(T )} . (2)

Equivalently λ ∈ σb(T ) iff T − λI fails to be Fredholm of finite ascent and descent. The Weyl’s
theorem holds for T iff

σ(T )\σw(T ) = π00(T ) , (3)

where we write
π00(T ) = {λ ∈ iso σ(T ) : 0 < dimN(T − λI) < ∞} (4)
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for the isolated points of the spectrum which are eigenvalues of finite multiplicity. Harte and
Lee [11] have discussed a variant of Weyl’s theorem: the Browder’s theorem holds for T iff

σ(T ) = σw(T ) ∪ π00(T ) . (5)

What is missing is the disjointness between the Weyl spectrum and the isolated eigenvalues of
finite multiplicity: equivalently

σw(T ) = σb(T ) . (6)

For a bounded linear operator T and a nonnegative integer n define T[n] to be the restriction
of T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If for some
integer n the range space R(Tn) is closed and T[n] is upper (resp. a lower) semi-Fredholm
operator, then T is called an upper (resp. lower) semi-B-Fredholm operator. Moreover if T[n] is
a Fredholm (Weyl or Browder) operator, then T is called a B-Fredholm (B-Weyl or B-Browder)
operator. Similarly, we can define the upper semi-B-Fredholm, B-Fredholm, B-Weyl, and B-
Browder spectrums σSF+(T ), σBF (T ), σBW (T ), σBB(T ). A semi-B-Fredholm operator is an
upper or a lower semi-B-Fredholm operator.

(See [13]) Let T ∈ B(X) and let

4(T ) = {n ∈ N : ∀m ∈ N,m ≥ n ⇒ [R(Tn) ∩N(T )] ⊆ [R(Tm) ∩N(T )]}.

Then the degree of stable iteration dis(T) of T is defined as dis(T ) = inf 4 (T ).
Let T be a semi-B-Fredholm operator and let d be the degree of the stable iteration of T .

It follows from [4, Proposition 2.1] that if T[d] is a semi-Fredholm operator, and ind(T[m]) =
ind(T[d]) for each m ≥ d. This enables us to define the index of a semi-B-Fredholm operator T

as the index of the semi-Fredholm operator T[d].
In the case of a normal operator T acting on a Hilbert space, Berkani [5, Theorem 4.5]

showed that
σBW (T ) = σ(T )\E(T ),

E(T ) is the set of all eigenvalues of T which are isolated in the spectrum of T . This result gives
a generalization of the classical Weyl’s theorem. We say T obeys generalized Weyl’s theorem if
σBW (T ) = σ(T )\E(T ) ([6, Definition 2.13]).

In this paper, first we describe Browder’s theorem and generalized Weyl’s theorem using
two new spectrum sets which we define in section 1; In section 2, we prove that Class A operators
satisfies the generalized Weyl’s theorem, hence Weyl’s theorem holds for Class A operators.

§2 Some known results

Using Corollary 4.9 in [10], we can say that σBB(T ) = σD(T ), where σD(T ) = {λ ∈ σ(T ) : λ

is not a pole of T }. We call σD(T ) the Drazin spectrum of T . We can prove that the Drazin
spectrum satisfies the spectral mapping theorem, and the Drazin spectrum of a direct sum is
the union of the Drazin spectrum of the components.

In [19], We proved that the follow result is true:
Lemma 2.1. Browder’s theorem holds for T if and only if σBW (T ) = σD(T ).



14 Junhong Tian, Wansheng He and Cuiqin Guo No. 1

Lemma 2.2. If Browder’s theorem holds for T ∈ B(X) and S ∈ B(X), and p is a
polynomial, then Browder’s theorem holds for

p (T ) ⇐⇒ p (σBW (T )) = σBW (p (T ));

T ⊕ S ⇐⇒ σBW (T ⊕ S) = σBW (T ) ∪ σBW (S).

Lemma 2.3. If T ∈ B(X), then ind(T− λI)ind(T−µI) ≥ 0 for each pair λ, µ ∈ C\σe(T)
if and only if p(σBW(T)) = σBW(p(T)) for each polynomial p.

Lemma 2.4. T ∈ B(X) is isoloid and generalized Weyl’s theorem holds for T if and only
if σ1(T ) = σD(T ).

Lemma 2.5. Let suppose T, S ∈ B(X) are all isoloid. If generalized Weyl’s theorem
holds for T and S and if p is a polynomial, then generalized Weyl’s theorem holds for

p (T ) ⇐⇒ σ1(p (T )) = p(σ1(T ))

and
T ⊕ S ⇐⇒ σ1(T ⊕ S) = σ1(T ) ∪ σ1(S).

Lemma 2.6. T ∈ B(X), then ind(T− λI)ind(T− µI) ≥ 0 for each pair λ, µ ∈ C\σe(T) if
and only if f(σ1(T)) ⊆ σ1(f(T)) for any f ∈ H(T).

For the converse, if there exist λ, µ ∈ C\σe(T) for which ind(T − λI) = −m < 0 < k =
ind(T − µI), let f(T ) = (T − λI)k(T − µI)m. Then 0 ∈ f(σ1(T )) but 0 is not in σ1(f(T )). It
is a contradiction. The proof is completed.

Lemma 2.7. If T ∈ B(X) is isoloid and generalized Weyl’s theorem holds for T , then the
following statements are equivalent:

(1) ind(T − λI)ind(T − µI) ≥ 0 for each pair λ, µ ∈ C\σe(T );

(2) σBW (f(T )) = f(σBW (T )) for every f ∈ H(σ(T ));

(3) generalized Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T ));

(4) σ1(f(T )) = f(σ1(T )) for every f ∈ H(σ(T )).

§3 Generalized Weyl’s theorem for Class A operators.

In the following, let X denote a complex Hilbert space. If for all x ∈ X, ‖Tx‖2 ≤ ‖T 2x‖,
then we say that T is paranormal. It is well known that if T is paranormal, then ‖T‖ =
{|λ| : λ ∈ σ(T )}. We say that an operator T ∈ B(X) belongs to the class A if |T 2| ≥ |T |2.
Class A operator was first introduced by Furuta-Ito-Yamazaki [9] as a subclass of paranormal
operators which includes the classess of p-hyponormal and log-hyponormal operators. The
following Lemma is due to [9] and [19]:

Lemma 3.1. (1) If T is a class A operator and M is an invariant subspace of T , then T |M
is also a class A operator;

(2) If T belongs to the class A and σ(T ) = {0}, then T = 0;
(3) If T belongs to the class A, then T is isoloid;
(4) If T belongs to the class A and λ is non-zero complex number, then (T − λI)x = 0

implies that (T − λI)∗x = 0.
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In [19], A. Uchiyama showed the following results:
Theorem 1. If T belongs to the class A and KerT |[TH] = {0}, then Weyl’s theorem holds

for T .
Theorem 2. If T belongs to the class A and KerT |[TX] = {0} and f is an analytic function

on an open neighborhood of σ(T ), then Weyl’s theorem holds for f(T ).
In fact in these Theorems, the results are true without the condition KerT |[TH] = {0}. In

the following we will show that for class A operator T , generalized Weyl’s theorem holds for
f(T ) for any f ∈ H(σ(T )), hence Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )). The
main theorem in this section is:

Theorem 3.2. If T belongs to the class A, then generalized Weyl’s theorem holds for T .
Hence Weyl’s theorem holds for T .

Proof. We need to prove σ(T )\σBW (T ) = E(T ).
Let λ0 ∈ σ(T )\σBW (T ), that is T − λ0I is B-Weyl. Then there exists ε > 0 such that

T − λI is Weyl and N(T − λI) ⊆
∞⋂

n=1
R[(T − λI)n] if 0 < |λ − λ0| < ε ([7, Remark iii]). We

can take λ 6= 0 if 0 < |λ − λ0| < ε. Suppose that there exists λ such that λ ∈ σ(T ) and
0 < |λ − λ0| < ε. By Lemma 3.1 (4), we have N(T − λI) = N [(T − λI)∗] and it is a reducing
subspace of T . Let E be the orthogonal projection onto N(T − λI). Then T = λE ⊕ T (I −E)
on E(H) ⊕ E(X)⊥ and σ(T ) = {λ} ∪ σ(T (I − E)|E(X)⊥). Since E is a finite rank projection,
ind(T (I −E)−λ(I −E)) = ind(T −λI) = 0 and since [T (I −E)−λ(I −E)]|E(H)⊥ is one-one,
[T (I −E)− λ(I −E)]|E(H)⊥ is invertible. This implies that λ is not in σ(T (I −E)|E(H)⊥) and

λ ∈ iso σ(T ). Then T −λI is Browder and hence N(T −λI) = N(T −λI)∩
∞⋂

n=1
R[(T −λI)n] =

{0}, which means that T − λI is invertible. It is in contradiction to the fact that λ ∈ σ(T ).
Now we have proved that λ0 ∈ iso σ(T ). Then λ0 ∈ E(T ). Thus σ(T )\σBW (T ) ⊆ E(T ).

Conversely, suppose λ0 ∈ E(T ), that is λ0 ∈ iso σ(T ) which is an eigenvalue of T .
Case 1 suppose λ0 = 0. Using the spectral projection P = 1

2πi

∫
∂B0

(T − λI)−1dλ, where
B0 is an open disk of center 0 which contains no other points of σ(T ), we can represent T as
the direct sum

T = T1 ⊕ T2, where σ(T1) = {0} and σ(T2) = σ(T )\{0}.
Then T2 is invertible. By Lemma 3.1 (1) and (2), T1 = 0, then T = 0⊕ T2. Thus T is B-Weyl.

Case 2 suppose λ0 6= 0. By Lemma 3.1 (4), we have T = λ0 ⊕ T2 on H = N(T − λ0I) ⊕
[N(T − λ0I)]⊥ and the isolatedness of λ0 ∈ σ(T ) implies either λ0 ∈ iso σ(T2) or T2 − λ0I is
invertible. Since T2 is a class A operator (hence T2 is isoloid ) with N(T2 − λ0I) = {0}, then
λ0 is not in iso σ(T2), that is T2−λ0I is invertible. By T −λ0I = 0⊕ (T2−λ0I), then T −λ0I

is B-Weyl.
From Case 1 and Case 2, we get that E(T ) ⊆ σ(T )\σBW (T ).
Now we have proved that generalized Weyl’s theorem holds for T , hence Weyl’s theorem

holds for T .
Corollary 3.1. If T belongs to the class A, then for any f ∈ H(σ(T )), generalized Weyl’s

theorem holds for f(T ). Hence for every f ∈ H(σ(T )), Weyl’s theorem holds for f(T ).
Proof. From Lemma 2.7 and Theorem 3.2, we only need to T ∈ A1(X), where A1(X) =

{S ∈ B(H) : ind(S − λI)ind(S − µI) ≥ 0 for all λ, µ ∈ C\σe(S)}. If λ0 ∈ C\σe(T ), then
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T − λI is Fredholm operator and ind(T − λI) = ind(T − λ0I) if |λ − λ0| is sufficiently small.
We can suppose that λ 6= 0. By Lemma 3.1 (4), we know that ind(T − λI) = dimN(T − λI)−
dimN [(T − λI)∗] ≤ 0, then ind(T − λ0I) ≤ 0, that is T ∈ A1(X).

In [21], Xia proved that if T is semi-hyponormal, then σ(T ) = {λ : λ ∈ σa(T ∗)}. In
[1, Corollary 3.5], A. Aluthge and Derming Wang proved that if T is w-hyponormal, then
σ(T ) − {0} = {λ : λ ∈ σa(T ∗)} − {0}. We know that if T is w-hyponormal then T belongs to
class A. We extend [21, Corollary 3.5] to the following result:

Corollary 3.2. If T belongs to the class A, then σ(T ) = {λ : λ ∈ σa(T ∗)}.
Proof. We only need to prove that σ(T ) ⊆ {λ : λ ∈ σa(T ∗)}. Let λ0 ∈ σ(T ) but λ0 is not

in σa(T ∗), that is T ∗ − λ0I is bounded form below. Then R(T − λ0I) = X. By perturbation
theorem of lower semi-Fredholm, then R(T − λI) = X if |λ − λ0| is sufficiently small. Thus
N [(T −λI)∗] = [R(T −λI)]⊥ = {0}. Lemma 3.1 (4) asserts that N(T −λI) = {0}, then T −λI

is invertible if |λ− λ0| is sufficiently small. Thus λ0 ∈ iso σ(T ). [10, page 332, Theorem 10.5]
tells us that α(T − λ0I) = β(T − λ0I) = 0, that is T − λ0I is invertible. It is a contradiction.
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Abstract A set D ⊆ V (G) is said to be a dominating set if every vertex v ∈ V (G) is either

in D or has an adjacency in D. The minimum cardinality among the dominating sets is

called the domination number of G and is denoted by γ(G). In this paper, a new parameter,

called weakly convex domination number is being introduced and its basic properties are

analysed.

Keywords Domination number, connected domination number, wcd set, weakly convex do

-mination number.

§1. Introduction and preliminaries

A dominating set D is said to be a connected dominating set if for every u, v ∈ D, there
exists an u− v path in 〈D〉.

The cardinality of a minimum connected dominating set is called the connected domi-
nation number of G and is denoted by γc(G).

A dominating set D is said to be a weakly convex dominating set (wcd set) if for every
u, v ∈ D, either u and v are not connected or there exists a u− v shortest path (of G), in 〈D〉.

The cardinality of a minimum wcd set is called the weakly convex domination number
of G and is denoted by γwc(G).

γ(G) ≤ γc(G) ≤ γwc(G). In this paper, graphs with γ(G) = γwc(G) and γc(G) = γwc(G)
are characterized.

§2. Weakly convex domination in graphs

A dominating set D is said to be a weakly convex dominating set (wcd set) if for every
u, v ∈ D, either u and v are not connected or there exists a u− v shortest path (of G), in 〈D〉.

The cardinality of a minimum wcd set is called the weakly convex domination number of
G and is denoted by γwc(G).

Observation. For any graph G,
(i) γt(G) ≤ γwc(G), where γt(G) is the total domination number of G.
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(ii) γ(G) ≤ γc(G) ≤ γwc(G), where γ(G) is the domination number and γc(G) is the
connected domination number of G.

Example.

(i) γwc(P2) = 1.

(ii) γwc(Pn) = n− 2 for any positive integer integer n ≥ 3.

(iii) γwc(Kn) = 1 for any positive integer n.

(v) γwc(Km,n) = 2 for any positive integer m and n.

(vi) γwc(Wn) = 1 for any positive integer n.

Notion. The length of a smallest cycle in G is called the girth of G and is denoted by
g(G).

Lemma. If G is a graph with δ(G) ≥ 2 and g(G) ≥ 7 then γwc(G) = n.

Proof. Let if possible there exist a proper wcd set D. Then V − D 6= φ. Then for
every u ∈ V − D there exists u1 ∈ D such that uu1 ∈ E(G). δ(G) ≥ 2 implies there exists
u2(6= u1) ∈ N(u). Therefore, d(u1, u2) ≤ 2.

If u2 ∈ D, then u1, u2 ∈ D implies there exists u1 . . . u2 shortest path in D. This shortest
path (or geodesic) must have length at most two whence it follows that G has a cycle Cn for
n ∈ {3, 4}, a contradiction to our hypothesis that g(G) ≥ 7. Therefore, u2 /∈ D and hence
u2 ∈ V −D.

Then N(u2) ∩D 6= φ. Therefore u2 may be adjacent to u1 or there exists u3(6= u1) ∈ D

such that u3u2 ∈ E(G).

If u2u1 ∈ E(G) then there will exist a 3 cycle.

If there exists u3(6= u1) ∈ D such that u3u2 ∈ E(G), then d(u1, u3) ≤ 3. u1, u3 ∈ D implies
there exists an u1 . . . u3 shortest path in 〈D〉.

If d(u1, u3) = 1 then there will exist a 4 cycle.

If d(u1, u3) = 2 then there will exist a 5 cycle.

If d(u1, u3) = 3 then there will exist a 6 cycle.

. . .

A contradiction. (since g(G) ≥ 7) and therefore G cannot have a proper wcd set. (i.e.)
γwc(G) = n.

Corollary. If γwc(G) < n then either δ ≤ 1 (or) g(G) ≤ 6.

Remark. From Lemma 1 we can conclude that there exist infinitely many number of
graphs G with γwc(G) = n.

Observation. γwc(Cn) = n− 2 for any integer 3 ≤ n ≤ 6 and is equal to n for n ≥ 7.

Proof. (i) If 3 ≤ n ≤ 6, then choose any u, v ∈ V (Cn) with uv ∈ E(G) and consider
D = V (Cn) − {u, v}. Then D is a dominating set of Cn. For any x, y ∈ D, if there exists
no x . . . y shortest path in 〈D〉, then d〈D〉(x, y) > d(x, u) + d(u, v) + d(v, y) ≥ 3. Therefore
d〈D〉(x, y) > 3. (ie) d〈D〉(x, y) ≥ 4.
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Then x..yvu..x is a cycle of length atleast 7, a contradiction. Hence, for any two x, y ∈ D

there exists an x . . . y shortest path in D. (i.e.) D is a wcd set. Therefore γwc(Cn)) ≤ n − 2.
γc(Cn) = n− εT (G) where εT (G) is the maximum number of pendant vertices in any spanning
tree TG of G. (i.e.) n−2 = γc(Cn) ≤ γwc(Cn) ≤ n−2. Hence γwc(Cn) = n−2 for n, 3 ≤ n ≤ 6.

(ii) If n ≥ 7, by Lemma 1 we can conclude that γwc(Cn) = n.
Remark. From the above observation we can conclude that the following disconnected

graph has no proper wcd set.

v
v

v

v

vu

v

v

v v
vv

v

vv

v

fig. 3(a)

Remark. If G is a disconnected graph and D1 is a proper wcd of a component C1 of G,
then (V (G) − V (C1)) ∪D1 is a proper wcd set of G. And if no component of G has a proper
wcd set, then G cannot have a proper wcd set. (i.e.) A disconnected graph G has a proper
wcd set if and only if there exists a component C1 of G with proper wcd set. Hence wcd sets
in a disconnected graph can be analysed by studying the wcd sets of it’s components. For
this purpose first we make a complete study of wcd sets in connected graphs. In the following
discussion by a graph we always mean a connected graph.

Remark. From the Lemma 1 we can conclude that 1 ≤ γwc(G) ≤ n.
Remark. γwc(G) = 1 if and only if G has a vertex of full degree.
Remark. Every graph with diam(G) ≤ 2 has a proper wcd set.
Proof. If diam(G) = 1 with n ≥ 2 then G is Kn. Therefore D = {u} is a wcd set for any

u ∈ V (G). If diam(G) = 2 then for any u ∈ V (G) with degu = ∆, N [u] is a wcd set. For if
x, y ∈ N [u] either xy ∈ E(G) (or) 〈x, u, y〉 is connected. Therefore N [u] is weakly convex. Let
v ∈ V − N [u]. Then v must be adjacent to atleast one v1 ∈ N(u). For otherwise d(u, v) ≥ 3.
Hence for every v ∈ V −N [u] there exists v1 ∈ N(u) such that vv1 ∈ E(G). Therefore N [u] is
a dominating set.

Remark. All graphs (with diam(G) > 2) need not have a proper wcd set.
Example. Cn with n ≥ 7 has no proper wcd set.
Observation. For any tree T of order n, γwc(T ) = n − ε where ε denotes the number of
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pendant vertices of the given tree T .

Proof. D = V (T )− A, where A is the set of all pendant vertices of T , is a wcd set of T .
Hence γwc(T ) ≤ n− ε. Therefore n− ε = γc(T ) ≤ γwc(T ) ≤ n− ε. (i.e.) γwc(T ) = n− ε.

Remark. γwc(T ) = n− 2 if and only if T is a path.

Proof. Let γwc(T ) = n− 2 for a tree.

Claim. T is a path. (i.e.) To prove that T has exactly two pendant vertices.

Let A be the set of all pendant vertices of T . Then D = V (T ) − A is a wcd set and
hence γwc(T ) ≤ n − |A| ≤ n − 2 (since |A| ≥ 2 for any non trivial tree). If |A| > 2 then
n − 2 = γwc(T ) ≤ n − |A| < n − 2 . . . a contradiction. Hence T is a tree with exactly two
pendant vertices. (i.e.) T is a path.

Conversely, if T is a path then γwc(T ) = n− 2.

Notation. εT (G) denote the number of pendant vertices of a spanning tree TG (of a
connected graph) G with maximum number of pendant edges.

Observation. If G is a unicyclic graph then γwc(G) = n− εT (G) (or) n− εT (G) + 1 (or)
n− εT (G) + 2.

Proof. If A is the set of all pendant vertices of a spanning tree TG of G with maximum
number of pendant edges, then |A| = εT (G). Let Cr be the unique cycle of G where r denote
the length of the cycle Cr. Let B = {u ∈ V (Cr)/N(u) ∩ (V (G)− V (Cr)) = φ}.

case(i): B = φ.

In this case for any r ≥ 3, N(u)∩(V (G)−V (Cr)) 6= φ for each u ∈ V (Cr). Then A∩B = φ

and D = V (G)− A is a wcd set. Therefore γwc(G) ≤ n− εT (G). Hence n− εT (G) = γc(G) ≤
γwc(G) ≤ n− εT (G). (i.e.) γwc(G) = n− εT (G).

Case(ii): B 6= φ and B is independent.

(a) r = 3

B is an independent subset of a 3 cycle implies |B| = 1. Let B = {x} where x ∈ V (C3) =
{x, y, z}. In this case G can be obtained by taking a C3 : xyzx and attaching one or more
nontrivial trees at two vertices y and z.

Therefore N(y) ∩ (V (G)− V (C3)) 6= φ, N(z) ∩ (V (G)− V (C3) 6= φ and

tt
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fig. 4

N(x) ∩ (V (G)− V (C3)) = φ. (i.e.) x is a pendant vertex in any spanning tree of G. Therefore
x ∈ A, and D = V (G)−A is a wcd set. Therefore γwc(G) = n− εT (G) as in case (i).

(b) r = 4

B is an independent subset of a 4 cycle implies |B| ≤ 2.



22 R. Poovazhaki and V. Swaminathan No. 1

tt
t

t t

t

t

t
t

t
t

t
t

tt
t

t

t

x

x

fig. 5 fig. 6

y

z

w

y

z
w

If |B| = 1, then let B = {x} where x ∈ V (C4) = {x, y, z, w}. In this case G can be obtained
by taking a 4 cycle C4 : xyzwx and attaching one or more nontrivial trees at three consecutive
vertices y, z, w. Then as in case (i) γwc(G) = n− εT (G).

If |B| = 2, then let B = {x, z}. In this case G can be obtained by taking a 4 cycle
C4 : xyzwx and attaching one or more nontrivial trees at two non consecutive vertices y and
w. Then either x (or) z is in A. Both x and z cannot be in A. Since the possible spanning
trees are:
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Again as in case (i) γwc(G) = n− εT (G).
(c) r = 5
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B is an independent subset of a 5 cycle implies |B| ≤ 2.
If |B| = 1 let B = {x} where x ∈ V (C5) = {x, y, z, v, w}. In this case G can be obtained

by taking a 5 cycle C5 : xyzvwx and attaching one or more nontrivial trees at four consecutive
vertices y, z, v, and w. N(x)∩(V (G)−V (C5)) = φ. (i.e.) x is a pendant vertex in any spanning
tree of G and therefore x ∈ A. But D = V (G) − A is not a wcd set. (since d〈D〉(y, w) = 3 >

dG(y, w) = 2). But D′ = (V (G)−A) ∪ {x} is a wcd set. Hence γwc(G) = n− εT (G) + 1.
If |B| = 2, let B = {x, v}. In this case G can be obtained by taking C5 : xyzvwx and

attaching one or more nontrivial trees at y, z, w. Then either x or v is in A. Both x and v

cannot be in A. If x ∈ A, then d〈D〉(w, y) = 3 > dG(w, y) = 2 and hence D = V (G)−A is not
a wcd set. But D′ = (V (G)−A)∪ {x} is a wcd set. Similarly D′ = (V (G)−A)∪ {y} is a wcd
set. Therefore γwc(G) = n− εT (G) + 1.
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(d) r = 6
B is an independent subset of a 6 cycle implies |B| ≤ 3.
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Then the possible independent sets are: {x}, {x,w} and {x, z, v}. Arguing as in the
previous case we get

γwc(G) = n− εT (G) + 1

.
(e) r ≥ 7
B is independent subset of Cr with r ≥ 7 implies |B| = [r/2] and |A ∩B| = 1. If x ∈ A∩B

and x1, x2 ∈ N(x)∩V (Cr). r ≥ 7 implies there exists no x1 . . . x2 shortest path in V (G)−{x}.
Therefore D = V (G) − A is not a wcd set. But D′ = (V (G) − A) ∪ {x} is a wcd set. Hence
γwc(G) = n− εT (G) + 1.

Case(iii): B is not independent.
Then there exists u, v ∈ B with uv ∈ E(Cr). Therefore N(u) ∩ (V (G) − V (Cr)) = φ and

N(v) ∩ (V (G) − V (Cr)) = φ. Therefore u, v are pendant vertices in any spanning tree of G.
(i.e.) u, v ∈ A.

(iii) - (a): 3 ≤ r ≤ 6.
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Then D = V (G)−A is a wcd set of G and hence γwc(G) = n− εT (G).
(iii) - (b): r ≥ 7.
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Then D = V (G) − A is not a wcd set. (since d〈D〉(u1, v1) = 4 > dG(u1, v1) = 3 where
u1 ∈ N(u) and v1 ∈ N(v)). But D′ = (V (G) − A) ∪ {u, v} is a wcd set. Therefore γwc(G) =
n− εT (G) + 2.

If G is a graph with δ(G) = 1, then D = V (G) − {u} where deg u = δ is a wcd set of G

(i.e). G has a proper wcd set.

Lemma. If B is a block of a separable graph G with wcd set B′ containing all cut vertices
belonging to B then (V −B) ∪B′ is a wcd set of G.

Proof. Let D = (V −B)∪B′. Then for each u ∈ V −D = V −[(V −B)∪B′] = B−B′ there
exists v ∈ B′ such that uv ∈ E(G) (since B′ is a wcd set of B). Therefore D is a dominating
set of G.

Let x, y ∈ (V −B) ∪B′.

Case I: Every block of G is incident at the same cut vertex. (i.e.) G has exactly one cut
vertex, say w. As B′ contains all cut vertices belonging to B, w ∈ B′.

vvw
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v
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fig. 9 fig. 10

B1

I - (a): x, y ∈ V −B.

First, we observe that every x− y shortest path (of G) in 〈(V −B) ∪ {w}〉 has no vertex
from B − {w} and it may or may not contain w. (i.e.) there exists an x− y shortest path (of
G) in 〈(V −B) ∪ {w}〉 not containing w or containing w. If this x− y shortest path does not
contain w then this path completely lies in 〈V −B〉. If it conains w then this path is contained
in 〈(V −B) ∪B′〉.

I - (b): x ∈ V −B and y ∈ B′.

Then the x − w shortest path of G in 〈(V −B) ∪ {w}〉 together with the w − y shortest
path in B′ gives an x− y shortest path of G in 〈(V −B) ∪B′〉.

Case II: G has at least two cut vertices.

II - (a): If B is an end block then B has exactly one cut vertex, say w. Then arguing as
in the previous case we get the result.
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II - (b): If B is not an end block then B may have more than one cut vertex. Let
{w1, w2, . . . , wr} be the set of cut vertices belonging to B. Then {w1, w2, . . . , wr} ⊆ B′.
As B′ is a wcd set of B there exists a shortest path connecting any two cut vertices wi

and wj in 〈B′〉. Again, for any two x, y ∈ (V − B), every x − y shortest path (of G) in
〈(V −B) ∪ {w1, w2, . . . , wr}〉 has no vertex from B − {w1, w2, . . . , wr} and it may or may not
contain some or all of w1, w2, . . . , wr. (i.e.) there exists an x− y shortest path (of G) in V −B

not containing any of the cut vertices w1, w2, . . . , wr or containing some or all of w1, w2, . . . , wr.
II - (b) - (i): x, y ∈ (V −B).
If the x−y shortest path has no wi then the x−y shortest path completely lies in 〈V −B〉.

If it contain some or all of wi then the x− y shortest path lies in 〈(V −B) ∪B′〉.
II - (b) - (ii): x ∈ (V −B) and y ∈ B′.
Then there exists an x − wi shortest path in 〈(V −B) ∪ {wi}〉 for every i. wi, y ∈ B′

implies there exists an wi− y shortest path in 〈B′〉. Hence x−wi− y is an x− y shortest path
in 〈(V −B) ∪B′〉.

In both cases I and II, if x, y ∈ B′ then as B′ is a wcd set of B there exists an x−y shortest
path (of B) which is also an x− y shortest path of G is in B′.

Hence in all cases (V −B) ∪B′ is a wcd set of G.
Notation. The length of a longest cycle in G is called the circumference of G and is

denoted by c(G).
Definition. In a separable graph G, a block with at most one cut vertex is called an end

block.
lemma. If G is a block with 3 ≤ c(G) ≤ 6, then γwc(G) < n.
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Proof. Case (i): c(G) = 3.
Let Cr be a cycle with r = 3. If G = Cr, then obviously γwc(G) < n. If G 6= Cr then

there exists an edge uv ∈ E(G) such that u ∈ V (Cr) and v ∈ V (G) − V (Cr). Take any other
u′ ∈ V (Cr). Then uv is an edge and u′ is another vertex and G is a block implies there exists
a cycle containing uv and u′. But if there exists a cycle containing uvu′ then c(G) > 3 which
is not true. Therefore there cannot exist v ∈ V (G) − V (Cr). (i.e.) G = C3 and D = {u} is a
wcd set. Hence γwc(G) = 1 < n.

Case (ii): c(G) = 4.
G is a block with c(G) = 4 implies diam(G) ≤ 2. If diam(G) = 1, then D = {u} is

a wcd set of G for any u ∈ V (G). If diam(G) = 2, then for any u ∈ V (G), D = N [u] is
a wcd set. For if, v ∈ V (G) − N [u] then v cannot be adjacent to u. Therefore v must be
adjacent to some v1 ∈ N(u). (otherwise d(v, u) > 2). (i.e.) D is a dominating set. For any
x, y ∈ N [u] there exists x . . . y shortest path in N [u] . (i.e.) D = N [u] is a wcd set. Therefore
γwc(G) ≤ degu + 1 < n.

Case (iii): c(G) = 5.
G is a block with c(G) = 5 implies diam(G) ≤ 2. Then G has a proper wcd set as in the

previous case. Therefore γwc(G) < n.
Case (iv): c(G) = 6.
G is a block with c(G) = 6 implies diam(G) ≤ 3. If diam(G) ≤ 2, then G has a proper

wcd set as in the previous cases. If diam(G) = 3, choose any x, y ∈ V (G) with xy ∈ E(G) and
consider D = V (G) − {x, y}. Then 〈D〉 is connected and D is a dominating set (since G is a
block). Therefore for any u, v ∈ D there exists an u . . . v path in 〈D〉 Suppose there exists no
u . . . v shortest path in 〈D〉. Then every u . . . v shortest path must pass through x, y.
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Therefore d〈D〉(u, v) > dG(u, x) + dG(x, y) + dG(y, v) > 3. (i.e.) d〈D〉(u, v) ≥ 4. Hence
there will exist a cycle of length at least 7 . . .a contradiction (since c(G) = 6). Therefore there
exists an u . . . v shortest path in D. D is a wcd set. Hence γwc(G) < n

Lemma. If G is a separable graph with δ(G) ≥ 2 and 3 ≤ c(G) ≤ 6, then γwc(G) < n.
Proof. c(G) ≤ 6 implies c(B) ≤ 6 for any block B of G. Choose an end block B. Then B

has at most one cut vertex.
Case (i): c(B) = 3.
In this case B′ = {u} is a proper wcd set of B for any u ∈ V (B) (By the previous lemma).

Choose u to be a cut vertex belonging to B. As B can contain at most one cut vertex, B′ is
a proper wcd set containing all cut vertices belonging to B. Therefore D = (V − B) ∪ B′ is a
wcd set of G. (i.e.) γwc(G) ≤ n− |B −B′| < n.

Case (ii): c(B) = 4.
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Then diam(B) ≤ 2. If diam(B) = 1, then B′ = {u} or B′ = NB [u] is a wcd set for B for
any cut vertex u ∈ B. (i.e) B′ is a wcd set of B containing all cut vertices belonging to B.
Therefore D = (V −B) ∪B′ is a wcd set of G. Hence γwc(G) ≤ n− |B −B′| < n.

Case (iii): c(B) = 5.

Then diam(B) ≤ 2. Then also B′ = {u} or B′ = NB [u] is a proper wcd set for any cut
vertex u belonging to B. Hence γwc(G) ≤ |D| ≤ n− |B −B′| < n.

Case (iv): c(B) = 6.

Choose any two vertices x, y ∈ V (B) with xy ∈ E(B) and neither x nor y is a cut vertex.
Such an edge exists since B is an end block with δ(G) ≥ 2. Let B′ = V (B)− {x, y}. Then B′

is a wcd set of B containing the cut vertex belonging to B. Therefore D = (V − B) ∪ B′ is a
wcd set of G. Therefore γwc(G) ≤ |D| ≤ n− |B −B′| < n.

Observation. If G is a block with g(G) = 3 and c(G) ≤ 12 then γwc(G) < n.

Proof. Let C be a cycle of length 3 with V (C) = {u1, u2, u3}.
Case (i): N(ui)∩(V (G)−V (C)) = φ for some ui ∈ V (C), i = 1, 2, 3, then D = V (G)−{ui}

is a wcd set of G and hence γwc(G) < n.

Case (ii): N(ui)∩(V (G)−V (C)) 6= φ for each i ∈ {1, 2, 3}. Let v1 ∈ N(u1)∩(V (G)−V (C)).
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G is a block implies there exists a cycle C1 containing u1v1(= e) and u2. Also N(u3) ∩
(V (G)−V (C)) 6= φ. Let v2 ∈ N(u3)∩ (V (G)−V (C)). Then there exists a cycle C2 containing
u1v2 and u3. c(G) ≤ 12 implies l(C1) (or) l(C2) is less than or equal to 6. If l(C2) ≤ 6 then
choose x, y ∈ V (C2) with xy ∈ E(C2) and x, y 6= {u1, u3}. Then D = V (G) − {x, y} is a wcd
set. Hence γwc(G) < n.

Observation. If G is a block with g(G) = 4 and c(G) ≤ 13 then γwc(G) < n.

Proof. Let C be a cycle of length 4 with V (C) = {u1, u2, u3, u4}.
Case (i): N(ui) ∩ (V (G)− V (C)) = φ for some ui ∈ V (C).

Then D = V (G)− {ui} is a wcd set of G and hence γwc(G) < n.

Case (ii): N(ui) ∩ (V (G)− V (C)) 6= φ for each i ∈ {1, 2, 3, 4}. Let v1 ∈ N(u1) ∩ (V (G)−
V (C)). G is a block implies there exists a cycle C1 containing e = u1v1 and u2.
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N(u4) ∩ (V (G)− V (C)) 6= φ implies there exists v′1 ∈ N(u4) ∩ (V (G)− V (C)). Therefore
there exists a cycle C2 containing u4v

′
1 and u3. c(G) ≤ 13 implies l(C1) or l(C2) ≤ 6. Let
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l(C2) ≤ 6. Then D = V (G) − {x, y} for any two x, y ∈ V (C2) with xy ∈ E(C2) and x, y /∈
{u4, u3} is a wcd set. Therefore γwc(G) < n.

Observation. If G is block with g(G) = 5 and c(G) ≤ 14, then γwc(G) < n.

Proof. Let C be a cycle of length 5 with V (C) = {u1, u2, u3, u4, u5}.
Case (i): N(u)∩ (V (G)−V (C)) = φ and N(v)∩ (V (G)−V (C)) = φ for some u, v ∈ V (C)

with uv ∈ E(C) then, D = V (G)− {u, v} is a wcd set. Therefore γwc(G) < n.

Case (ii): N(u)∩ (V (G)− V (C)) = φ and N(v)∩ (V (G)− V (C)) = φ for no two adjacent
vertices u, v ∈ V (C). Let N(u5)∩ (V (G)− V (C)) = φ. Then N(u1)∩ (V (G)− V (C)) 6= φ and
N(u4) ∩ (V (G) − V (C)) 6= φ. Let v1 ∈ N(u1) ∩ (V (G) − V (C)). G is a block implies there
exists a cycle C1 containing e = u1v1 and u2. N(u4)∩ (V (G)− V (C)) 6= φ implies there exists
v′1 ∈ N(u4) ∩ (V (G)− V (C)).
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Therefore there exists a cycle C2 containing u4v
′
1 and u3. c(G) ≤ 14 implies l(C1) or

l(C2) ≤ 6. Let l(C2) ≤ 6. Then D = V (G)−{x, y} for any two x, y ∈ V (C2) with xy ∈ E(C2)
and x, y ∈ {u4, u3} is a wcd set. Therefore γwc(G) < n.

Observation. If G is a block with g(G) = 6 and c(G) ≤ 15 then γwc(G) < n.

Proof. Let C be a cycle of length 6 with V (C) = {u1, u2, u3, u4, u5, u6}.
Case (i): N(u)∩ (V (G)−V (C)) = φ and N(v)∩ (V (G)−V (C)) = φ for some u, v ∈ V (C)

with uv ∈ E(C), then, D = V (G)− {u, v} is a wcd set. Therefore γwc(G) < n.

Case (ii): N(u)∩ (V (G)− V (C)) = φ and N(v)∩ (V (G)− V (C)) = φ for no two adjacent
vertices u, v ∈ V (C). Let N(u6)∩ (V (G)− V (C)) = φ. Then N(u1)∩ (V (G)− V (C)) 6= φ and
N(u5) ∩ (V (G)− V (C)) 6= φ.

Let v1 ∈ N(u1) ∩ (V (G)− V (C)). G is a block implies there exists a cycle C1 containing
e = u1v1 and u2.
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N(u5) ∩ (V (G)− V (C)) 6= φ implies there exists v′1 ∈ N(u5) ∩ (V (G)− V (C)). Therefore
there exists a cycle C2 containing u5v

′
1 and u4. c(G) ≤ 14 implies l(C1) or l(C2) ≤ 6. Let

l(C2) ≤ 6. Then D = V (G) − {x, y} for any two x, y ∈ V (C2) with xy ∈ E(C2) and x, y ∈
{u4, u5} is a wcd set. Therefore γwc(G) < n.

Definition.[7] A graph G is distance-hereditary if for all connected induced subgraphs F

of G, dF (u, v) = dG(u, v) for all u, v ∈ V (F ).
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Observation. For every distance hereditary graph G, γwc(G) < n.
Proof. Consider any spanning tree TG of TG. Then 〈V (TG)−A〉 where A is the set of

all pendant vertices of TG is distance preserving. (i.e.) d〈V (TG)−A〉(x, y) = dG(x, y) for all
x, y ∈ V (TG)−A. Therefore for every x, y ∈ V (TG)−A there exists an x . . . y shortest path in
〈V (TG)−A〉. Also V (TG)−A is a dominating set. Hence γwc(G) < n

CHARACTERIZATIONS

We use the following notations throught the remaining discussion.
Notation. TG denote any spanning tree of G.
A - denote the set of all pendant vertices in TG.
T ′G denote the subtree obtained by deleting all pendant vertices from TG. (i.e.) T ′G =

TG −A.
T ′′G denote the subtree obtained by deleting a proper subset A′ ⊂ A from TG. (i.e.)

T ′′G = TG −A′.
〈V (T ′G)〉 denote the subgraph of G induced by V (T ′G).
〈V (T ′′G)〉 denote the subgraph induced by V (T ′′G).
Definition. A subset V (H) of V (G) is said to be distance preserving if d〈V (H)〉(x, y) =

dG(x, y) for all x, y ∈ V (H).
Remark. If G has a wcd set D, then for every x, y ∈ D there exists an x . . . y shortest

path in 〈D〉. d〈D〉(x, y) = dG(x, y) for all x, y ∈ D and hence D is distance preserving.
Example.
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Here A = {3, 8, 10, 9, 4, 6} dT ′G(x, y) = dG(x, y) for all x, y ∈ V (T ′G).
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dT ′G(2, 7) = 2 6= dG(2, 7) = 1. Therefore dT ′G(x, y) 6= dG(x, y) for all x, y ∈ V (T ′G). But
d〈V (T ′G)〉(x, y) = dG(x, y) for all x, y ∈ 〈V (T ′G)〉 and hence 〈V (T ′G)〉 is a distance preserving
subgraph.

Example.
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Here A = {3, 8, 9, 10, 11, 6}. dT ′G(x, y) 6= dG(x, y) for all x, y ∈ V (T ′G) (since dT ′G(4, 7) = 3
and dG(4, 7) = 2). A′ = {3, 9, 11, 6} then A′ ⊂ A. T ′′G is not distance preserving. But 〈V (T ′′G)〉
is distance preserving.

Observation. If δ(G) = 1 then γwc(G) < n as D = V (G) − {u ∈ V (G)/degu = 1} is a
wcd set.

Observation. If G is a graph with δ(G) ≥ 2, then γwc(G) < n if and only if G is a tree
or G has a spanning tree TG satisfying one of the following three conditions:

(i) TG has a subtree T ′G such that dT ′G(x, y) = dG(x, y) for all x, y ∈ V (T ′G).
(ii) TG has a subtree T ′G such that 〈V (T ′G)〉 is distance preserving.
(iii) TG has a subtree T ′′G such that 〈V (T ′′G)〉 is distance preserving.
Proof. γwc(G) < n implies that there exists a proper wcd set D. Then D is a dominating

set with 〈D〉 is connected and distance preserving. 〈D〉 is connected implies 〈D〉 has a spanning
tree T〈D〉. Hence D = V (T〈D〉) and each vertex in V −D is adjacent to some vertex in V (T〈D〉).
Deleting the edges in 〈V −D〉 we get a spanning tree TG of G. (i.e.) there exists a spanning
tree TG of G such that D = V (TG) − A′ where A′ ⊆ A and 〈D〉 = 〈V (TG)−A′〉 is distance
preserving.

Case (I): 〈D〉 = 〈V (TG −A′)〉 = T ′G with T ′G is distance preserving and A = A′.
I - (i): 〈A〉 is independent.
If u ∈ A then there exists u1 ∈ D = V (T ′G) such that uu1 ∈ E(G). δ(G) ≥ 2 implies there

exists u2(6= u1) ∈ V (G) such that u2 ∈ N(u). A is independent implies u1, u2 ∈ D = V (T ′G).
Therefore there exists an u1 . . . u2 shortest path in 〈D〉 = T ′G. (i.e.) there exists an u1 . . . u2

shortest path in the subtree T ′G.
Therefore if u, v ∈ A then |N(u) ∩ V (T ′G)| > 1 and |N(v) ∩ V (T ′G)| > 1. Hence if u1 ∈

|N(u) ∩ V (T ′G)| > 1 and v1 ∈ |N(v) ∩ V (T ′G)| > 1 then there exists an u1 . . . v1 shortest path in
T ′G. (i.e) every shortest path connecting u snd v should pass through the points of T ′G and T ′G is
a distance preserving subtree. Therefore dTG

(u, v) = dG(u, v) for all u, v ∈ A. T ′G is a distance
preserving subtree implies dT ′G(x, y) = dG(x, y) for all x, y ∈ V (T ′G). Hence dTG

(x, y) = dG(x, y)
for all x, y ∈ V (G). (i.e.) TG is a distance preserving spanning tree of G. Hence no two pendant
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vertices of TG are adjacent in G (since if u, v are pendant vertices in TG with uv ∈ E(G) then
1 = dG(u, v) < dTG

(u, v)). T ′G is distance preserving implies no two pendant vertices of T ′G are
adjacent in G. Similarly no two pendant vertices in the tree obtained by removing the pendant
vertices of T ′G are adjacent. Proceeding like this we get G as an acyclic connected graph. Hence
G is a tree.

I - (ii): 〈A〉 is not independent.
〈A〉 is not independent implies there exist at least two adjacent vertices u, v in 〈A〉. Then

dTG
(u, v) > dG(u, v) = 1. (i.e.) TG is not distance preserving. But T ′G is distance preserving.

Hence G has a spanning tree TG with distance preserving subtree T ′G. Hence condition (ii) is
satisfied.

Case (II): D = V (T ′G) and T ′G is not distance preserving. A′ may or may not be independent
and A = A′.

〈D〉 = 〈V (TG)−A〉 = 〈V (TG′)〉 is distance preserving. (i.e.) G has a spanning tree TG

with a subtree T ′G such that the subgraph induced by V (T ′G) is distance preserving. Hence
condition (iii) is satisfied.

Case (III): T ′G is not distance preserving and A′ ⊂ A and A′ may or may not be independent.
Then 〈D〉 = 〈V (TG)−A′〉 is distance preserving. (i.e) 〈V (T ′′G)〉 is distance preserving.

(i.e.) G has a spanning tree TG with subtree T ′′G such that 〈V (T ′′G)〉 is distance preserving.
Hence condition (iv) is satisfied.

Conversely, suppose G is a tree or G has a spanning tree TG satisfying one of the conditions
(i) to (iii).

If G is a tree then D = V (G)−A where A is the set of all pendant vertices of G is a wcd
set of G.

If G has a spanning tree TG satisfying condition (i) or (ii) then D = V (TG) − A is a wcd
set of G.

If G has a spanning tree TG satisfying condition (iii) then D = V (TG)−A′ is a wcd set of
G.

Hence γwc(G) < n in all cases.

CONSTRUCTION OF A GRAPH G WITH γwc(G) < n.

Observation. γwc(G) < n if and only if G can be constructed as follows:
Take any connected graph H.
(i) Attach one or more pendant vertices at each (or at some) vertices of H.
(ii) Identify an edge of a 3 cycle at each (or some) edges of H.
(iii) Identify two consecutive edges of a 4 cycle at each (or some) paths of length 2 in H.
(iv) Do any one or both of the two operations (i) and (ii) at each (or some) vertices of H

and do operation.
(iii) At each (or at some) paths of length 2 in H.
(v) Attach one or more triangles at each (or at some) vertices of V (H).
(vi) Identify an edge of a 4 cycle at each (or some) edge of H.
(vii) Identify two consecutive edges of a 5 cycle at each (or some) paths of length 2 in H.
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(viii) Identify three consecutive edges of a 6 cycle at each (or some) paths of length 3 in
H.

(ix) Do any one of the operations (v) to (viii) at each (or some) vertex, edge, paths of
length 2 or 3.

(x) Do all (or some) of the operations (i) to (ix) at each (or some) vertex, edge, paths of
length 2, paths of length 3.

(xi) Take any two connected graphs H and H ′ with V (H) = {u1, u2, . . . , ur} and V (H ′) =
{v1, v2, . . . , vs}. First join v1 to u1. Join each vi ∈ NH′(v1) to u1 or to all or some vertices
which are at distance atmost 3 from u1 in H. (i.e.) each vi ∈ NH′(v1) can be joined to u1 or
to all or some ui with dH(u1, ui) ≤ 3. Do the same operation for each vj ∈ N(vi) and repeat
this process until each vi is joined to some ui.

(xii) Take any connected graph H and any number of connected graphs {H ′
i} and perform

the operation (xi) to each H ′
i.

Proof. Let γwc(G) < n and let D be a γwc set of G. Then 〈D〉 is connected and distance
preserving.

Case (i): δ(G) = 1 and 〈V −D〉 is independent.

Hence in this case G can be obtained by taking H = 〈D〉 and attaching one or more
pendant vertices at each or some vertices of H.

Case (ii): δ(G) ≥ 2 and 〈V −D〉 is independent.

δ(G) ≥ 2 and 〈V −D〉 is independent implies for every u ∈ V −D, |N(u) ∩D| ≥ 2. Let
u1, u2 ∈ N(u) ∩ D. Then d(u1, u2) ≤ 2. 〈D〉 is a wcd set implies there exists an u1 . . . u2

shortest path of length ≤ 2 in 〈D〉.
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Therefore, G can be obtained by taking a connected graph 〈D〉 and performing one of the
operations (ii) to (iv).

Case (ii): The components of 〈V −D〉 are K2 alone.

For any two u, v ∈ V −D with uv ∈ E(G) both of them may be adjacent to a same vertex
or adjacent to two different vertices in D. If each pair of adjacent vertices in V −D are adjacent
to the same vertex in D then in this case G can be obtained by taking H = 〈D〉 and performing
the operation (v). If there exists u, v ∈ V −D with uv ∈ E(G) and adjacent to two different
vertices u1 and v1 respectively in D, then d(u1, v1) ≤ 3. D is a wcd set implies there exists an
u1 . . . v1 shortest path of length ≤ 3 in 〈D〉.
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Therefore, G can be obtained by taking a connected graph H = 〈D〉 and performing one
of the operations (v) to (ix).

Case (iii): The components of 〈V −D〉 are isolates and K2s.
In this case G can be obtained by taking H = 〈D〉 and performing the operation (ix).
Case (iv): 〈V −D〉 is connected.
In this case, G can be obtained by taking H = 〈D〉 and performing one of the operations

(x).
Case (v): 〈V −D〉 is disconnected and has more than one connected components.
In this case, G can be obtained by taking H = 〈D〉 and performing operation (xi) to each

connected graph H ′
i.

Lemma. If G is any simple graph with n ≥ 3 and δ(G) ≥ n/2 then γwc(G) < n.
Proof. For any vertex u of degree δ consider D = N [u]. Then any v ∈ V − D must

be adjacent to some ui ∈ N(u), since v is not adjacent to u. Otherwise δ(G) ≤ deg v ≤
n − 1 − |N(u)| = n − 1 − δ ≤ n − 1 − n/2 < n/2 . . . a contradiction to the fact that δ ≥ n/2.
Therefore, each v ∈ V − D is adjacent to some ui ∈ N(u) and hence D is a dominating set.
And D = N [u] implies d〈D〉(x, y) = d〈G〉(x, y) for all x, y ∈ D. (i.e.) D is a wcd set and hence
γwc(G) < n.

Corollary. If γwc(G) = n then δ(G) < n/2.
Proof. For if δ(G) ≥ n/2 then by the previous lemma γwc(G) < n . . . a contradiction

(since γwc(G) = n).
Lemma. If δ(G) ≥ n/2, then γwc(G) ≤ δ + 1 or γwc(G) = 2.
Proof. δ(G) ≥ n/2 implies G is Hamiltonian [6]. And m = 1/2

∑
deg u = n2/4. Therefore,

G is pancyclic (or) G is Kn/2,n/2
[6]. If G is pancyclic, then D = N [u] is a wcd set with deg

u = δ. Therefore, γwc(G) ≤ δ + 1. If G is Kn/2,n/2 then γwc(G) = 2.
Observation. γwc(G) = n if and only if G is not a tree and for every spanning tree TG

and for every subset A′ ⊆ A there exists at least one pair of points x, y ∈ V (TG)−A′ such that
d〈V (TG)−A′〉(x, y) > dG(x, y).

Proof. Let γwc(G) = n. Then G cannot be a tree. If there exists a spanning tree TG and
a set of pendant vertices A′ ⊆ A such that for every x, y ∈ V (TG) − A′, d〈V (TG)−A′〉(x, y) ≤
dG(x, y) then D = V (TG)−A′ is a proper wcd set of G . . . a contradiction.

Conversely, suppose G is not a tree and for every spanning tree TG and for every subset
A′ ⊆ A there exists at least one pair of points x, y ∈ V (TG)−A′ such that d〈V (TG)−A′〉(x, y) >

dG(x, y). Let if possible γwc(G) < n. Then G is a tree (or) has a spanning tree TG with a set of
pendant vertices A′ ⊆ A such that for every pair of points x, y ∈ V (TG)−A′, d〈V (TG)−A′〉(x, y) =
dG(x, y) (by observation (12) . . . a contradiction).

Observation. γ(G) = γwc(G) if and only if G is a caterpillar (or) G has a spanning tree
TG with maximum number of pendant edges εT (G) satisfying one of the two conditions (a) or
(b) and both the coditions (c) and (d).

(a) TG has a distance preserving subtree T ′G.
(b) TG has a subtree T ′G with 〈V (T ′G)〉 is distance preserving.
(c) Each u ∈ V (G) is either a support or a pendant vertex in TG.
(d) The domination number of G is the number of supports in TG.
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Proof. Let γ(G) = γwc(G) and let D be a γwc set. Then D is a connected dominating
set. Therefore, γc(G) ≤ γwc(G) = γ(G). But γ(G) ≤ γc(G) ≤ γwc(G). Therefore, γc(G) =
γwc(G) = γ(G). γc(G) = n − εT (G) where εT (G) [11] is the number of pendant vertices in a
spanning tree of G with maximum number of pendant edges. Therefore, n− εT (G) = γc(G) =
γwc(G) = γ(G) . . . .

(i) G has a proper wcd set. Therefore, G is a tree or has a spanning tree TG satisfying one
of the three conditions of observation 12. (i.e.) G is a tree or there exists a spanning tree TG

such that D = V (TG)−A′ for some A′ ⊆ A with 〈V (TG)−A′〉 is distance preserving.
(ii) |D| = γwc(G) = γ(G) implies N(u) ∩ (V − D) 6= φ for each u ∈ D (since D is a

minimum dominating set and G is connected).
(iii) By (i) and (ii) n − εT (G) = |D| = |V (TG)−A′|. Therefore |A′| = εT (G). (i.e)

εT (G) = |A′| ≤ |A| ≤ εT . Hence εT (G) = |A′| = |A|. (i.e.) G is a tree or has a spanning
tree TG with maximum number of pendant edges equal to |A′| and 〈D〉 = 〈V (TG)−A′〉 =
〈V (TG)−A〉 is distance preserving. Hence by (iii) each u ∈ D = V (TG) − A is a support and
each u ∈ V −D = A is a pendant vertex in TG. (i.e.) G is a tree or G has a spanning tree TG

with distance preserving subtree T ′G (or) has a subtree T ′G with 〈V (T ′G)〉 is distance preserving.
(ie) G is a tree (or) satisfies one of the two conditions (a) and (b).

If u ∈ V (G) then either u ∈ D (or) u ∈ V −D. (i.e.) either u is a support (or) a pendant
vertex in G (or) TG. Hence, if G is a tree then G is a caterplillar. If G is not a tree then TG

satisfy condition (c). γ(G) = γwc(G) = |D| = number of supports in TG. Hence condition (d)
is satisfied.

Conversely, suppose G is a tree or has a spanning tree satisfying one of the two conditions
(a) or (b) and both the coditions (c) and (d).

If G is a tree and satisfying conditions (c) and (d), then D = V (G)−A where A is the set
of all pendant vertices is a wcd set and hence γwc(G) ≤ |D|. G satisfies conditions (c) and (d)
implies each u ∈ D = V (G) − A is a support and γ(G) = |D|. Hence γwc(G) ≤ |D| = γ(G).
(i.e.) γ(G) = γwc(G).

If G satisfies conditions (a), (c) and (d), then 〈D〉 = 〈V (TG)−A〉 = T ′G is a distance
preserving subtree of TG with A as the set of all pendant vertices of TG. (i.e) D is a wcd set and
hence γwc(G) ≤ |D|. That TG satisfies condition (c) and (d) implies each u ∈ D = V (TG)− A

is a support and γ(G) = |D|. Hence γwc(G) ≤ |D| = γ(G). (i.e.) γ(G) = γwc(G).
If G satisfy conditions (b), (c) and (d), then 〈D〉 = 〈V (TG)−A〉 = 〈V (T ′G)〉 is distance

preserving. (i.e) D is a wcd set and hence γwc(G) ≤ |D|. TG satisfy conditions (c) and (d)
implies each u ∈ D = V (TG) − A is a support and γ(G) = |D|. Hence γwc(G) ≤ |D| = γ(G).
(i.e.) γ(G) = γwc(G).

CONSTRUCTION OF GRAPHS WITH γ(G) = γwc(G).

Observation. γ(G) = γwc(G) if and only if G is a caterpillar (or) G can be obtained as
follows:

Take any connected graph which is not a path H and consider a spanning tree TH of H with
maximum number of pendant edges. Let {u1, u2, . . . , ur} be the set of pendant vertices of TH .
Attach one or more pendant vertices at each u ∈ V (G)−{u1, u2, . . . , ur} and let {v1, v2, . . . , vs}
be the set of pendant vertices thus attached and TG be the resulting tree.
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If u ∈ N(vi) ∩ V (H) then vi can be joined to each or some v ∈ V (H) with dH(u, v) ≤ 2.
Any two vis can be joined if both of them are adjacent to a same vertex in H. Join vi and vj

if dH(u, v) ≤ 3 where u ∈ N(vi) ∩ V (H) and v ∈ N(vj) ∩ V (H).
Proof. Let γ(G) = γwc(G). Then, by the previous observation, G is a caterpillar (or) G

has a spanning tree TG satisfying conditions (a) (or) (b) and both the conditions (c) and (d).
Let H = 〈V (T ′G)〉 - the set of pendant vertices of T ′G. Then H satisfy the required conditions.

Conversely, if G is constructed by the above method then let D = V (H)−{u1, u2, . . . , ur}.
Then TG is a spanning tree of G with maximum number of pendant edges and D is a wcd set.
Hence γwc(G) ≤ |D| = n− εT . Therefore γwc(G) = n− εT ≤ γ(G). (i.e.) γ(G) = γwc(G).

Observation. γc(G) = γwc(G) if and only if G is a tree or has a spanning tree TG with
maximum number εT of pendant edges satisfying one of the following two conditions:

(i) TG has a distance preserving subtree T ′G.
(ii) TG has a subtree T ′G such that 〈V (T ′G)〉 is distance preserving.
Proof. Let γc(G) = γwc(G). If D is a γwc set then G satisfy one of the four conditions

of observation 12. (i.e.) G is a tree (or) 〈D〉 = 〈V (TG)−A′〉 where A′ ⊆ A and 〈D〉 is
distance preserving. n− εT = γc(G) = γwc(G) = |D| = |V (TG)−A′| = n− |A′| which implies
εT = |A′| ≤ |A| ≤ εT . Therefore εT = |A′| = |A|. (i.e.) TG is a spanning tree of G with
maximum number of pendant edges. Hence G has a spanning tree TGwith maximum number
of pendant vertices satisfying one of the two conditions.

Conversely, if G is a tree then γc(G) = γwc(G).
If G has a spanning tree with maximum number of pendant edges satisfying one of the

two conditions then D = V (TG) − A is a wcd set with |A| = εT and hence γwc(G) ≤ |D| =
|V (TG)−A| = n− |A| = n− εT = γc(G). Hence γc(G) = γwc(G).

CONSTRUCTION OF A GRAPH WITH γc(G) = γwc(G).

γc(G) = γwc(G) if and only if G is either G1 (or) G2 which are obtained as follows:
Take any connected graph H and consider a spanning tree TH with maximum number of

pendant edges and let B = {u1, u2, . . . , ur} be the set of pendant vertices of TH . Attach one or
more pendant vertices at each ui, 1 ≤ i ≤ r. Let A = {v1, v2, . . . , vs} with s ≥ r be that set of
pendant vertices thus attached. Let G1 be the resulting graph.

In G1 connect vi ∈ N(ui) and vj ∈ N(uj) by a path such that d(ui, uj) ≤ d(vi, vj) and let
G2 be the resulting graph.

Proof. Let γc(G) = γwc(G). Then by the previous observation G is a tree or G has a
spanning tree satisfying the two conditions.

If G is a tree then G is of the form G1.
If G has a spanning tree TG with maximum number of pendant edges and a distance

preserving subtree T ′G, then 〈D〉 = 〈V (TG)−A〉 = T ′G. Let A = {v1, v2, . . . , vs}. Now let
B = {u1, u2, . . . , ur} be the set of pendant vertices of T ′G. In this case 〈A〉 is not independent.
Therefore G can be obtained by taking a tree and attaching one or more triangles at each ui,
1 ≤ i ≤ r. (i.e.) G is of the form G2.

If G has a spanning tree TG with maximum number of pendant edges and a subtree T ′G,
with 〈V (T ′G)〉 is distance preserving. Then 〈D〉 = 〈V (TG)−A〉 = T ′G. Let A = {v1, v2, . . . , vs}
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and let B = {u1, u2, . . . , ur} be the set of pendant vertices of T ′G. Then T ′G is a spanning tree
of 〈D〉 with maximum number of pendant edges. For if there exists any other spanning tree
T ′〈D〉 of 〈D〉 with t number of pendant vertices and t > r. Each vi is adjacent to some vertex in
T ′〈D〉. t > r implies there exists a spanning tree T1G of G with more number of pendant vertices
than the number of pendant vertices in TG which is a contradiction to the fact that TG is a
spanning tree with maximum number of pendant vertices.

Now let 〈D〉 = H. If vi ∈ N(ui) then d(ui, uj) ≤ d(vi, vj) (since D is a wcd set).
If 〈V −D〉 is independent then G is of the form G1.
If 〈V −D〉 is not independent then G is of the form G2.
Conversely, suppose G is of the form G1 or G2.
Then let D = V (H). By construction γc(G) = n− εT (G) = |V (H)| = |D| and D is a wcd

set. Therefore γwc(G) ≤ |D| = γc(G). Hence γc(G) = γwc(G).
Definition. For any connected graph G we define,
εmax = Max

{|A′| /A′ ⊆ A, d〈V (TG)−A′〉(x, y) = dG(x, y),∀x, y ∈ V (TG)−A′
}
, where A is

the set of all pendant vertices in a spanning tree TG of G.
Observation. γwc(G) ≤ n− εmax.

Observation. If G is a block with proper wcd set then γwc(G) = n− εmax.
Proof. If D is a γwc set of G, then D = V (TG) − A′ with A′ ⊆ A. Therefore γwc(G) =

|D| = |V (TG)−A′| ≥ n − εmax (since |A′| ≤ εmax). Therefore by the previous observation
γwc(G) = n− εmax.
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Abstract The most significant feature of diagnostic medical images is to reduce speckle noise

which is commonly found in ultrasound medical images and make better image quality. In

recent years, technological development has improved significantly in analyzing medical imaging.

This paper proposes different hybrid filtering techniques for the removal of speckle noise, from

ultrasound medical images, by topological approach. The filters are treated in terms of a finite

set of certain estimation and neighborhood building operations. A set of such operations is

suggested on the base of the analysis of a wide variety of nonlinear filters described in the

literature. The quality of the enhanced images is measured by the statistical quantity measures:

Root Mean Square Error (RMSE) and Peak Signal-to-Noise Ratio (PSNR).

Keywords Digital topological neighborhood, ultrasound image, speckle noise, RMSE, PSNR.

§1. Introduction

Ultrasound imaging is widely used in the field of medicine. It is used for imaging soft tis-
sues in organs like liver, kidney, spleen, uterus, heart, brain etc. Ultrasound or ultrasonography
is a medical imaging technique that uses high frequency sound waves and their echoes. It allows
one to visualize and therefore examine a part of the human anatomy in medicine. It is a widely
used medical imaging procedure because it is economical, comparatively safe, transferable, and
adaptable. A major disadvantage with ultrasound imaging is the presence of noise, which per-
turbs feature location and creates artifacts. The acquired image is corrupted by a random
granular pattern, called speckle, which delays the interpretation of the image content. The ex-
istence of speckle is unattractive because of its disgrace image quality and it affects the tasks of
individual interpretation and diagnosis. Accordingly, speckle filtering is a central preprocessing
step for feature extraction, analysis, and recognition of medical imagery measurements. Previ-
ously, a number of schemes have been proposed for speckle mitigation. Median filter has been
introduced by Tukey [14] in 1970. It is a special case of non-linear filters used for smoothing
signals. Median filter now is broadly used in reducing noise and smoothing the images. Hakan
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et al.[4] have used Topological Median filter to improve conventional Median filter. The better
performance of the Topological Median filters over conventional Median filters is in maintaining
edge sharpness. Yanchun et al.[16] proposed an algorithm for image denoising based on Aver-
age filter with maximization and minimization for the smoothness of the region, unidirectional
Median filter for edge region and Median filter for the indefinite region. It was discovered that
when the image is corrupted by both Gaussian and impulse noises, neither Average filter nor
Median filter algorithm will obtain a result good enough to filter the noises because of their
algorithm. Sudha et al.[12] recommend a novel thresholding algorithm for denoising speckle in
ultrasound with wavelets. An improved adaptive median filtering method for denoising impulse
noise reduction was carried out by Mamta Juneja et al.[6] An adaptive median filter (AMF)
is the best filter to remove salt and pepper noise of image sensing was shown by Salem Saleh
Al-amri et al.[10]. Thangavel et al.[13] showed that the M3-filter performed better than mean
filter, median filter, max filter, min filter and various other filters. The objective of this study
was to develop new hybrid speckle reduction techniques and investigate their performance on
Ultrasound images.

This work is organized as follows: Section 2 discusses types of noises involved in medical
imaging. In Section 3 basic definitions are introduced. Section 4 discusses the various existing
filtering techniques for de-noising the speckle noise in the ultrasound medical image. Section 5
deals with proposed hybrid filtering techniques for de-noising the speckle noise in the ultrasound
medical images. In Section 6, both quantitative (RMSE & PSNR) and qualitative comparisons
have been provided. Section 7 puts forward the conclusion drawn by this paper.

§2. Types of noises

§2.1. Salt and pepper noise

Salt and pepper noise is a form of noise typically seen on images. It represents itself as
randomly occurring white and black pixels. A spike or impulse noise drives the intensity values
of random pixels to either their maximum or minimum values. The resulting black and white
flecks in the image resemble salt and pepper. This type of noise is also caused by errors in data
transmission.

§2.2. Speckle noise

Speckle noise affects all inherent characteristics of coherent imaging, including medical
ultra sound imaging. It is caused by coherent processing of backscattered signals from multiple
distributed targets. Speckle noise is caused by signals from elementary scatterers. In medical
literature, speckle noise is referred to as texture and may possibly contain useful diagnostic
information. For visual interpretation, smoothing the texture may be less desirable. Physicians
generally have a preference for the original noisy images, more willingly, than the smoothed
versions because the filter, even if they are more sophisticated, can destroy some relevant image
details. Thus it is essential to develop noise filters which can preserve the features that are of
interest to the physician. Several different methods are used to eliminate speckle noise, based
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upon different mathematical models of the phenomenon. In our work, we recommend hybrid
filtering techniques for removing speckle noise in ultrasound images. The speckle noise model
has the following form (‘·’ denotes multiplication). For each image pixel with intensity value
fij (1 ≤ i ≤ m, 1 ≤ j ≤ n for an m× n image), the corresponding pixel of the noisy image gij

is given by,
gi,j = fi,j + fi,j · ni,j . (1)

Where each noise value n is drawn from uniform distribution with mean 0 and variance
σ2.

§2.3. Gaussian noise

Gaussian noise is a statistical noise that has a probability density function (abbreviated
pdf) of the normal distribution (also known as Gaussian distribution). In other words, the values
that the noise can take on are Gaussian-distributed. Gaussian noise is properly defined as the
noise with a Gaussian amplitude distribution. Noise is modeled as additive white Gaussian noise
(AWGN), where all the image pixels deviate from their original values following the Gaussian
curve. That is, for each image pixel with intensity value fij (1 ≤ i ≤ m, 1 ≤ j ≤ n for an m×n

image), the corresponding pixel of the noisy image gij is given by,

gi,j = fi,j + ni,j , (2)

where each noise value n is drawn from a zero-mean Gaussian distribution.

§3. Basic definitions

This section presents some general definitions and digital topological results, which will be
used along the development of this paper.

Definition 3.1.[9] A digital image is a function f : Z × Z → [0, 1, . . . , N − 1] in which
N−1 is a positive whole number belonging to the natural interval [1, 256]. The functional value
of ‘f ’ at any point p(x, y) is called the intensity or gray level of the image at that point and it
is denoted by f(p).

Definition 3.2.[9] A neighborhood of a point p ∈ X is a subset of X which contains an
open set containing p. It is denoted by N(p).

Definition 3.3.[9] The 4-neighbours of a point p(x, y) are its four horizontal and vertical
neighbours (x∓ 1, y) and (x, y ± 1). It is denoted by N4(p).

Definition 3.4.[9] The 8-neighbours of a point p(x, y) consist of its 4-neighbours together
with its four diagonal neighbours (x + 1, y ∓ 1) and (x− 1, y ∓ 1). It is denoted by N8(p).



Vol. 7 New hybrid filtering techniques for removal of speckle noise from ultrasound medical images 41

Definition 3.5. The cross neighbours of a point p(x, y) consists of the neighbours (x +
1, y ∓ 1) and (x− 1, y ∓ 1). It is denoted by C4(p).

Definition 3.6. The LT neighbours of a point p(x, y) consists of the neighbours (x −
1, y − 1) and (x + 1, y + 1). It is denoted by L3(p).

Definition 3.7. The RT neighbours of a point p(x, y) consists of the neighbours (x −
1, y + 1) and (x + 1, y − 1). It is denoted by R3(p).

Definition 3.8. The RL neighbours of a point p(x, y) consists of its RT neighbours
together with the neighbours (x + 1, y), (x + 1, y + 1) and (x, y + 1). It is denoted by RL6(p).

Definition 3.9. The RU neighbours of a point p(x, y) consists of its RT neighbours
together with the neighbours (x, y − 1), (x− 1, y − 1) and (x− 1, y). It is denoted by RU6(p).
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Definition 3.10. The LU neighbours of a point p(x, y) consists of its LT neighbours
together with the neighbours (x− 1, y), (x− 1, y + 1) and (x, y + 1). It is denoted by LU6(p).

Definition 3.11. The LL neighbours of a point p(x, y) consists of its LT neighbours
together with the neighbours (x, y − 1), (x + 1, y − 1) and (x + 1, y). It is denoted by LL6(p).

§4. Some existing filtering techniques

In this section, we provide the definitions of some existing filters. The image processing
function in a spatial domain can be expressed as

g(p) = γ(f(p)). (3)

where γ is the transformation function, f(p) is the pixel value (intensity value or gray level
value) of the point p(x, y) of input image and g(p) is the pixel value of the corresponding point
of the processed image.

§4.1. Mean filter (MNF)

Mean Filter [2] is a simple linear filter, intuitive and easy to implement method of smoothing
images, i.e., reducing the amount of intensity variation between one pixel and the next. It is
often used to reduce noise in images. In mean filter the pixel value of a point p is replaced by
the mean of pixel value of 8-neighborhood of a point ‘p’. The operation of this filter can be
expressed as:

g(p) = mean{f(p), where p ∈ N8(p)}. (4)
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§4.2. Median filter (MF)

The best-known order-statistic filter in digital image processing is the median filter. It is
a useful tool for reducing salt-and- pepper noise in an image. The median filter [14] plays a key
role in image processing and vision. In median filter, the pixel value of a point p is replaced by
the median of pixel value of 8-neighborhood of a point ‘p’. The operation of this filter can be
expressed as:

g(p) = median{f(p), where p ∈ N8(p)}. (5)

The median filter is popular because of its demonstrated ability to reduce random impulsive
noise without blurring edges as much as a comparable linear lowpass filter. However, it often
fails to perform as well as linear filters in providing sufficient smoothing of nonimpulsive noise
components such as additive Gaussian noise. One of the main disadvantages of the basic
median filter is that it is location-invariant in nature, and thus also tends to alter the pixels
not disturbed by noise.

§4.3. M3 filter

The M3 filter [13] is hybridization of mean and median filter. This replaces the central pixel
by the maximum value of mean and median for 8-neighborhood of central pixel. It is expressed
as M3-filter, the intensity values are reduced in the adjacent pixel and it preserves the high
frequency components in image. This filter is defined as

g(p) = max





mean{f(p), p ∈ N8(p)},
median{f(p), p ∈ N8(p)}.



 (6)

§4.4. Hybrid median filter (HMF)

Hybrid Median filter [5] is of nonlinear class that easily removes impulse noise while pre-
serving edges. The hybrid median filter plays a key role in image processing and vision. In
comparison with basic version of the median filter hybrid one has better corner preserving
characteristics. This filter is defined as

g(p) = median





median{f(p), p ∈ N4(p)},
median{f(p), p ∈ C4(p)},

f(p).





(7)

A hybrid median filter preserves edges much better than a median filter. In hybrid me-
dian filter the pixel value of a point p is replaced by the median of median pixel value of
4-neighborhood of a point ‘p’, median pixel value of cross neighbours of a point ‘p’ and pixel
value of ‘p’.

§4.5. Hybrid mean filter (HMNF)

Hybrid Mean Filter [5] is a simple non linear filter. It is intuitive and easy to implement
method of smoothing images. In hybrid mean filter, the pixel value of a point p is replaced by
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the mean of the mean pixel value of 4-neighborhood of a point ‘p’, mean pixel value of cross
neighbours of a point ‘p’ and pixel value of ‘p’. The operation of this filter can be expressed as:

g(p) = mean





mean{f(p), p ∈ N4(p)},
mean{f(p), p ∈ C4(p)},

f(p).





(8)

§5. Proposed hybrid filtering techniques

In this section, we will provide the definition of proposed hybrid filters. These filters are
not yet applied by researchers to remove the speckle noise in the ultrasound medical images.

§5.1. Hybrid cross median filter (H1F )

The hybrid cross median filter is a nonlinear filtering technique for image enhancement. It
is proposed for speckle noise removal from the ultrasound medical image. It is expressed as:

g(p) = median





median{f(p), p ∈ L3(p)},
median{f(p), p ∈ R3(p)},

f(p).





(9)

In hybrid cross median filter, the pixel value of a point p is replaced by the median of
median pixel value of LT neighbours of a point ‘p’, median pixel value of RT neighbours of a
point ‘p’ and pixel value of ‘p’.

§5.2. Hybrid min filter (H2F )

Hybrid min filter plays a significant role in image processing and vision. Hybrid min filter
is not a usual min filter. Min filter [2] recognizes the darkest pixels gray value and retains it by
performing min operation. In min filter each output pixel value can be calculated by selecting
minimum gray level value of the N8(p). H2F filter is also used for removing the salt noise from
the image. Salt noise has very high values in images. It is proposed for speckle noise removal
from the ultrasound medical image. It is expressed as:

g(p) = min





median{f(p), p ∈ L3(p)},
median{f(p), p ∈ R3(p)},

f(p).





(10)

In hybrid min filter, the pixel value of a point p is replaced by the minimum of median
pixel value of LT neighbours of a point ‘p’, median pixel value of RT neighbours of a point ‘p’
and pixel value of ‘p’.
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§5.3. Hybrid max filter (H3F )

Hybrid max filter is not a usual max filter. Hybrid max filter plays a key role in image
processing and vision. The brightest pixel gray level values are identified by max filter. In max
filter [2] each output pixel value can be calculated by selecting maximum gray level value of the
N8(p). H3F filter is also used for removing the pepper noise from the image. It is proposed for
speckle noise removal from the ultrasound medical image. It is expressed as:

g(p) = max





median{f(p), p ∈ L3(p)},
median{f(p), p ∈ R3(p)},

f(p).





(11)

In hybrid max filter, the pixel value of a point p is replaced by the maximum of median
pixel value of LT neighbours of a point ‘p’, median pixel value of RT neighbours of a point ‘p’
and pixel value of ‘p’.

§5.4. Hybrid TMN filter (H4F )

The hybrid tmn filter is a nonlinear filtering technique for image enhancement. It is
proposed for speckle noise removal from the ultrasound medical image. It is expressed as:

g(p) = median





median{f(p), p ∈ RU6(p)},
median{f(p), p ∈ RL6(p)},
median{f(p), p ∈ LL6(p)},
median{f(p), p ∈ LU6(p)},

f(p).





(12)

In hybrid tmn filter, the pixel value of a point p is replaced by the median of median pixel
value of RU neighbours of a point ‘p’, median pixel value of RL neighbours of a point ‘p’, median
pixel value of LL neighbours of a point ‘p’, median pixel value of LU neighbours of a point ‘p’
and pixel value of ‘p’.

§5.5. Hybrid TM filter (H5F )

The hybrid tm filter is a nonlinear filtering technique for image enhancement. It is proposed
for speckle noise removal from the ultrasound medical image. It is expressed as:

g(p) = mean





mean{f(p), p ∈ RU6(p)},
mean{f(p), p ∈ RL6(p)},
mean{f(p), p ∈ LL6(p)},
mean{f(p), p ∈ LU6(p)},

f(p).





(13)

In hybrid tm filter, the pixel value of a point p is replaced by the mean of mean pixel value
of RU neighbours of a point ‘p’, mean pixel value of RL neighbours of a point ‘p’, mean pixel
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value of LL neighbours of a point ‘p’, mean pixel value of LU neighbours of a point ‘p’ and pixel
value of ‘p’.

§5.6. Maximum of hybrid median and hybrid mean filter (H6F )

The maximum of hybrid median and hybrid mean filter is a nonlinear filtering technique
for image enhancement. It plays a significant role in image processing and vision. It is proposed
for speckle noise removal from the ultrasound medical image. It is expressed as:

g(p) = max





median





median{f(p), p ∈ N4(p)},
median{f(p), p ∈ C4(p)},

f(p)





,

mean





mean{f(p), p ∈ N4(p)},
mean{f(p), p ∈ C4(p)},

f(p).





.





(14)

In H6F filter, each output pixel value is calculated by the maximum of output pixel value
of hybrid median filter and hybrid mean filter.

§5.7. Average of hybrid median and hybrid mean filter (H7F )

The average of hybrid median and hybrid mean filter is an another nonlinear filtering
technique for image enhancement. It is proposed for speckle noise removal from the ultrasound
medical image. It is expressed as:

g(p) =
1
2





median





median{f(p), p ∈ N4(p)},
median{f(p), p ∈ C4(p)},

f(p)





+

mean





mean{f(p), p ∈ N4(p)},
mean{f(p), p ∈ C4(p)},

f(p).





.





(15)

In H7F filter, each output pixel value is calculated by the average of output pixel value of
hybrid median filter and hybrid mean filter.

§6. Experimental result analysis and discussion

The proposed hybrid filtering techniques have been implemented using MATLAB 7.0. The
performance of various hybrid filtering techniques is analyzed and discussed. The measurement
of ultrasound image enhancement is difficult and there is no unique algorithm available to
measure enhancement of ultrasound image. We use statistical tool to measure the enhancement
of ultrasound images. The Root Mean Square Error (RMSE) and Peak Signal-to-Noise Ratio
(PSNR) are used to evaluate the enhancement of ultrasound images.
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RMSE =

√
Σ(f(i, j)− g(i, j))2

mn
, (16)

PSNR = 20 log10

255
RMSE

. (17)

Here f(i, j) is the original ultrasound image, g(i, j) is enhanced ultrasound image and m

and n are the total number of pixels in the horizontal and the vertical dimensions of the image.
If the value of RMSE is low and value of PSNR is high then the enhancement approach is
better. The original ultrasound image and filtered ultrasound image of liver tumor obtained
by various hybrid filtering techniques are shown figure 1. Table 1 shows the proposed hybrid
filtering techniques, that are compared with some existing filtering techniques namely, HMF ,
HMNF , M3F , MF , MNF , with regard to ultrasound medical images for liver tumor.

Filters H1F H2F H3F H4F H5F H6F H7F HMF HMNF M3F MF MNF

RMSE 2.885 4.9457 1.362 3.8874 4.1455 2.8849 4.2599 3.2134 3.5241 4.2674 4.5939 4.7789

PSNR 38.9284 34.2466 45.4475 36.3381 35.7797 38.9288 35.5432 37.9919 37.1902 35.5279 34.8876 34.5447

Table 1: RMSE and PSNR values for original image.

Chart 1: Analysis of RMSE & PSNR values of Ultrasound liver tumor image

The figure 2 shows denoising of ultrasound images corrupted by speckle noise of variance
0.07. The table 2 shows the comparison of RMSE & PSNR values of different denoising filters
for ultrasound liver tumor images corrupted by speckle noise of variance 0.07.

Filters H1F H2F H3F H4F H5F H6F H7F HMF HMNF M3F MF MNF

RMSE 4.1662 7.4766 1.3455 6.1125 6.1835 4.3792 5.6785 5.1226 5.6369 6.4303 6.828 6.824

PSNR 35.7365 30.6572 45.554 32.4069 32.3066 34.6172 33.0466 33.9415 33.1104 31.9666 31.4453 31.4505

Table 2: RMSE and PSNR values for noisy image of variance 0.07.
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Chart 2: Analysis of RMSE & PSNR values of Ultrasound liver tumor images
corrupted by speckle noise of variance 0.07.

Filters H1F H2F H3F H4F H5F H6F H7F HMF HMNF M3F MF MNF

RMSE 1.776 2.4993 0.0846 1.2985 0.7449 0.9924 1.0525 1.6103 1.0099 0.6103 0.8438 0.6862

PSNR 43.1424 40.1749 69.5814 45.8626 50.6896 48.198 47.6871 43.9931 48.046 52.4199 49.6065 51.4019

Table 3: RMSE and PSNR values for noisy image of variance 0.07, after 9th iteration.

Chart 3: Analysis of RMSE & PSNR values of Ultrasound liver tumor images
corrupted by speckle noise of variance 0.07, after 9th iteration.

The table 4 shows the comparison of RMSE & PSNR values of different denoising filters
for ultrasound liver tumor images corrupted by speckle noise.
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Variance, σ2

Filters 0.02 0.03 0.04 0.05 0.06 0.07

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

H1F 3.5586 37.1057 3.7266 36.705 3.8571 36.406 3.9817 36.1299 4.0631 35.9542 4.1662 35.737

H2F 6.3061 32.136 6.666 31.6539 6.9287 31.3182 7.1688 31.0223 7.3408 30.8164 7.4766 30.657

H3F 1.3682 45.408 1.3659 45.423 1.3587 45.469 1.3502 45.5237 1.3442 45.5619 1.3455 45.554

H4F 5.0432 34.0772 5.3421 33.577 5.5976 33.1711 5.8221 32.8296 5.9919 32.5799 6.1125 32.407

H5F 5.1083 33.9657 5.4141 33.4607 5.6598 33.0752 5.8498 32.7884 6.0264 32.5301 6.1835 32.307

H6F 3.8546 36.4117 4.1421 35.7869 4.3235 35.4145 4.497 35.0727 4.6296 34.8204 4.7392 34.617

H7F 4.9308 34.2729 5.1596 33.8789 5.3122 33.6257 5.439 33.4208 5.5866 33.1883 5.6785 33.047

HMF 4.2884 35.4853 4.5411 34.9881 4.7383 34.6188 4.8887 34.3474 5.0248 34.1089 5.1226 33.942

HMNF 4.5041 35.0592 4.8193 34.4715 5.0842 34.0067 5.2996 33.6464 5.4865 33.3453 5.6369 33.11

M3F 5.4277 33.439 5.7095 32.9992 5.9594 32.6271 6.1453 32.3604 6.3147 32.1242 6.4303 31.967

MF 5.7884 32.88 6.1149 32.4034 6.3529 32.0717 6.5308 31.8319 6.6941 31.6174 6.828 31.445

MNF 5.7857 32.884 6.0835 32.4482 6.3112 32.1289 6.501 31.8716 6.6745 31.6429 6.824 31.451

Table 4: Comparison of RMSE & PSNR values of different denoising filters for Ultrasound liver
tumor images corrupted by speckle noise.

Conclusion

In this work, we have introduced various hybrid filtering techniques for removal of speckle
noise from ultrasound medical images. To demonstrate the performance of the proposed tech-
niques, the experiments have been conducted on ultrasound image with liver tumor to compare
our methods with many other well known techniques. The performance of speckle noise re-
moving hybrid filtering techniques is measured using quantitative performance measures such
as RMSE and PSNR. The experimental results indicate that one of the proposed hybrid filters,
Hybrid Max Filter performs significantly better than many other existing techniques and it
gives best the results after successive iterations. The proposed method is simple and easy to
implement.
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Figure 1: Denoising of Ultrasound liver tumor image.
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Figure 2: Denoising of Ultrasound liver tumor image corrupted by speckle noise of variance of
0.07.
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Figure 3: Denoising of Ultrasound liver tumor image corrupted by speckle noise of variance of
0.07, after 9th iteration.
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§1. Introduction

In this paper, we consider the adjacency matrix for RC-graphs and the eigen values are
taken into account and a handful of results are obtained. An RC-graph is a finite simple graph
Γ(G,H) whose vertices are the complex irreducible characters of G and any two vertices φ

and ψ are adjacent if and only if their restriction φA and ψH contain at least one irreducible
character θ of H in common. The definition of adjacency matrix for RC-graphs is defined as
follows.

§2. Definition of RC-graphs and main results

Let G denote any finite group and Irr(G) denote the set of distinct complex irreducible
characters of G. Let H be any subgroup of G. Then the Relative Character graph Γ(G,H)
(RC-graph) is defined as follows:

The vertex set V is IrrG. Two vertices and are adjacent if and only if their restrictions
and to H contain at least one irreducible (complex) character of H is common (note that and
need not be irreducible, but break into a direct sum of H-irreducibles). We refer to [5] for
character theory of groups an [4] for graph theory.
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§3. Basic properties of RC-graphs

(3.1) Γ(G,H) is the null - graph if and only if H = G.

(3.2) Γ(G, (1)) is complete. However, the converse is not true.

(3.3) Γ(G,H) is regular if and only if it is complete.

(3.4) Γ(G,H) is connected if and only if CoreGH = (1), where CoreGH is the largest
normal subgroup of G contained in H.

(3.5) The connected components of Γ(G,H) are completely studied. Two vertices φ, ψ lie
in the same component if and only if φ ⊂ ψψs for some s ≥ 1, where ψ = the induced character

1
G

H.

(3.6) A group G is Frobenius if there is a nontrivial proper subgroup H such that H∩Hx =
(1) for all x 6∈ H (Hx = xHx−1).

Then there exists a normal subgraph N such that G is the semidirect product NH. N is
called the (unique) Frobenius kennel and H is called the (unique, upto contingency) Frobenius
complement.

(3.7) Γ(G,H) is a tree if and only if G = NH is Frobenius and N is elementary abelian of
order pm and O(H) = pm − 1.

(3.8) Γ(G,H) is always triangulated.

(3.9) Γ(G,H) is a naturally (edge) signed graph.

§4. The eigen value problem for RC-graphs

The adjacency matrix

For any finite, simple, undirected graph Γ = Γ(V, E), the adjacency matrix A = (aij) is
defined as follows:

aij =





0, if vi and vj are not adjacent,

1, if vi and vj are not adjacent.

It is well known that since A is a real symmetric matrix all its eigen values must be real.
Order the eigen values as λ1 ≥ λ2 ≥ · · · ≥ λn, where |V | = n.

Before seeing where we digress for these special RC-graphs, we shall start from where the
original results coincide for RC-graphs.

Recall from (3.2) that when (1) denote the trivial subgroup of G, then Γ(G, (1)) is the
complete graph Kn.

Theorem 4.1. The eigen values of Γ(G, (1)) are - 1 (repeated n− 1 times), n− 1. (Notice
that the sum must be 0 since this sum equals the sum of diagonal entries of A which is trivially
0.)

Theorem 4.2. Let G be an abelian group of order G and let H be a subgroup of order
h. Then the distinct eigen values of Γ(G,H) are −1 and (g/h)− 1 where −1 is repeated g − h

times and (g/h)− 1 is repeated h times.
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Proof. First note that by Lagrange’s theorem g/h is an integer. It is known that (i)
Γ(G,H) is a graph with g vertices and h connected components and (ii) each component is the
complete graph Kg/h (see eg. [3]).

We can rearrange the vertices of V such that the matrix A breaks into h blocks, where the
ith block is the g/h × g/h adjacency matrix of the ith component Ki and the other block are
0’s, 1 ≤ i ≤ h.

Clearly the eigen values of Γ(G,H) are those of Kg/h, repeated h times. Since the eigen
values of Kg/h are −1,−1, . . . ,−1, (g/h)−1 (-1 repeated (g/h)−1 times), overall, -1 is repeated
h(g/h− 1) = g − h times and (g/h)− 1 is repeated h times.

Hence the theorem.

§5. The case when G is non-abelian

When H is the trivial subgroup, then Γ(G,H) is complete and this case is already taken
care of. Hence we can assume that H is non-trivial.

There are two approaches. First, to settle with reasonable bounds for the eigen values for
arbitrary pair (G,H). Second is to take special groups and subgroups and actually compute
the eigen values. We shall take up the second route in this paper.

The Frobenius groups
Let G = NH be a Frobenius group. That means, H is a (non-normal) subgroup such that

H ∩Hx = (1) and N is normal defined by

N =



G−

⋃

x6∈H

Hx



 ∪ {1}.

As examples we have S3, A4, the dihedral group D2m, m odd. For properties and character
theory of G, we refer to [4].

The set IrrG is the disjoin union A ∪B, when
A = {φ|Kerφ ⊃ N},
B = {φ|Kerφ 6⊃ N}.
Theorem 5.1.[3] (i) The graph Γ(G,H) is connected, |V | = a + b where a = |A| = |IrrH|

and b = |B| = t/h(t + 1) = |IrrH| and |H| = h.
(ii) Γ(G,H) contains Kb as a complete subgraph and the remaining a vertices are such

that each one is adjacent to every vertex in Kb.
(iii) None of these a vertices (which include IG) are adjacent among themselves.
Theorem 5.2. Let G = NH be Frobenius, such that |B| > 1. Then the eigen values of

the adjacency matrix of Γ(G,H) constitute the set: {0 (repeater) a -1 times) -1 (repeated b

times) and b}.
Proof. The vertices can be arranged in such a way that the first a vertices are taken from

A (in some order) and the next b vertices are taken from B (in some order).
Then the adjacency matrix A is of the form:
(1) The top left corner has a× a zero matrix block.
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(2) The remaining diagonal entries are 0’s.

(3) All other entries are 1’s.

By simple matrix manipulations, the eigen values, as stated in the theorem, can be easily
found.

Example 5.3. Let G = D10 = C5 · C2, where D10 is the Dihedral group of 10 elements,
C2 and are cyclic subgroups of orders 2 and 5 respectively, with normal (Frobenius Kernel) and
non-normal (Frobenius complement). We take H = C2.

Then is the following graph: A = {V1, V2}, B = {V3, V4}.

v1

v4

v2

v3

The matrix A =




0 0 1 1

0 0 1 1

1 1 0 1

1 1 1 0




.

The eigen values are {0,−1,−1, 2}. There are some special Frobenius groups for which
Γ(G,H) become trees.

Theorem 5.4. Let G = NH be Frobenius so that |B| = 1. Then Γ(G,H) is a star and
the eigen values of A are : {0 (repeated a - 1 times and ±

√
d where d is the degree of the middle

vertex}.
Proof. In this case, all rows of A, except the last have 0’s everywhere except 1 at the

last column. The last row has 1’s everywhere, except a 0 at the last place. Then |λI − A| =
λa−1(λ2 − d). Thus the eigen values are: 0 (repeated a -1 times and π

√
d).

Example 5.5. Let G = A4 = V4 · C3, where V is the Klein-four groups. Take H = C3.
Then Γ(G,H) is the following star.

v1

v3v2

v4

A = {v1, v2, v3}, B = {v4}.
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Here v1v2 and v3 have character degrees 1 and v4 has character degree 3. The eigen values
are {0, 0,±√3}.

It is remarkable that the only RC-graphs which are trees are stars!
It is indeed a difficult job to fix the eigen values for arbitrary Γ(G,H).
However we get some reasonable bounds for a well-known class of groups and subgroups.
Lemma 5.6. Let G be an arbitrary group and H, a nontrivial subgroup. Let the right

action of G on G/H be doubly transitive. Then
(i) Γ(G,H) consists of a subgraph T together with the trivial character adjacent to a unique

vertex φ ∈ T .
(ii) The eigen values Γ(G,H) are caught up in the following inequalities:

λi(Γ) ≥ λi(Γ− {v}) ≥ λi+1(Γ) (1 ≤ i ≤ n− 1).

Proof. The first part of the statement is already well known (see eg. [3]). For (ii) we use
the corresponding result in [7].

Theorem 5.7. Let G = PSLC(2, q), q = pn, p a prime, H = Borel subgroup B of order
q(q − 1). Then we get the following bounds for the eigen values of the adjacency matrix A of
Γ(G,H),

λ1 ≥ n− 1 ≥ λ2 ≥ −1,

λ3 ≥ λ4 ≥ · · · ≥ λn−1 = 1, λn = −1.

Proof. The graph Γ(G,H) consists of the complete subgraph Kn−1 together with the
vertex 1G adjacent to a unique vertex of Kn−1.

Then taking v as the vertex corresponding to 1G and using the result of [8], and Lemma
5.6, we immediately get our results.

§6. Laplace graphs

The Laplace Graph L = D −A, where D is the diagonal matrix whose (i, i)th entry is the
vertex degree di.

Theorem 6.1. The cofactors of L have a common value k which also equals the number
of spanning trees of L (this is the famous Matrix - Tree Theorem).

From this result, we can also derive the following results.
Corollary 6.2.
(i) nk = µ1µ2 . . . µn−1 where µ1 ≥ µ2 ≥ · · · ≥ µn = 0 are the eigen values of L.
(ii) L is connected if and only if µn−1 > 0.
There is a special case where in our Γ(G,H) graph, the graph degree of each vertex is equal

to the degree of that vertex as an irreducible character. This occurs for instance when Γ(G,H)
is a tree (star), with an additional property on H.

Theorem 6.3. Let G = NH be a Frobenius group such that
(i) N is elementary abelian of order pm.
(ii) O(H) = pm − 1.



Vol. 7 Introduction of eigen values on relative character graphs 59

(iii) H is abelian. Then for every vertex of Γ(G,H), the character degree is the same as
the graph degree.

Proof. First recall that the graph is a star and hence-except the middle vertex, all order
vertices have graph degree one. But since H is abelian and hence every irreducible character φi

has degree one, by the property of Frobenius groups, all these φi can be ‘lifted’ as irreducible
characters of G as well. Hence the character degree of each pendent vertex vi = graph degree
of vi. Finally let ψ denote the middle vertex of Γ(G,H). Then, graph degree ψ = number of
pendant vertices = order of H = character degree of ψ. Hence the theorem.

Remark 6.4. There are other cases where these two degrees precisely coincide. For in-
stand let G = S4 and H = S3 (sitting inside S4). Then Γ(G,H), is the following graph.

Now the vertex degree of Γ(G,H) are {1, 1, 2, 3, 3}. It is remarkable that the corresponding
character degrees are also 1, 1, 2, 3 and 3.

Theorem 6.5. For all the above cases, we can replace the graph degrees in L by the
corresponding character degrees and still maintain the same properties and get the same results.

§7. Future directions

We propose the following directions in which this study of eigen value problem for RC-
graphs can be extended.

1. Put L∗ = D∗ − A where D∗ is the diagonal matrix when (i, i)th-entry is equal to the
character degree of the vertex vi (corresponding to the ith irreducible character φi); study the
eigen value problem for L∗.

2. The group G acts on the set IrrG by conjugation (If φ ∈ IrrG, φ ∈ IrrG where
φg(x) = φ(g × g−1)). This action also preserves the adjacency property: φ is adjacent to ψ if
and only if φg is adjacent to ψg. In this sense, our RC-graph becomes a pseudo-homogenous
graphs, generalizing the classical definition of homogeneous graphs. One can initiate a study of
eigen value problem in the context of (Pseudo-homogenous) RC-graphs, following the works of
F. R. K. Chang [1], [2] and others.

3. One can use QR-Factorization to obtain deeper and finer bounds for the eigen values of
general RC-graphs, in particular, when G is non-abelian simple.
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Abstract The main aim of this paper is to show a refinement of Young’s inequality. We

also give several applications of itself. Among these, we have a refinement of the following

inequalities: Bernoulli’s inequality, Hölder’s inequality, Cauchy’s inequality and Minkowski’s

inequality.

Keywords Young’s inequality, Hölder’s inequality, Cauchy’s inequality, Minkowski’s inequ-

ality.

§1. Introduction

A series of the inequalities played an important role in various fields of mathematics.
Among these we found the famous Young inequality

λa + (1− λ)b ≥ aλb1−λ, (1)

for nonnegative real numbers a, b and λ ∈ [0, 1].
The Young inequality was refined by F. Kittaneh and Y. Manasrah in [6], thus:

λa + (1− λ)b ≥ aλb1−λ + r(
√

a−
√

b)2, (2)

where r = min{λ, 1− λ}.
This inequality was generalized by S. Furuichi in [4], thus

n∑

i=1

piai −
n∏

i=1

api

i ≥ npmin

(
1
n

n∑

i=1

ai −
n∏

i=1

a
1/n
i

)
, (3)

for a1, . . . , an ≥ 0 and p1, . . . , pn ≥ 0 with p1 + · · ·+ pn = 1, where pmin = min{p1, . . . , pn}.
Another generalizations can be found by J. M. Aldaz in [1] and [2].
In [9], M. Tominaga, showed the reverse inequality for Young’s inequality, using Specth’s

ratio, thus
S

(a

b

)
aλb1−λ ≥ λa + (1− λ)b, (4)

where the Specht’s ratio [8] was defined by

S(h) =
h

1
h−1

e log h
1

h−1
, (h 6= 1)
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for a positive real number h.
S. Furuichi, in [5] given another type of the improvement of the classical Young inequality

by Specht’s ratios, thus
λa + (1− λ)b ≥ S

((a

b

)r)
aλb1−λ. (5)

In fact Young’s inequality is a special case of the Jensen inequality. Therefore, we seek
some improvements of this inequality in many papers and books.

A main result given by S. Dragomir [3], in general form, is studied by F. C. Mitroi [7] in a
particular case, thus

npmin

(
1
n

n∑

i=1

f(xi)− f

(
1
n

n∑

i=1

xi

))
≤

n∑

i=1

αif(xi)− f

(
n∑

i=1

αixi

)

≤ npmax

(
1
n

n∑

i=1

f(xi)− f

(
1
n

n∑

i=1

xi

))
(6)

where f is a convex function, pi > 0 for all i = 1, ..., n and
n∑

i=1

pi = 1.

§2. Main results

Theorem 2.1. For a, b > 0 and λ ∈ (0, 1), we have

aλb1−λ

(
a + b

2
√

ab

)2r

≤ λa + (1− λ)b ≤ aλb1−λ

(
a + b

2
√

ab

)2(1−r)

, (7)

where r = min{λ, 1− λ}.
Proof. In inequality (6) for n = 2, p1 = λ, p2 = 1 − λ, with λ ∈ (0, 1), x1 = a, x2 =

b, f(x) = − log x and taking account that 1− r = max{λ, 1− λ} when r = min{λ, 1− λ}, we
deduce the inequality of the statement.

Remark 2.1.

a) Because
a + b

2
≥
√

ab, it follows that
a + b

2
√

ab
≥ 1 and using inequality (7) we obtain the

Young inequality.
b) In relation (7) we have equality if only if a = b.
Theorem 2.2. For x > −1 and λ ∈ (0, 1), we have the inequality

(x + 1)λ

[
(x + 1)2 + 1

2(x + 1)

]2r

≤ λx + 1 ≤ (x + 1)λ

[
(x + 1)2 + 1

2(x + 1)

]2(1−r)

, (8)

where r = min{λ, 1− λ}.
Proof. If we take

a

b
= t in inequality (7), then we have the following inequality

tλ
(

t2 + 1
2t

)2r

≤ λt + (1− λ) ≤ tλ
(

t2 + 1
2t

)2(1−r)

. (9)

But, making the substitution t = x + 1 in relation (9) we have inequality (8).
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Remark 2.2. Taking into account that
(x + 1)2 + 1

2(x + 1)
≥ 1, it is easy to see that inequality

(8) is an improvement of the Bernoulli inequality (in the case λ ∈ (0, 1)). The equality holds
when x = 1.

Theorem 2.3. Let p, q > 1 be real numbers satisfying
1
p

+
1
q

= 1. If ai, bi > 0 for all

i = 1, . . . , n then there is the inequality

m2r
n∑

i=1

aibi ≤
(

n∑

i=1

ap
i

)1/p (
n∑

i=1

bq
i

)1/q

≤ M2(1−r)
n∑

i=1

aibi, (10)

where r = min
{

1
p
,
1
q

}
, Ai =

ap
i

n∑

i=1

bq
i + bq

i

n∑

i=1

ap
i

2

√√√√ap
i b

q
i

n∑

i=1

ap
i

n∑

i=1

bq
i

, m = min
1≤i≤n

Ai and M = max
1≤i≤n

Ai.

Proof. In Theorem 2.1 we take λ =
1
p
, which implies 1− λ =

1
q

and a =
ap

i
n∑

i=1

ap
i

,

b =
bq
i

n∑

i=1

bq
i

, thus we obtain

m2r · aibi(
n∑

i=1

ap
i

)1/p (
n∑

i=1

bq
i

)1/q
≤ aibi(

n∑

i=1

ap
i

)1/p (
n∑

i=1

bq
i

)1/q
·A2r

i

≤ ap
i

p
n∑

i=1

ap
i

+
bq
i

q
n∑

i=1

bq
i

≤ aibi(
n∑

i=1

ap
i

)1/p (
n∑

i=1

bq
i

)1/q
A

2(1−r)
i

≤ M2(1−r) · aibi(
n∑

i=1

ap
i

)1/p (
n∑

i=1

bq
i

)1/q
. (11)

Making the sum for i = 1, ..., n we deduce inequality (10).
Remark 2.3.
a) It is easy to see that m ≥ 1 and using inequality (10) we have a refinement of Hölder’s

inequality.
b) In relation (10) the equality holds when a1 = · · · = an and b1 = · · · = bn.
c) For p = q = 2 in inequality (10), we obtain a refinement of Cauchy’s inequality

(
n∑

i=1

aibi

)2

≤ m

(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2
i

n∑

i=1

b2
i ≤ M

(
n∑

i=1

aibi

)2

, (12)
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where Ai =

a2
i

n∑

i=1

b2
i + b2

i

n∑

i=1

a2
i

2aibi

√√√√
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

) , m = min
1≤i≤n

Ai and M = max
1≤i≤n

Ai.

Theorem 2.4. For any real numbers ai, bi > 0, for all i = 1, ..., n and p > 0, we have

m2r

[
n∑

i=1

(ai + bi)p

]1/p

≤
(

n∑

i=1

ap
i

)1/p

+

(
n∑

i=1

bp
i

)1/p

≤ M2(1−r)

[
n∑

i=1

(ai + bi)p

]1/p

(13)

where r = min
{

1
p
, 1− 1

p

}
,

Ai1 =

ap
i

n∑

i=1

(ai + bi)p + (ai + bi)p
n∑

i=1

ap
i

2

√√√√ap
i (ai + bi)p

(
n∑

i=1

ap
i

)(
n∑

i=1

(ai + bi)p

) ,

Ai2 =

bp
i

m∑

i=1

(ai + bi)p + (ai + bi)p
n∑

i=1

bp
i

2

√√√√(ai + bi)pbp
i

(
n∑

i=1

(ai + bi)p

)(
n∑

i=1

bp
i

) ,

m = min
1≤i≤n

{Ai1, Ai2} and M = max
1≤i≤n

{Ai1, Ai2}.
Proof. To prove this inequality, we will use the improvement of Hölder’s inequality from

relation (10). We write

(ai + bi)p = ai(ai + bi)p−1 + bi(ai + bi)p−1,

so
n∑

i=1

(ai + bi)p =
n∑

i=1

ai(ai + bi)p−1 +
n∑

i=1

bi(ai + bi)p−1.

Right now we apply inequality (10), in the following way,

( min
1≤i≤n

Ai1)2r
n∑

i=1

ai(ai + bi)p−1 ≤
(

n∑

i=1

ap
i

)1/p (
n∑

i=1

(ai + bi)(p−1)q

)1/q

≤ ( max
1≤i≤n

Ai1)2(1−r)
n∑

i=1

ai(ai + bi)p−1, (14)

( min
1≤i≤n

A2i)2r
n∑

i=1

bi(ai + bi)p−1 ≤
(

n∑

i=1

bp
i

)1/p (
n∑

i=1

(ai + bi)(p−1)q

)1/q

≤ ( max
1≤i≤n

A2i)2(1−r)
n∑

i=1

bi(ai + bi)p−1. (15)
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But (p − 1)q = p, because
1
p

+
1
q

= 1. Adding relations (14) and (15), and taking into

account that m = min
1≤i≤n

{Ai1, Ai2} and M = max
1≤i≤n

{Ai1, Ai2}, we deduce the inequality

m2r
n∑

i=1

(ai + bi)p ≤



(
n∑

i=1

ap
i

)1/p

+

(
p∑

i=1

bp
i

)1/p



[
n∑

i=1

(ai + bi)p

]1/q

≤ M2(1−r)
n∑

i=1

(ai + bi)p (16)

Dividing by
n∑

i=1

(ai + bi)p in relation (14), we obtain the inequality required.

Remark 2.4.
a) Since m ≥ 1, we have an improvement of Minkowski’s inequality.
b) The equality holds in relation (13) for a1 = · · · = an and b1 = · · · = bn. The integral

versions of these inequality can be formulated as follows.

Theorem 2.5. Let p > 1 and
1
p

+
1
q

= 1. If f and g are real functions f, g 6= 0 defined on

[a, b] such that |f |p and |g|p are integrable functions on [a, b], then

m2r

(∫ b

a

|f(x)g(x)|dx

)
≤

(∫ b

a

|f(x)|pdx

)1/p (∫ b

a

|g(x)|qdx

)1/q

≤ M2(1−r)

(∫ b

a

|f(x)g(x)|dx

)
, (17)

where r = min
{

1
p
,
1
q

}
,

A(x) =
|f(x)|p

∫ b

a

|g(x)|qdx + |g(x)|q
∫ b

a

|f(x)|pdx

2

√
|f(x)|p|g(x)|q

∫ b

a

|f(x)|pdx

∫ b

a

|g(x)|qdx

,

m = min
x∈[a,b]

A(x) and M = max
x∈[a,b]

A(x).

Equality holds iff |f(x)|p = |g(x)|q.
Proof. We consider in Theorem 2.1 that λ =

1
p

and a =
|f(x)|p∫ b

a

|f(x)|pdx

, b =
|g(x)|q∫ b

a

|g(x)|qdx

.

Therefore, we obtain

m2r · |f(x)g(x)|
(∫ b

a

|f(x)|pdx

)1/p (∫ b

a

|g(x)|qdx

)1/q
≤ |f(x)g(x)| ·A2r(x)

(∫ b

a

|f(x)|pdx

)1/p (∫ b

a

|g(x)|qdx

)1/q

≤ |f(x)|p

p

(∫ b

a

|f(x)|pdx

)1/p
+

|g(x)|q

q

(∫ b

a

|g(x)|qdx

)1/q
≤ |f(x)g(x)| ·A2(1−r)(x)

(∫ b

a

|f(x)|pdx

)1/p (∫ b

a

|g(x)|qdx

)1/q
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≤ |f(x)g(x)|


∫ b

a

|f(x)|pdx




1/p


∫ b

a

|g(x)|qdx




1/q ·M2(1−r).

By integrates from a to b in above inequality and by simple calculations, we deduce the
inequality of statement. For |f(x)|p = |g(x)|q it is obvious that the equality holds.

Remark 2.5.
a) Because m ≥ 1 and according to inequality (17), we find a refinement for the integrated

version of the Hölder inequality.
b) For p = q = 2, we deduce a refinement for the integral version of the Cauchy inequality

can be formulated as follows:
(∫ b

a

|f(x)g(x)|dx

)2

≤ m

(∫ b

a

|f(x)g(x)|dx

)2

≤
(∫ b

a

f2(x)dx

)(∫ b

a

g2(x)dx

)

≤ M

(∫ b

a

|f(x)g(x)|dx

)2

, (18)

where A(x) =
f2(x)

∫ b

a

g2(x)dx + g2(x)
∫ b

a

f2(x)dx

2|f(x)g(x)|
√∫ b

a

f2(x)dx ·
∫ b

a

g2(x)dx

, m = min
x∈[a,b]

A(x), M = max
x∈[a,b]

A(x) and

f(x), g(x) 6= 0 for any x ∈ [a, b].
Theorem 2.6. Let p > 1 and f, g 6= 0, two real functions defined on [a, b] such that |f |p

and |g|p are integrable functions on [a, b], then

m2r

(∫ b

a

|f(x) + g(x)|pdx

)1/p

≤
(∫ b

a

|f(x)|pdx

)1/p

+

(∫ b

a

|g(x)|pdx

)1/p

≤ M2(1−r)

∫ b

a

(|f(x)|+ |g(x)|)|f(x) + g(x)|p−1dx

(∫ b

a

|f(x) + g(x)|pdx

)1− 1
p

, (19)

where r = min{p, 1− 1
p
},

A1(x) =
|f(x)|p

∫ b

a

|f(x) + g(x)|pdx + |f(x) + g(x)|p
∫ b

a

|f(x)|pdx

2

√
|f(x)(f(x) + g(x))|p

∫ b

a

|f(x)|pdx ·
∫ b

a

|f(x) + g(x)|pdx

,

A2(x) =
|g(x)|p

∫ b

a

|f(x) + g(x)|pdx + |f(x) + g(x)|p
∫ b

a

|g(x)|pdx

2

√
|g(x)(f(x) + g(x))|p

∫ b

a

|(f(x) + g(x))|pdx ·
∫ b

a

|g(x)|pdx

,
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m = min
x∈[a,b]

{A1(x), A2(x)} and M = max
x∈[a,b]

{A1(x), A2(x)}.
Proof. Since the Hölder inequality is used to prove the Minkowski inequality, then we use

Theorem 2.5, which is refinement of Hölder’s inequality, for to prove inequality (19). Therefore

|f(x) + g(x)|p ≤ |f(x)||f(x) + g(x)|p−1 + |g(x)| · |f(x) + g(x)|p−1,

it follows that

∫ b

a

|f(x) + g(x)|pdx ≤
∫ b

a

|f(x)||f(x) + g(x)|p−1dx +
∫ b

a

|g(x)||f(x) + g(x)|p−1dx.

We apply Theorem 2.5 in the following way:

m2r
1

(∫ b

a

|f(x)| · |f(x) + g(x)|p−1dx

)
≤

(∫ b

a

|f(x)|pdx

)p (∫ b

a

|f(x) + g(x)|(p−1)qdx

)1/q

≤ M
2(1−r)
1

(∫ b

a

|f(x)| · |f(x) + g(x)|p−1dx

)
, (20)

where m1 = min
x∈[a,b]

A1(x), M1 = max
x∈[a,b]

A2(x) and r = min{ 1
p , 1

q}.

In analogous way, we have

m2r
2 (

∫ b

a

|g(x)| · |f(x) + g(x)|p−1dx) ≤
(∫ b

a

|g(x)|pdx

)1/p (∫ b

a

|f(x) + g(x)|(p−1)qdx

)1/q

≤ M
2(1−r)
2

(∫ b

a

|g(x)||f(x) + g(x)|p−1dx

)
, (21)

where m2 = min
x∈[a,b]

A2(x) and M2 = max
x∈[a,b]

A2(x).

But (p − 1)q = p. Therefore, adding inequalities (20) and (21), and taking into account
that m = min

x∈[a,b]
{A1(x), A2(x)}, M = max

x∈[a,b]
{A1(x), A2(x)} we deduce

m2r
(∫ b

a
|f(x) + g(x)|pdx

)

≤



(∫ b

a

|f(x)|pdx

)1/p

+

(∫ b

a

|g(x)|pdx

)1/p



(∫ b

a

|f(x) + g(x)|pdx

)1/q

≤ M2(1−r)

∫ b

a

(|f(x)|+ |g(x)|) (|f(x) + g(x)|p−1)dx. (22)

Dividing the above inequality by

(∫ b

a

|f(x) + g(x)|pdx

)1/q

, we obtain the inequality de-

sired.
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§1. Introduction

Let B(H) be the Banach Algebra of all bounded linear operators on a non-zero complex
Hilbert space H. By an operator, we mean an element from B(H). If T lies in B(H), then T ∗

denotes the adjoint of T in B(H). For 0 < p < 1, an operator T is said to be p-hyponormal if
(T ∗T )p ≥ (TT ∗)p. If p = 1, T is called hyponormal. If p = 1

2 , T is called semi-hyponormal. An
operator T is called paranormal, if ‖Tx‖2 ≤ ∥∥T 2x

∥∥ ‖x‖ , for every x ∈ H. In general, hyponor-
mal ⇒ p-hyponormal ⇒paranormal ⇒ k-paranormal. Composition operators on hyponormal
operators are studied by Alan Lambert [1]. Paranormal composition operators are studied by
T. Veluchamy and S. Panayappan [10]. In this paper we characterise k-paranormal composition
operators.

§2. Preliminaries

Let (X, Σ, λ ) be a sigma-finite measure space. The relation of being almost everywhere,
denoted by a.e, is an equivalence relation in L2(X, Σ, λ) and this equivalence relation splits
L2(X, Σ, λ) into equivalence classes. Let T be a measurable transformation from X into itself.
L2(X, Σ, λ) is denoted as L2(λ). The equation CT f = f ◦ T, f ∈ L2(λ) defines a composition
transformation on L2(λ). T induces a composition operator CT on L2(λ) if (i) the measure
λ◦T−1 is absolutely continuous with respect to λ and (ii) the Radon-Nikodym derivative d(λT−1)

dλ

is essentially bounded (Nordgren). Harrington and Whitley have shown that if CT ∈ B(L2(λ)),
then C∗T CT f = f0f and CT C∗T f = (f0 ◦T )Pf for all f ∈ L2(λ) where P denotes the projection
of L2(λ) onto ran(CT ). Thus it follows that CT has dense range if and only if CT C∗T is the
operator of multiplication by f0 ◦ T, where f0 denotes d(λT−1)

dλ . Every essentially bounded
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complex valued measurable function f0 induces a bounded operator Mf0 on L2(λ), which is
defined by Mf0 f = f0f, for every f ∈ L2(λ). Further C∗T CT = Mf0 and C∗T

2CT
2 = Mh0 . Let

us denote d(λT−1)
dλ by h, i.e. f0 by h and d(λT−k)

dλ by hk, where k is a positive integer greater
than or equal to one. Then C∗T CT = Mh and C∗T

2CT
2 = Mh2 . In general, C∗T

kCT
k = Mhk

,

where Mhk
is the multiplication operator on L2(λ) induced by the complex valued measurable

function hk.

§3. k-paranormal composition operators

Definition 3.1. An operator T is called k-paranormal if
∥∥T k+1x

∥∥ ‖x‖k ≥ ‖Tx‖k+1
, for

some positive integer k ≥ 1 and for every x ∈ H. Equivalently, T is called k-paranormal if∥∥T k+1x
∥∥ ≥ ‖Tx‖k+1 for some integer k ≥ 1 and for every unit vector x ∈ H. A paranormal

operator is simply a 1-paranormal operator. Also a paranormal operator is k-paranormal, for
every k ≥ 1.

Ando [4] has characterized paranormal operators as follows:
Theorem 3.2. An operator T ∈ B(H) is paranormal if and only if T ∗2T 2−2kT ∗T+k2 ≥ 0,

for every k ∈ R.

Generalising this, Yuan and Gao [11] has characterised k-paranormal operators as follows:
Theorem 3.3. For each positive integer k, an operator T ∈ B(H) is k-paranormal if and

only if T ∗1+kT 1+k − (1 + k)µkT ∗T + kµ1+kI ≥ 0, for every µ > 0.

Using this theorem, we characterize the composition operators induced by k-paranormal
operators.

Theorem 3.4. For each positive integer k, CT ∈ B(L2(λ)) is k-paranormal if and only if
h1+k − (1 + k)µkh + kµ1+k ≥ 0 a.e, for every µ > 0.

Proof. By Theorem 3.3, CT is k-paranormal if and only if

C∗T
1+kC1+k

T − (1 + k)µkC∗T CT + kµ1+kI ≥ 0, for every µ > 0.

This is true if and only if for every f ∈ L2(λ) and µ > 0,

〈
Mh1+k

f, f
〉− (1 + k)µk 〈Mhf f〉+ kµ1+k 〈f, f〉 ≥ 0,

if and only if

〈h1+kf, f〉 − (1 + k)µk 〈hf f〉+ kµ1+k 〈f, f〉 ≥ 0,

if and only if

〈h1+kχE , χE〉 − (1 + k)µk 〈hχE χE〉+ kµ1+k 〈χE , χE〉 ≥ 0,

for every characteristic function χE of E in Σ,

if and only if ∫

E

(h1+k − (1 + k)µkh + kµ1+k) dλ ≥ 0, for every E in Σ,

if and only if

h1+k − (1 + k)µkh + kµ1+k ≥ 0 a.e, for every µ > 0.
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Corollary 3.5. For each positive integer k, CT ∈ B(L2(λ)) is k-paranormal if and only if
h1+k ≥ h1+k, a. e.

Example 3.6. Let X = N the set of all natural numbers and λ be the counting measure
on it. Define T : N → N by T (1) = T (2) = 1, T (3) = 2, T (4n + m − 1) = n + 2, for m =
1, 2, 3, 4 and n ∈ N. Then for each k ≥ 3,

h1+k(n) ≥ h1+k(n), for every n ∈ N.

Hence T is k-paranormal, for each k = 3, 4, 5, . . . .

Theorem 3.7. For each positive integer k, C∗T is k-paranormal if and only if h1+k ◦TP1 ≤
(h1+k ◦ T 1+kP1+k), a. e, where P ′is are the projections of L2(λ) onto ran(Ci

T ).
Proof. By Theorem 3.3, C∗T is k-paranormal if and only if

〈
(CT

1+kC∗T
1+k − (1 + k)µkCT C∗T + kµ1+k)g, g

〉
≥ 0, for all g ∈ L2(λ),

if and only if

h1+k ◦ T 1+kP1+k − (1 + k)µkh ◦ TP1 + kµ1+k ≥ 0, a. e, for all µ ≥ 0,

if and only if
h1+k ◦ TP1 ≤ (h1+k ◦ T 1+kP1+k), a. e.

Corollary 3.8. If CT ∈ B(L2(λ)) has dense range, then C∗T is k-paranormal if and only
if h1+k ◦ T 1+k ≥ h1+k ◦ T , a. e.

§4. Weighted composition operators and Aluthge transfor-

mation of k-paranormal operators

A weighted composition operator induced by T is defined as Wf = w(f ◦ T ), is a complex
valued function Σ measurable function. Let wk denote w(w ◦ T )(w ◦ T 2) · · · (w ◦ T k−1). Then
W kf = wk(f ◦T )k [9]. To examine the weighted composition operators effectively Alan Lambert
[1] associated conditional expectation operator E with T as E(·/T−1Σ) = E(·). E(f) is defined
for each non-negative measurable function f ∈ Lp(p ≥ 1) and is uniquely determined by the
conditions

1. E(f) is T−1Σ measurable,
2. if B is any T−1Σ measurable set for which

∫
B

fdλ converges, we have
∫

B
fdλ =∫

B
E(f)dλ.

As an operator on Lp, E is the projection onto the closure of range of T and E is the
identity operator on Lp if and only if T−1Σ = Σ. Detailed discussion of E is found in [5], [7],
[8].

The following proposition due to Campbell and Jamison is well-known.
Proposition 4.1.[5] For w ≥ 0,
1. W ∗Wf = h[E(w2)] ◦ T−1f.

2. WW ∗f = w(h ◦ T )E(wf).
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Since W kf = wk(f◦T k) and W ∗kf = hkE(wkf)◦T−k, we have W ∗kW k = hkE(w2
k)◦T−kf,

for f ∈ L2(λ).
Now we are ready to characterize k-paranormal weighted composition operators.
Theorem 4.2. Let W ∈ B(L2(λ)). Then W is k-paranormal if and only if hk+1E(w2

k+1) ◦
T−(k+1) − (1 + k)Mkf0E(w2) ◦ T−1 + kµ1+k ≥ 0, a. e, for every µ > 0.

Proof. Since W is k-paranormal ,

W ∗1+kW 1+k − (1 + k)µkW ∗W + kµ1+kI ≥ 0, for everyµ > 0.

Hence ∫

E

hk+1E(w2
k+1) ◦ T−(k+1) − (1 + k)µkhE(w2) ◦ T−1 + kµ1+kdλ ≥ 0,

for every E ∈ Σ and so

hk+1E(w2
k+1) ◦ T−(k+1) − (1 + k)µkhE(w2) ◦ T−1 + kµ1+k ≥ 0, a. e. for every µ > 0.

Corollary 4.3. Let T−1Σ = Σ. Then W is k-paranormal if and only if hk+1w
2
k+1 ◦

T−(k+1) − (1 + k)µkhw2 ◦ T−1 + kµ1+k ≥ 0, a. e. for every µ > 0.

The Alugthe transformation of T is the operator T̃ given by T̃ = |T |1/2
U |T |1/2 was

introduced by Alugthe [2]. More generally we may form the family of operators Tr : 0 < r ≤ 1
where Tr = |T |r U |T |1−r [2]. For a composition operator C, the polar decomposition is given by
C = U |C| where |C| =

√
hf and Uf = 1√

h◦T h◦T. Lambert [6] has given a more general Alugthe

transformation for composition operators as Cr = |C|r U |C|1−r as Crf =
(

h
h◦T

)r/2
f ◦ T. i. e.

Cr is weighted composition with weight π =
(

h
h◦T

)r/2
.

Corollary 4.4. Let Cr ∈ B(L2(λ)). Then Cr is of k-paranormal if and only if

hk+1E(π2
k+1) ◦ T−(k+1) − (1 + k)µkhE(π2) ◦ T−1 + kµk+1 ≥ 0, a. e. for every µ > 0.
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† Áprily Lajos National College, Braşov 500026, Romania
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Abstract The objective of this paper is to present several inequalities between the angles of

a triangle and the sides based on Jordan’s inequality,
2π

x
< sin x < x, for every x ∈

(
0,

π

2

)
.
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§1. Introduction

In this paper, we will study the inequalities of type

f(a, b, c, A, B, C, r, s, R,∆) ≥ 0,

in an acute triangle ABC, where a, b, c are the lenghts of sides BC,CA,AB;A,B, C are the
measures of the angles B̂AC, ÂBC, B̂CA calculated in radians, r is the radius of incircle; s is
the semi-perimeter; R is the radius of circumcircle and ∆ is the area.

In many books of the Mathematical Analysis [3,4] can be found the following inequality of
Jordan

2x

π
< sinx < x, (1)

for all x ∈
(
0,

π

2

)
.

We will apply this inequality in the triangle ABC in different forms.

§2. Main results

Theorem 1. In any acute triangle, there are the following

2 <
s

R
< π, (2)

s2 + r2 + 4Rr

4R2
< AB + BC + CA <

π2(s2 + r2 + 4Rr)
16R2

, (3)

sr

2R2
< ABC <

π3sr

16R2
, (4)
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s2 − r(4R + 3)
2R2

< A2 + B2 + C2 <
π2(s2 − r(4R + r))

8R2
(5)

and
s(s2 − 3r2 − 6Rr)

4R3
< A3 + B3 + C3 <

π3s(s2 − 3r2 − 6Rr)
32R3

. (6)

Proof. In inequality (1) for x ∈ {A,B, C} we obtain

2A

π
< sinA < A,

2B

π
< sinB < B,

2C

π
< sinC < C. (7)

Adding the above inequalities we deduce inequality (2). Multiplying two by two and taking
their sum, we give over inequality (3). Multiplying the inequalities from (7) we obtain inequality
(4). Squaring the inequalities from (7) and making their sum implies inequality (5). Using the
inequalities from (7) thus

(
2
π

)3

A3 < sin3 A < A3,

(
2
π

)
B3 < sin3 B < B3,

(
2
π

)3
C3 < sin3 C < C3 and adding them we find inequality (6). We also use the following

equalities (see [1,2]):

∏

cyclic

sinA sinB =
s2 + r2 + 4Rr

4R2
,

sinA sinB sinC =
sr

2R2
,

∑

cyclic

sin2 A =
s2 − r(4R + r)

2R2

and ∑

cyclic

sin3 A =
s(s2 − 3r2 − 6Rr)

4R3
.

Theorem 2. In any acute triangle, there are the following inequalities

2
(
2− r

R

)
< A2 + B2 + C2 < π

(
2− r

R

)
, (8)

4
(

s2 + r2 − 2Rr

R2
− 3

)
< A2B2 + B2C2 + C2A2 < π2

(
s2 + r2 − 2Rr

R2
− 3

)
(9)

and

8
(

3s2 + 5r2

4R2
− 3

)
< A2B2C2 < π3

(
3s2 + 5r2

4R2
− 3

)
. (10)

Proof. From inequality (1), we have

1
π

∑

cyclic

A2 =
∑

cyclic

∫ A

0

2x

π
dx <

∑

cyclic

∫ A

0

sinxdx

= 3−
∑

cyclic

cos A = 2− r

R
<

∑

cyclic

∫ A

0

xdx =
1
2

∑

cyclic

A2,
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so, we deduce inequality (8).
Using double integrals in relation (1), we obtain

1
π2
·

∑

cyclic

A2B2 =
∑

cyclic

∫ A

0

∫ B

0

4xy

π2
dxdy

<
∑

cyclic

∫ A

0

∫ B

0

sinx sin ydxdy =
∑

cyclic

(1− cos A)(1− cos B)

=
s2 + r2 − 2Rr

R2
− 3 <

∑

cyclic

∫ A

0

∫ B

0

xydxdy =
1
4

∑

cyclic

A2B2,

so it follows inequality (9).
Now, using triple integrals, we have

A2B2C2

π3
=

∫ A

0

∫ B

0

∫ C

0

8xyz

π3
dxdydz

≤
∫ A

0

∫ B

0

∫ C

0

sinx sin y sin zdxdydz =
∏

(1− cos A)

=
3s2 + 5r2

4R2
− 3 <

∫ A

0

∫ B

0

∫ C

0

xyzdxdydz =
A2B2C2

8
,

thus, the proof of inequality (10) is complete.
Theorem 3. In any acute triangle ABC, there are the following inequalities:

π
(
π − s

R

)
< A2 + B2 + C2 ≤ 2

(
π2

2
− s

R

)
(11)

and

s2 + r2 + 4Rr

R2
− 3πABC < A2B2 + B2C2 + C2A2 <

s2 + r2 + 4Rr

R2
− 12ABC

π
. (12)

Proof. By replacing x with
π

2
− x in inequality (1) we find the relation

1− 2x

π
< cos x <

π

2
− x, (13)

where x ∈
(
0,

π

2

)
.

By integrating, in relation (13) we obtain

∑

cyclic

∫ A

0

(
1− 2x

π

)
dx <

∑

cyclic

∫ A

0

cos xdx <
∑

cyclic

∫ A

0

(π

2
− x

)
dx,

so

π − 1
π

∑

cyclic

A2 <
∑

cyclic

sinA =
s

R
<

π2

2
− 1

2

∑

cyclic

A2,
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which means that we proved inequality (11).
Using double integrals, we have

∑

cyclic

∫ A

0

∫ B

0

(
1− 2x

π

)(
1− 2y

π

)
dxdy <

∑

cyclic

∫ A

0

∫ B

0

cos x cos ydxdy

<
∑

cyclic

∫ A

0

∫ B

0

(π

2
− x

)(π

2
− y

)
dxdy

which implies inequality (12).
Theorem 4. In any acute triangle ABC, there are the following inequalities

2r

R
< ABC <

√
2π

2
r

R
, (14)

s

R
<

∑

cyclic

A cos
A

2
<

√
A

2
s

R
(15)

and √
π

2
<

∑
sin

A

2
<

π

2
. (16)

Proof. From inequality (1), by integrating, we deduce

A2

π
< 1− cos A <

A2

2

which means that
A2

π
< 2 sin2 A

2
<

A2

2
.

Therefore, we have
A√
2π

< sin
A

2
<

A

2
. (17)

Writing and similar inequalities, by multiplying, we find the inequality

ABC

2π
√

2π
< sin

A

2
sin

B

2
sin

C

2
<

ABC

8
.

But, we know that sin
A

2
sin

B

2
sin

C

2
=

r

4R
, from [1,2], which means that inequality (14) is

proved.
Multiplying in inequality (17) by cos A

2 , we obtain

A√
2π

cos
A

2
<

1
2

sinA <
A

2
cos

A

2
,

which is equivalent to √
2
π

∑

cyclic

A cos
A

2
<

s

R
<

∑

cyclic

A cos
A

2

from where, we find inequality (15).
Making the cyclic sum in relation (17), we have inequality (16).
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Theorem 5. In any acute triangle ABC, we have the inequality

(
3− s

R

) π3

4
< A3 + B3 + C3 <

π3

4(π − 2)

(
π − s

R

)
. (18)

Proof. In [5] is proved the following inequality

2x

π
+

π2x− 4x3

π3
< sinx <

2x

π
+

π − 2
π3

(π2x− 4x3) (19)

which implies, working the sum for x ∈ {A,B, C}, the inequality of the statement.

References
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Abstract Let G be a graph of size n, and let λ1, λ2, . . . , λn be its eigenvalues. The Estrada

index of G is defined as EE(G) =
∑n

i=1 eλi . In this paper, we establish almost sure results

on EE(G(n, p)) of Erdős-Rényi random graph G(n, p) in the superconnectivity regime.
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§1. Introduction

Generally, a simple graph G = (V, E) is defined by its vertex set V and edge set E ⊆ V ×V .
Let n be the number of vertices of G. The eigenvalues of the adjacency matrix A are called
the eigenvalues of G and form the spectrum [4] of G. Since A is a real symmetric matrix, its
eigenvalues are real number. We then order the eigenvalues of G in a non-increasing manner as
λ1 ≥ λ2 ≥ · · · ≥ λn. Some basic properties of graph are reviewed in [4].

A recently introduced [5,8] spectrum-based graph invariant is

EE(G) =
n∑

i=1

eλi , (1)

which is called the Estrada index of G. The Estrada index has found numerous applications
in biochemistry [5,6,9], physics and complex networks [7,8,13]. Some lower and upper bounds for
EE(G) of fixed graphs are deduced in [2,10,12].

An intriguing question is the random graph setting. Let G = G(n, p) denote, as usual, the
Erdős-Rényi random graph [3] with n vertices and edge probability p. In this brief paper, by
using spectral theory we obtain the Estrada index EE(G(n, p)) in the regime that G(n, p) is
almost surely connected.

§2. Estimating EE(G(n, p))

Our main contribution in this section is the following concise result.
Theorem 2.1. For random graph G(n, p) with

lnn

n
¿ p < 1− lnn

n
, (2)
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the Estrada index is
EE(G(n, p)) = (1 + o(1))enp, (3)

almost surely, as n →∞.
A key technique in the proof is a spectral density representation of random graph G(n, p).

It is shown [11] that the largest eigenvalue λ1 of G(n, p) is almost surely (1 + o(1))np provided
that np À lnn. Furthermore, Wigner’s semicircular law [14,15] says that the spectral density of
G(n, p) converges to the semicircular distribution

ρ(λ) =





2
√

r2−λ2

πr2 , |λ| ≤ r,

0, |λ| > r,
(4)

as n →∞, where r = 2
√

np(1− p) is the radius of the bulk part of the spectrum.
For p À (lnn)/n and n →∞, by continuous approximation for EE(G) in (1), the Estrada

index of G(n, p) can be reformulated in the spectral density form

EE(G(n, p))
n

=
∫ r

−r

ρ(λ)eλdλ +
eλ1

n

= ψ(1) +
enp

n

=
enp

n

(
1 +

nψ(1)
enp

)
, (5)

where ψ(t) is the moment generating function of density ρ(λ) and

ψ(1) =
∫ r

−r

2
√

r2 − λ2

πr2
eλdλ =

2
π

∫ π

0

er cos θ sin2 θdθ. (6)

The following lemma can be proved by involving a modified Bessel function [1].
Lemma 2.2.[16] The function

g(p) = nψ(1)/enp ∼ n

√
2
π

er−np

r3/2
(7)

is monotonically decreasing for (lnn)/n < p < 1− (lnn)/n as n → ∞, where ψ(1) is given by
(6) and r is defined in (4).

Now we are on the stage to prove our main result.
Proof of Theorem 2.1. Let p = pc = (lnn)/n. Therefore, 1 − pc → 1 as n → ∞, and

r ∼ 2
√

lnn from the definition in (4). By (7) we get

g(pc) ∼ n

√
2
π

er−npc

r3/2
∼ n

√
2
π
· e2

√
ln n−ln n

(2
√

lnn)3/2

=
n

2
√

π
· e− ln n+2

√
ln n

(lnn)3/4
=

e2
√

ln n

2
√

π(lnn)3/4
, (8)

which approaches 0 as n →∞.
By Lemma 2.2, for pc ≤ p ≤ 1 − pc, we obtain g(p) ≤ g(pc) → 0 as n → ∞. Combining

this with (5) and (7), we then conclude the proof of Theorem 2.1.
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Abstract The pair (GH , ·) is called a special loop if (G, ·) is a loop with an arbitrary subloop

(H, ·) called its special subloop. A special loop (GH , ·) is called a second Smarandache Bol

loop (S2ndBL) if and only if it obeys the second Smarandache Bol identity (xs · z)s = x(sz · s)
for all x, z in G and s in H. The popularly known and well studied class of loops called Bol

loops fall into this class and so S2ndBLs generalize Bol loops. The Smarandache isotopy of

S2ndBLs is introduced and studied for the first time. It is shown that every Smarandache

isotope (S − isotope) of a special loop is Smarandache isomorphic (S − isomorphic) to a

S-principal isotope of the special loop. It is established that every special loop that is S-

isotopic to a S2ndBL is itself a S2ndBL. A special loop is called a Smarandache G-special loop

(SGS − loop) if and only if every special loop that is S-isotopic to it is S-isomorphic to it. A

S2ndBL is shown to be a SGS-loop if and only if each element of its special subloop is a S1st

companion for a S1st pseudo-automorphism of the S2ndBL. The results in this work generalize

the results on the isotopy of Bol loops as can be found in the Ph. D. thesis of D. A. Robinson.

Keywords Special loop, second Smarandache Bol loop, Smarandache princiapl isotope, Sm

-arandache isotopy.

§1. Introduction

The study of the Smarandache concept in groupoids was initiated by W. B. Vasantha
Kandasamy in [24]. In her book [22] and first paper [23] on Smarandache concept in loops,
she defined a Smarandache loop (S − loop) as a loop with at least a subloop which forms a
subgroup under the binary operation of the loop. The present author has contributed to the
study of S-quasigroups and S-loops in [5]-[12] by introducing some new concepts immediately
after the works of Muktibodh [15]-[16]. His recent monograph [14] gives inter-relationships and
connections between and among the various Smarandache concepts and notions that have been
developed in the aforementioned papers.

But in the quest of developing the concept of Smarandache quasigroups and loops into a
theory of its own just as in quasigroups and loop theory (see [1]-[4], [17], [22]), there is the need
to introduce identities for types and varieties of Smarandache quasigroups and loops. This led
Jáıyéo. lá [13] to the introduction of second Smarandache Bol loop (S2ndBL) described by the
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second Smarandache Bol identity (xs · z)s = x(sz · s) for all x, z in G and s in H where the
pair (GH , ·) is called a special loop if (G, ·) is a loop with an arbitrary subloop (H, ·). For
now, a Smarandache loop or Smarandache quasigroup will be called a first Smarandache loop
(S1st − loop) or first Smarandache quasigroup (S1st − quasigroup).

Let L be a non-empty set. Define a binary operation (·) on L: if x · y ∈ L for all x, y ∈ L,
(L, ·) is called a groupoid. If the equations; a · x = b and y · a = b have unique solutions
for x and y respectively, then (L, ·) is called a quasigroup. For each x ∈ L, the elements
xρ = xJρ, xλ = xJλ ∈ L such that xxρ = eρ and xλx = eλ are called the right, left inverses of x

respectively. Furthermore, if there exists a unique element e = eρ = eλ in L called the identity
element such that for all x in L, x · e = e · x = x, (L, ·) is called a loop. We write xy instead of
x · y, and stipulate that · has lower priority than juxtaposition among factors to be multiplied.
For instance, x · yz stands for x(yz). A loop is called a right Bol loop (Bol loop in short) if and
only if it obeys the identity

(xy · z)y = x(yz · y).

This class of loops was the first to catch the attention of loop theorists and the first compre-
hensive study of this class of loops was carried out by Robinson [19].

The popularly known and well studied class of loops called Bol loops fall into the class of
S2ndBLs and so S2ndBLs generalize Bol loops. The aim of this work is to introduce and study
for the first time, the Smarandache isotopy of S2ndBLs. It is shown that every Smarandache
isotope (S-isotope) of a special loop is Smarandache isomorphic (S-isomorphic) to a S-principal
isotope of the special loop. It is established that every special loop that is S-isotopic to a
S2ndBL is itself a S2ndBL. A S2ndBL is shown to be a Smarandache G-special loop if and only
if each element of its special subloop is a S1st companion for a S1st pseudo-automorphism of
the S2ndBL. The results in this work generalize the results on the isotopy of Bol loops as can
be found in the Ph. D. thesis of D. A. Robinson.

§2. Preliminaries

Definition 1. Let (G, ·) be a quasigroup with an arbitrary non-trivial subquasigroup
(H, ·). Then, (GH , ·) is called a special quasigroup with special subquasigroup (H, ·). If (G, ·)
is a loop with an arbitrary non-trivial subloop (H, ·). Then, (GH , ·) is called a special loop
with special subloop (H, ·). If (H, ·) is of exponent 2, then (GH , ·) is called a special loop of
Smarandache exponent 2.

A special quasigroup (GH , ·) is called a second Smarandache right Bol quasigroup (S2nd -
right Bol quasigroup) or simply a second Smarandache Bol quasigroup (S2nd -Bol quasigroup)
and abbreviated S2ndRBQ or S2ndBQ if and only if it obeys the second Smarandache Bol identity
(S2nd -Bol identity) i.e S2ndBI

(xs · z)s = x(sz · s) for all x, z ∈ G and s ∈ H. (1)

Hence, if (GH , ·) is a special loop, and it obeys the S2ndBI, it is called a second Smarandache
Bol loop(S2nd -Bol loop) and abbreviated S2ndBL.
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Remark 1. A Smarandache Bol loop (i.e a loop with at least a non-trivial subloop that
is a Bol loop) will now be called a first Smarandache Bol loop (S1st-Bol loop). It is easy to see
that a S2ndBL is a S1stBL. But the converse is not generally true. So S2ndBLs are particular
types of S1stBL. Their study can be used to generalise existing results in the theory of Bol loops
by simply forcing H to be equal to G.

Definition 2. Let (G, ·) be a quasigroup (loop). It is called a right inverse property
quasigroup (loop) [RIPQ (RIPL)] if and only if it obeys the right inverse property (RIP) yx·xρ =
y for all x, y ∈ G. Similarly, it is called a left inverse property quasigroup (loop) [LIPQ (LIPL)]
if and only if it obeys the left inverse property (LIP) xλ · xy = y for all x, y ∈ G. Hence, it is
called an inverse property quasigroup (loop) [IPQ (IPL)] if and only if it obeys both the RIP
and LIP.

(G, ·) is called a right alternative property quasigroup (loop) [RAPQ (RAPL)] if and only
if it obeys the right alternative property (RAP) y · xx = yx · x for all x, y ∈ G. Similarly, it is
called a left alternative property quasigroup (loop) [LAPQ (LAPL)] if and only if it obeys the
left alternative property (LAP) xx · y = x ·xy for all x, y ∈ G. Hence, it is called an alternative
property quasigroup (loop) [APQ (APL)] if and only if it obeys both the RAP and LAP.

The bijection Lx : G → G defined as yLx = x · y for all x, y ∈ G is called a left translation
(multiplication) of G while the bijection Rx : G → G defined as yRx = y · x for all x, y ∈ G is
called a right translation (multiplication) of G. Let

x\y = yL−1
x = yLx and x/y = xR−1

y = xRy,

and note that
x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.

The operations \ and / are called the left and right divisions respectively. We stipulate that
/ and \ have higher priority than · among factors to be multiplied. For instance, x · y/z and
x · y\z stand for x(y/z) and x · (y\z) respectively.

(G, ·) is said to be a right power alternative property loop (RPAPL) if and only if it obeys
the right power alternative property (RPAP)

xyn = (((xy)y)y)y · · · y︸ ︷︷ ︸
n-times

i.e. Ryn = Rn
y for all x, y ∈ G and n ∈ Z.

The right nucleus of G denoted by Nρ(G, ·) = Nρ(G) = {a ∈ G : y ·xa = yx ·a ∀ x, y ∈ G}.
Let (GH , ·) be a special quasigroup (loop). It is called a second Smarandache right inverse

property quasigroup (loop) [S2ndRIPQ (S2ndRIPL)] if and only if it obeys the second Smaran-
dache right inverse property (S2ndRIP) ys · sρ = y for all y ∈ G and s ∈ H. Similarly, it is
called a second Smarandache left inverse property quasigroup (loop) [S2ndLIPQ (S2ndLIPL)] if
and only if it obeys the second Smarandache left inverse property (S2ndLIP) sλ · sy = y for all
y ∈ G and s ∈ H. Hence, it is called a second Smarandache inverse property quasigroup (loop)
[S2ndIPQ (S2ndIPL)] if and only if it obeys both the S2ndRIP and S2ndLIP.

(GH , ·) is called a third Smarandache right inverse property quasigroup (loop) [S3rdRIPQ
(S3rdRIPL)] if and only if it obeys the third Smarandache right inverse property (S3rdRIP)
sy · yρ = s for all y ∈ G and s ∈ H.
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(GH , ·) is called a second Smarandache right alternative property quasigroup (loop) [S2ndRA
PQ(S2ndRAPL)] if and only if it obeys the second Smarandache right alternative property
(S2ndRAP) y · ss = ys · s for all y ∈ G and s ∈ H. Similarly, it is called a second Smarandache
left alternative property quasigroup (loop) [S2ndLAPQ (S2ndLAPL)] if and only if it obeys the
second Smarandache left alternative property (S2ndLAP) ss · y = s · sy for all y ∈ G and s ∈ H.
Hence, it is called an second Smarandache alternative property quasigroup (loop) [S2ndAPQ
(S2ndAPL)] if and only if it obeys both the S2ndRAP and S2ndLAP.

(GH , ·) is said to be a Smarandache right power alternative property loop (SRPAPL) if
and only if it obeys the Smarandache right power alternative property (SRPAP)

xsn = (((xs)s)s)s · · · s︸ ︷︷ ︸
n-times

i.e. Rsn = Rn
s for all x ∈ G, s ∈ H and n ∈ Z.

The Smarandache right nucleus of GH denoted by SNρ(GH , ·) = SNρ(GH) = Nρ(G) ∩H.
GH is called a Smarandache right nuclear square special loop if and only if s2 ∈ SNρ(GH) for
all s ∈ H.

Remark 2. A Smarandache; RIPQ or LIPQ or IPQ (i.e a loop with at least a non-trivial
subquasigroup that is a RIPQ or LIPQ or IPQ) will now be called a first Smarandache; RIPQ
or LIPQ or IPQ (S1stRIPQ or S1stLIPQ or S1stIPQ). It is easy to see that a S2ndRIPQ or
S2ndLIPQ or S2ndIPQ is a S1stRIPQ or S1stLIPQ or S1stIPQ respectively. But the converse is
not generally true.

Definition 3. Let (G, ·) be a quasigroup (loop). The set SY M(G, ·) = SY M(G) of
all bijections in G forms a group called the permutation (symmetric) group of G. The triple
(U, V,W ) such that U, V,W ∈ SY M(G, ·) is called an autotopism of G if and only if

xU · yV = (x · y)W ∀ x, y ∈ G.

The group of autotopisms of G is denoted by AUT (G, ·) = AUT (G).
Let (GH , ·) be a special quasigroup (loop). The set SSY M(GH , ·) = SSY M(GH) of all

Smarandache bijections (S-bijections) in GH i.e A ∈ SY M(GH) such that A : H → H

forms a group called the Smarandache permutation (symmetric) group [S-permutation group]
of GH . The triple (U, V,W ) such that U, V,W ∈ SSY M(GH , ·) is called a first Smarandache
autotopism (S1st autotopism) of GH if and only if

xU · yV = (x · y)W ∀ x, y ∈ GH .

If their set forms a group under componentwise multiplication, it is called the first Smaran-
dache autotopism group (S1st autotopism group) of GH and is denoted by S1stAUT (GH , ·) =
S1stAUT (GH).

The triple (U, V,W ) such that U,W ∈ SY M(G, ·) and V ∈ SSY M(GH , ·) is called a
second right Smarandache autotopism (S2nd right autotopism) of GH if and only if

xU · sV = (x · s)W ∀ x ∈ G and s ∈ H.

If their set forms a group under componentwise multiplication, it is called the second right
Smarandache autotopism group (S2nd right autotopism group) of GH and is denoted by S2ndRAU

T (GH , ·) = S2ndRAUT (GH).
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The triple (U, V,W ) such that V, W ∈ SY M(G, ·) and U ∈ SSY M(GH , ·) is called a second
left Smarandache autotopism (S2nd left autotopism) of GH if and only if

sU · yV = (s · y)W ∀ y ∈ G and s ∈ H.

If their set forms a group under componentwise multiplication, it is called the second left
Smarandache autotopism group (S2nd left autotopism group) of GH and is denoted by S2ndLAUT

(GH , ·) = S2ndLAUT (GH).
Let (GH , ·) be a special quasigroup (loop) with identity element e. A mapping T ∈

SSY M(GH) is called a first Smarandache semi-automorphism (S1st semi-automorphism) if
and only if eT = e and

(xy · x)T = (xT · yT )xT for all x, y ∈ G.

A mapping T ∈ SSY M(GH) is called a second Smarandache semi-automorphism (S2nd

semi-automorphism) if and only if eT = e and

(sy · s)T = (sT · yT )sT for all y ∈ G and all s ∈ H.

A special loop (GH , ·) is called a first Smarandache semi-automorphic inverse property loop
(S1stSAIPL) if and only if Jρ is a S1st semi-automorphism.

A special loop (GH , ·) is called a second Smarandache semi-automorphic inverse property
loop (S2ndSAIPL) if and only if Jρ is a S2nd semi-automorphism. Let (GH , ·) be a special
quasigroup (loop). A mapping A ∈ SSY M(GH) is a

1. First Smarandache pseudo-automorphism (S1st pseudo-automorphism) of GH if and only
if there exists a c ∈ H such that (A,ARc, ARc) ∈ S1stAUT (GH). c is reffered to as the
first Smarandache companion (S1st companion) of A. The set of such A’s is denoted by
S1stPAUT (GH , ·) = S1stPAUT (GH).

2. Second right Smarandache pseudo-automorphism (S2nd right pseudo-automorphism) of
GH if and only if there exists a c ∈ H such that (A,ARc, ARc) ∈ S2ndRAUT (GH). c is
reffered to as the second right Smarandache companion (S2nd right companion) of A. The
set of such A’s is denoted by S2ndRPAUT (GH , ·) = S2ndRPAUT (GH).

3. Second left Smarandache pseudo-automorphism (S2nd left pseudo-automorphism) of GH if
and only if there exists a c ∈ H such that (A,ARc, ARc) ∈ S2ndLAUT (GH). c is reffered
to as the second left Smarandache companion (S2nd left companion) of A. The set of such
A’s is denoted by S2ndLPAUT (GH , ·) = S2ndLPAUT (GH).

Let (GH , ·) be a special loop. A mapping A ∈ SSY M(GH) is a

1. First Smarandache automorphism (S1st automorphism) of GH if and only if A ∈ S1stPAUT

(GH) such that c = e. Their set is denoted by S1stAUM(GH , ·) = S1stAUM(GH).

2. Second right Smarandache automorphism (S2nd right automorphism) of GH if and only
if A ∈ S2ndRPAUT (GH) such that c = e. Their set is denoted by S2ndRAUM(GH , ·) =
S2ndRAUM(GH).



Vol. 7 Smarandache isotopy of second Smarandache Bol loops 87

3. Second left Smarandache automorphism (S2nd left automorphism) of GH if and only if
A ∈ S2ndLPAUT (GH) such that c = e. Their set is denoted by S2ndLAUM(GH , ·) =
S2ndLAUM(GH).

A special loop (GH , ·) is called a first Smarandache automorphism inverse property loop
(S1stAIPL) if and only if (Jρ, Jρ, Jρ) ∈ AUT (H, ·).

A special loop (GH , ·) is called a second Smarandache right automorphic inverse property
loop (S2ndRAIPL) if and only if Jρ is a S2nd right automorphism.

A special loop (GH , ·) is called a second Smarandache left automorphic inverse property
loop (S2ndLAIPL) if and only if Jρ is a S2nd left automorphism.

Definition 4. Let (G, ·) and (L, ◦) be quasigroups (loops). The triple (U, V,W ) such that
U, V,W : G → L are bijections is called an isotopism of G onto L if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ G. (2)

Let (GH , ·) and (LM , ◦) be special groupoids. GH and LM are Smarandache isotopic
(S-isotopic) [and we say (LM , ◦) is a Smarandache isotope of (GH , ·)] if and only if there
exist bijections U, V,W : H → M such that the triple (U, V,W ) : (GH , ·) → (LM , ◦) is an
isotopism. In addition, if U = V = W , then (GH , ·) and (LM , ◦) are said to be Smarandache
isomorphic (S-isomorphic) [and we say (LM , ◦) is a Smarandache isomorph of (GH , ·) and thus
write (GH , ·) % (LM , ◦).].

(GH , ·) is called a Smarandache G-special loop (SGS-loop) if and only if every special loop
that is S-isotopic to (GH , ·) is S-isomorphic to (GH , ·).

Theorem 1. (Jáıyéo. lá [13]) Let the special loop (GH , ·) be a S2ndBL. Then it is both a
S2ndRIPL and a S2ndRAPL.

Theorem 2. (Jáıyéo. lá [13]) Let (GH , ·) be a special loop. (GH , ·) is a S2ndBL if and only
if (R−1

s , LsRs, Rs) ∈ S1stAUT (GH , ·).

§3. Main results

Lemma 1. Let (GH , ·) be a special quasigroup and let s, t ∈ H. For all x, y ∈ G, let

x ◦ y = xR−1
t · yL−1

s . (3)

Then, (GH , ◦) is a special loop and so (GH , ·) and (GH , ◦) are S-isotopic.
Proof. It is easy to show that (GH , ◦) is a quasigroup with a subquasigroup (H, ◦) since

(GH , ·) is a special quasigroup. So, (GH , ◦) is a special quasigroup. It is also easy to see that
s · t ∈ H is the identity element of (GH , ◦). Thus, (GH , ◦) is a special loop. With U = Rt,
V = Ls and W = I, the triple (U, V,W ) : (GH , ·) → (GH , ◦) is an S-isotopism.

Remark 3. (GH , ◦) will be called a Smarandache principal isotopism (S-principal iso-
topism) of (GH , ·).

Theorem 3. If the special quasigroup (GH , ·) and special loop (LM , ◦) are S-isotopic,
then (LM , ◦) is S-isomorphic to a S-principal isotope of (GH , ·).
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Proof. Let e be the identity element of the special loop (LM , ◦). Let U , V and W be 1-1
S-mappings of GH onto LM such that

xU ◦ yV = (x · y)W ∀ x, y ∈ GH .

Let t = eV −1 and s = eU−1. Define x ∗ y for all x, y ∈ GH by

x ∗ y = (xW ◦ yW )W−1. (4)

From (2), with x and y replaced by xWU−1 and yWV −1 respectively, we get

(xW ◦ yW )W−1 = xWU−1 · yWV −1 ∀ x, y ∈ GH . (5)

In (5), with x = eW−1, we get WV −1 = L−1
s and with y = eW−1, we get WU−1 = R−1

t .
Hence, from (4) and (5),

x ∗ y = xR−1
t · yL−1

s and (x ∗ y)W = xW ◦ yW ∀ x, y ∈ GH .

That is, (GH , ∗) is a S-principal isotope of (GH , ·) and is S-isomorphic to (LM , ◦).
Theorem 4. Let (GH , ·) be a S2ndRIPL. Let f, g ∈ H and let (GH , ◦) be a S-principal

isotope of (GH , ·). (GH , ◦) is a S2ndRIPL if and only if α(f, g) = (Rg, LfR−1
g L−1

f ·g, R
−1
g ) ∈

S2ndRAUT (GH , ·) for all f, g ∈ H.
Proof. Let (GH , ·) be a special loop that has the S2ndRIP and let f, g ∈ H. For all

x, y ∈ G, define x ◦ y = xR−1
g · yL−1

f as in (3). Recall that f · g is the identity in (GH , ◦), so
x◦xρ′ = f ·g where xJ ′ρ = xρ′ i.e the right identity element of x in (GH , ◦). Then, for all x ∈ G,
x ◦ xρ′ = xR−1

g · xJ ′ρL
−1
f = f · g and by the S2ndRIP of (GH , ·), since sR−1

g · sJ ′ρL−1
f = f · g for

all s ∈ H, then sR−1
g = (f · g) · (sJ ′ρL−1

f )Jρ because (H, ·) has the RIP. Thus,

sR−1
g = sJ ′ρL

−1
f JρLf ·g ⇒ sJ ′ρ = sR−1

g L−1
f ·gJλLf . (6)

(GH , ◦) has the S2ndRIP iff (x◦s)◦sJ ′ρ = s for all s ∈ H, x ∈ GH iff (xR−1
g ·sL−1

f )R−1
g ·sJ ′ρL−1

f =
x, for all s ∈ H, x ∈ GH . Replace x by x · g and s by f · s, then (x · s)R−1

g · (f · s)J ′ρL−1
f = x · g

iff (x · s)R−1
g = (x · g) · (f · s)J ′ρL−1

f Jρ for all s ∈ H, x ∈ GH since (GH , ·) has the S2ndRIP.
Using (6),

(x · s)R−1
g = xRg · (f · s)R−1

g L−1
f ·g ⇔ (x · s)R−1

g = xRg · sLfR−1
g L−1

f ·g ⇔

α(f, g) = (Rg, LfR−1
g L−1

f ·g, R
−1
g ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H.

Theorem 5. If a special loop (GH , ·) is a S2ndBL, then any of its S-isotopes is a S2ndRIPL.
Proof. By virtue of theorem 3, we need only to concern ourselves with the S-principal

isotopes of (GH , ·). (GH , ·) is a S2ndBL iff it obeys the S2ndBI iff (xs · z)s = x(sz · s) for all
x, z ∈ G and s ∈ H iff LxsRs = LsRsLx for all x ∈ G and s ∈ H iff R−1

s L−1
xs = L−1

x R−1
s L−1

s for
all x ∈ G and s ∈ H iff

R−1
s L−1

s = LxR−1
s L−1

xs for all x ∈ G and s ∈ H. (7)

Assume that (GH , ·) is a S2ndBL. Then, by theorem 2,

(R−1
s , LsRs, Rs) ∈ S1stAUT (GH , ·) ⇒ (R−1

s , LsRs, Rs) ∈ S2ndRAUT (GH , ·) ⇒
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(R−1
s , LsRs, Rs)−1 = (Rs, R

−1
s L−1

s , R−1
s ) ∈ S2ndRAUT (GH , ·).

By (7), α(x, s) = (Rs, LxR−1
s L−1

xs , R−1
s ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H. But (GH , ·) has

the S2ndRIP by theorem 1. So, following theorem 4, all special loops that are S-isotopic to
(GH , ·) are S2ndRIPLs.

Theorem 6. Suppose that each special loop that is S-isotopic to (GH , ·) is a S2ndRIPL,
then the identities:

1. (fg)\f = (xg)\x;

2. g\(sg−1) = (fg)\[(fs)g−1]

are satisfied for all f, g, s ∈ H and x ∈ G.
Proof. In particular, (GH , ·) has the S2ndRIP. Then by theorem 3, α(f, g) = (Rg, LfR−1

g

L−1
f ·g, R

−1
g ) ∈ S2ndRAUT (GH , ·) for all f, g ∈ H. Let

Y = LfR−1
g L−1

f ·g. (8)

Then,
xg · sY = (xs)R−1

g . (9)

Put s = g in (9), then xg ·gY = (xg)R−1
g = x. But, gY = gLfR−1

g L−1
f ·g = (fg)\[(fg)g−1] =

(fg)\f . So, xg · (fg)\f = x ⇒ (fg)\f = (xg)\x.
Put x = e in (9), then sY Lg = sR−1

g ⇒ sY = sR−1
g L−1

g . So, combining this with (8),
sR−1

g L−1
g = sLfR−1

g L−1
f ·g ⇒ g\(sg−1) = (fg)\[(fs)g−1].

Theorem 7. Every special loop that is S-isotopic to a S2ndBL is itself a S2ndBL.
Proof. Let (GH , ◦) be a special loop that is S-isotopic to an S2ndBL (GH , ·). Assume that

x ·y = xα◦yβ where α, β : H → H. Then the S2ndBI can be written in terms of (◦) as follows.
(xs · z)s = x(sz · s) for all x, z ∈ G and s ∈ H.

[(xα ◦ sβ)α ◦ zβ]α ◦ sβ = xα ◦ [(sα ◦ zβ)α ◦ sβ]β. (10)

Replace xα by x, sβ by s and zβ by z, then

[(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sβ−1α ◦ z)α ◦ s]β. (11)

If x = e, then
(sα ◦ z)α ◦ s = [(sβ−1α ◦ z)α ◦ s]β. (12)

Substituting (12) into the RHS of (11) and replacing x, s and z by x, s and z respectively, we
have

[(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sα ◦ z)α ◦ s]. (13)

With s = e, (xα ◦ z)α = x ◦ (eα ◦ z)α. Let (eα ◦ z)α = zδ, where δ ∈ SSY M(GH). Then,

(xα ◦ z)α = x ◦ zδ. (14)

Applying (14), then (13) to the expression [(x ◦ s) ◦ zδ] ◦ s, that is

[(x ◦ s) ◦ zδ] ◦ s = [(x ◦ s)α ◦ z]α ◦ s = x ◦ [(sα ◦ z)α ◦ s] = x ◦ [(s ◦ zδ) ◦ s].
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implies
[(x ◦ s) ◦ zδ] ◦ s = x ◦ [(s ◦ zδ) ◦ s].

Replace zδ by z, then
[(x ◦ s) ◦ z] ◦ s = x ◦ [(s ◦ z) ◦ s].

Theorem 8. Let (GH , ·) be a S2ndBL. Each special loop that is S-isotopic to (GH , ·) is
S-isomorphic to a S-principal isotope (GH , ◦) where x ◦ y = xRf · yL−1

f for all x, y ∈ G and
some f ∈ H.

Proof. Let e be the identity element of (GH , ·). Let (GH , ∗) be any S-principal isotope
of (GH , ·) say x ∗ y = xR−1

v · yL−1
u for all x, y ∈ G and some u, v ∈ H. Let e′ be the identity

element of (GH , ∗). That is, e′ = u · v. Now, define x ∗ y by

x ◦ y = [(xe′) ∗ (ye′)]e′−1 for all x, y ∈ G.

Then Re′ is an S-isomorphism of (GH , ◦) onto (GH , ∗). Observe that e is also the identity
element for (GH , ◦) and since (GH , ·) is a S2ndBL,

(pe′)(e′−1q · e′−1) = pq · e′−1 for all p, q ∈ G. (15)

So, using (15),

x ◦ y = [(xe′) ∗ (ye′)]e′−1 = [xRe′R
−1
v · yRe′L

−1
u ]e′−1 = xRe′R

−1
v Re′ · yRe′L

−1
u Le′−1Re′−1

implies that

x ◦ y = xA · yB, A = Re′R
−1
v Re′ and B = Re′L

−1
u Le′−1Re′−1 . (16)

Let f = eA. then, y = e ◦ y = eA · yB = f · yB for all y ∈ G. So, B = L−1
f . In fact,

eB = fρ = f−1. Then, x = x ◦ e = xA · eB = xA · f−1 for all x ∈ G implies xf = (xA · f−1)f
implies xf = xA (S2ndRIP) implies A = Rf . Now, (16) becomes x ◦ y = xRf · yL−1

f .
Theorem 9. Let (GH , ·) be a S2ndBL with the S2ndRAIP or S2ndLAIP, let f ∈ H and let

x ◦ y = xRf · yL−1
f for all x, y ∈ G. Then (GH , ◦) is a S1stAIPL if and only if f ∈ Nλ(H, ·).

Proof. Since (GH , ·) is a S2ndBL, J = Jλ = Jρ in (H, ·). Using (6) with g = f−1,

sJ ′ρ = sRfJLf . (17)

(GH , ◦) is a S1stAIPL iff (x ◦ y)J ′ρ = xJ ′ρ ◦ yJ ′ρ for all x, y ∈ H iff

(xRf · yL−1
f )J ′ρ = xJ ′ρRf · yJ ′ρL

−1
f . (18)

Let x = uR−1
f and y = vLf and use (16), then (18) becomes (uv)RfJLf = uJLfRf · vLfRfJ

iff α = (JLfRf , LfRfJ,RfJLf ) ∈ AUT (H, ·). Since (GH , ·) is a S1stAIPL, so (J, J, J) ∈
AUT (H, ·). So, α ∈ AUT (H, ·) ⇔ β = α(J, J, J)(R−1

f−1 , Lf−1Rf−1 , Rf−1) ∈ AUT (H, ·). Since
(GH , ·) is a S2ndBL,

xLfRfLf−1Rf−1 = [f−1(fx · f)]f−1 = [(f−1f · x)f ]f−1 = x for all x ∈ G. That is,
LfRfLf−1Rf−1 = I in (GH , ·). Also, since J ∈ AUM(H, ·), then RfJ = JRf−1 and LfJ =
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JLf−1 in (H, ·). So,

β = (JLfRfJR−1
f−1 , LfRfJ2Lf−1Rf−1 , RfJLfJRf−1)

= (JLfJRf−1R−1
f−1 , LfRfLf−1Rf−1 , RfLf−1Rf−1)

= (Lf−1 , I, RfLf−1Rf−1).

Hence, (GH , ◦) is a S1stAIPL iff β ∈ AUT (H, ·).
Now, assume that β ∈ AUT (H, ·). Then, xLf−1 · y = (xy)RfLf−1Rf−1 for all x, y ∈ H.

For y = e, Lf−1 = RfLf−1Rf−1 in (H, ·). so, β = (Lf−1 , I, Lf−1) ∈ AUT (H, ·) ⇒ f−1 ∈
Nλ(H, ·) ⇒ f ∈ Nλ(H, ·).

On the other hand, if f ∈ Nλ(H, ·), then, γ = (Lf , I, Lf ) ∈ AUT (H, ·). But f ∈
Nλ(H, ·) ⇒ L−1

f = Lf−1 = RfLf−1Rf−1 in (H, ·). Hence, β = γ−1 and β ∈ AUT (H, ·).
Corollary 1. Let (GH , ·) be a S2ndBL and a S1stAIPL. Then, for any special loop (GH , ◦)

that is S-isotopic to (GH , ·), (GH , ◦) is a S1stAIPL iff (GH , ·) is a S1st-loop and a S1st commu-
tative loop.

Proof. Suppose every special loop that is S-isotopic to (GH , ·) is a S1stAIPL. Then,
f ∈ Nλ(H, ·) for all f ∈ H by theorem 9. So, (GH , ·) is a S1st-loop. Then, y−1x−1 = (xy)−1 =
x−1y−1 for all x, y ∈ H. So, (GH , ·) is a S1st commutative loop.

The proof of the converse is as follows. If (GH , ·) is a S1st-loop and a S1st commutative
loop, then for all x, y ∈ H such that x ◦ y = xRf · yL−1

f ,

(x ◦ y) ◦ z = (xRf · yL−1
f )Rf · zL−1

f = (xf · f−1y)f · f−1z.

x ◦ (y ◦ z) = xRf · (yRf · zL−1
f )L−1

f = xf · f−1(yf · f−1z).

So, (x ◦ y) ◦ z = x ◦ (y ◦ z). Thus, (H, ◦) is a group. Furthermore,

x ◦ y = xRf · yL−1
f = xf · f−1y = x · y = y · x = yf · f−1x = y ◦ x.

So, (H, ◦) is commutative and so has the AIP. Therefore, (GH , ◦) is a S1stAIPL.

Lemma 2. Let (GH , ·) be a S2ndBL. Then, every special loop that is S-isotopic to (GH , ·) is
S-isomorphic to (GH , ·) if and only if (GH , ·) obeys the identity (x·fg)g−1 ·f\(y·fg) = (xy)·(fg)
for all x, y ∈ GH and f, g ∈ H.

Proof. Let (GH , ◦) be an arbitrary S-principal isotope of (GH , ·). It is claimed that

(GH , ·)
Rfg

% (GH , ◦) iff xRfg ◦ yRfg = (x · y)Rfg iff (x · fg)R−1
g · (y · fg)L−1

f = (x · y)Rfg iff
(x · fg)g−1 · f\(y · fg) = (xy) · (fg) for all x, y ∈ GH and f, g ∈ H.

Theorem 10. Let (GH , ·) be a S2ndBL, let f ∈ H, and let x ◦ y = xRf · yL−1
f for all

x, y ∈ G. Then, (GH , ·) % (GH , ◦) if and only if there exists a S1st pseudo-automorphism of
(GH , ·) with S1st companion f .

Proof. (GH , ·) % (GH , ◦) if and only if there exists T ∈ SSY M(GH , ·) such that xT ◦yT =
(x · y)T for all x, y ∈ G iff xTRf · yTL−1

f = (x · y)T for all x, y ∈ G iff α = (TRf , TL−1
f , T ) ∈

S1stAUT (GH).
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Recall that by theorem 2, (GH , ·) is a S2ndBL iff (R−1
f , LfRf , Rf ) ∈ S1stAUT (GH , ·) for

each f ∈ H. So,

α ∈ S1stAUT (GH) ⇔ β = α(R−1
f , LfRf , Rf ) =

(T, TRf , TRf ) ∈ S1stAUT (GH , ·) ⇔ T ∈ S1stPAUT (GH)

with S1st companion f .
Corollary 2. Let (GH , ·) be a S2ndBL, let f ∈ H and let x ◦ y = xRf · yL−1

f for all
x, y ∈ GH . If f ∈ Nρ(H, ·), then, (GH , ·) % (GH , ◦).

Proof. Following theorem 10, f ∈ Nρ(H, ·) ⇒ TS1stPAUT (GH) with S1st companion f .
Corollary 3. Let (GH , ·) be a S2ndBL. Then, every special loop that is S-isotopic to

(GH , ·) is S-isomorphic to (GH , ·) if and only if each element of H is a S1st companion for a S1st

pseudo-automorphism of (GH , ·).
Proof. This follows from theorem 8 and theorem 10.
Corollary 4. Let (GH , ·) be a S2ndBL. Then, (GH , ·) is a SGS-loop if and only if each

element of H is a S1st companion for a S1st pseudo-automorphism of (GH , ·).
Proof. This is an immediate consequence of corollary 4.
Remark 4. Every Bol loop is a S2ndBL. Most of the results on isotopy of Bol loops in

chapter 3 of [19] can easily be deduced from the results in this paper by simply forcing H to
be equal to G.
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Abstract In this paper, we define the notion of implicative filters in pocrims. We give several

characterizations about implicative filters and consider a relation between these filters and

quotient algebra that constructed via these filters.
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§1. Introduction

Bounded pocrims form a class of algebras containing as proper subclasses, among others,
the class of algebras of some logics, e.g, the class of BL-algebras, i.e., algebras of the basic fuzzy
logic [2] (and consequently the class of MV -algebras, i.e., algebras of the Lukasiewicz infinite
valued logic), as well as the class of Heyting algebras, i.e., algebras of intuitionistic logic. Filters
in pocrims are defined [1,3]. In this paper we define the notion of implicative filter. We show
that {1} is an implicative filter of pocrim A iff A is Brouwerian semilattice.

§2. Periliminiaries

Definition 2.1.[1,3] A pocrim (partially ordered commutative integral residuated monoid)
is a algebra (A, ∗,→, 1) with binary operations ∗, → and a constant 1 such that:

(a) (A, ∗,≤) is a partially ordered commutative monoid with a greatest element 1 where
x ≤ y if and only if x → y = 1.

(b) ∗ and → are residuated, i.e., the following adjointness condition holds on A:

z ≤ x → y if and only if z ∗ x ≤ y.

If (A,≤) has a least element 0, a pocrim is called bounded.
A pocrim is called:
(1) Brouwerian semilattice if x2 = x, for all x ∈ A, where x2 = x ∗ x.

(2) Generalized Boolean algebra if (x → y) → x = x, for all x, y ∈ A.
It is worth noticing that pocrims are closely related to BCK-algebras introduced by Iséki

[4] as an algebraic semantics of BCK-implicational calculus. Namely, pocrims are just BCK-
algebras satisfying the condition (P), i.e., BCK-algebras expanded by a binary oparation ∗
which satisfies the identity (x ∗ y) → z = x → (y → z). On the other hand there are BCK-
algebras which do not admit such a multiplication.
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Lemma 2.2.[3] In any pocrim A, the following relations hold for all x, y, z ∈ A:
(1) 1 → x = x, x → x = x → 1 = 1.

(2) x ∗ (x → y) ≤ y.

(3) x ≤ (y → (x ∗ y)).

(4) x → (y → z) = y → (x → z) = (x ∗ y) → z.

(5) If x ≤ y, then y → z ≤ x → z and z → x ≤ z → y.

(6) y ≤ (y → x) → x.

(7) x → y ≤ (y → z) → (x → z).

(8) x → y ≤ (z → x) → (z → y).

(9) x ∗ y ≤ x, y.
Definition 2.3.[1,3] A filter of a pocrim A is a nonempty subset F of A such that for all

a, b ∈ A, we have
(1) a ∗ b ∈ F , for all a, b ∈ F .

(2) a ≤ b and a ∈ F imply b ∈ F .
Definition 2.4.[1,3] A nonempty subset D of pocrim A is called a deductive system of A

if :
(1) 1 ∈ D.

(2) If x ∈ D and x → y ∈ D, then y ∈ D.
Proposition 2.5.[1] A nonempty subset F of pocrim A is a deductive system if and only

if is a filter.
Theorem 2.6.[1,3] Let F be filter of a pocrim A. Define

x ≡F y if and only if x → y ∈ F and y → x ∈ F.

Then ≡F is a congruence relation on A. The set of all congruence class is denoted by A/F ,
i.e, A/F = {[x] | x ∈ A}}, where [x] = {y ∈ A | y ≡F x}. Define ∗ and → on A/F as follow:

[x] ∗ [y] = [x ∗ y], [x] → [y] = [x → y]

and (A/F, ∗,→, [1]) is a pocrim which is called the quotient pocrim with respect to F .

§3. Implicative filters in pocrim

From now on (A, ∗,→, 1) or simply A is a pocrim.
Definition 3.1. A non-empty subset F of A is called an implicative filter of A if it satisfies:
(1) 1 ∈ F ;

(2) x → (y → z) ∈ F and x → y ∈ F imply x → z ∈ F .
Theorem 3.2. Any implicative filter of A is a filter but the converse is not true.
Proof. Let F be an implicative filter and x, x → y ∈ F . By Lemma 2.2,

1 → (x → y) = x → y ∈ F and 1 → x = x ∈ F.

Hence y = 1 → y ∈ F . Therefore F is a filter.
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Example 3.3. Let B = {0, a, b, 1}. Define ∗ and → as follows:

→ 0 a b 1

0 1 1 1 1

a a 1 1 1

b 0 a 1 1

1 0 a b 1

∗ 0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 a b b

1 0 a b 1

Then (B, ∗,→, 1) is a pocrim and it is clear that F = {b, 1}, is a filter, while it is not an
implicative filter since a → (a → 0) ∈ F and a → a ∈ F but a → 0 6∈ F .

Example 3.4. Let B = {0, a, b, c, 1}. Define ∗ and → as follows:

∗ 1 0 a b c

1 1 0 a b c

0 0 0 0 0 0

a a 0 a a a

b b 0 a b a

c c 0 a a c

→ 1 0 a b c

1 1 0 a b c

0 1 1 1 1 1

a 1 0 1 1 1

b 1 0 c 1 c

c 1 0 b b 1

Easily we check that (B, ∗,→, 1) is a pocrim. Consider the filter F = {b, 1}. Then F is an
implicative filter.

Theorem 3.5. Let F be a filter of A, then F is an implicative filter if and only if for any
a ∈ A, Aa = {x ∈ A | a → x ∈ F} is a filter of A.

Proof. Let F be an implicative filter and a ∈ A. Since a → 1 = 1 ∈ F , 1 ∈ Aa. If
x, x → y ∈ Aa, then a → x ∈ F and a → (x → y) ∈ F . Since F is an implicative filter,
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a → y ∈ F and so y ∈ Aa. Therefore Aa is a filter. Conversely, let for any a ∈ A, Aa is a filter
of A and x → (y → z) ∈ F and x → y ∈ F . Then y → z ∈ Ax and y ∈ Ax. Since Ax is filter
we get z ∈ Ax and so x → z ∈ F .

Hence F is an implicative filter.
Theorem 3.6. Given a non-empty subset F of A, the following conditions are equivalent:
(a) F is an implicative filter.

(b) F is a filter and y → (y → x) ∈ F implies y → x ∈ F , for all x, y ∈ A.

(c) F is a filter and z → (y → x) ∈ F implies (z → y) → (z → x) ∈ F , for all x, y, z ∈ A.

(d) 1 ∈ F , z → (y → (y → x)) ∈ F and z ∈ F imply y → x ∈ F .

(e) x → x2 ∈ F , for all x ∈ A.
Proof. (a ⇒ b): Let F be an implicative filter, by Theorem 3.2, F is a filter. If y → (y →

x) ∈ F , since y → y = 1 by hypothesis we get y → x ∈ F .
(b ⇒ c): Let z → (y → x) ∈ F , by Lemma 2.2, we have

z → (z → ((z → y) → x)) = z → ((z → y) → (z → x)) ≥ z → (y → x).

Since F is filter and z → (y → x) ∈ F , we get z → (z → ((z → y) → x)) ∈ F . By
hypothesis we conclude that z → (z → (y → x)) ∈ F and so (z → y) → (z → x) ∈ F .

(c ⇒ d): Let z, z → (y → (y → x)) ∈ F , since F is a filter, 1 ∈ F and y → (y → x) ∈ F .
Hence by hypothesis we get (y → y) → (y → x) ∈ F . On the other hand,

y → x = 1 → (y → x) = (y → y) → (y → x).

Therefore, y → x ∈ F .
(d ⇒ a): Let z → y ∈ F and z → (y → x) ∈ F . By Lemma 2.2, we have,

z → (y → x) = y → (z → x) ≤ (z → y) → (z → (z → x)).

Since F is filter and z → (y → x) ∈ F , we get (z → y) → (z → (z → x)). z → y ∈ F and
(d) imply z → x ∈ F .

(a ⇒ e): Let x ∈ A, hence, by Lemma 2.2,

x → (x → x2) = x2 → x2 = 1 and x → x = 1 ∈ F.

Since F is implicative filter, we get x → x2 ∈ F .
(e ⇒ a): Let x, y, z ∈ A be such that x → (y → z) ∈ F and x → y ∈ F . By Lemma 2.2,

(x → (y → z)) ∗ (x → y) ∗ x2 = (x ∗ (x → (y → z))) ∗ (x ∗ (x → y)) ≤ (y → z) ∗ y ≤ z.

Then (x → (y → z)) ∗ (x → y) ≤ x2 → z. Since x → (y → z) ∈ F and x → y ∈ F we get

(x → (y → z)) ∗ (x → y) ∈ F,

and so x2 → z ∈ F . By Lemma 2.2, x → x2 ≤ (x2 → z) → (x → z). On the other hand
x2 → z ∈ F and x → x2 ∈ F , then x → z ∈ F . Hence F is an implicative filter.

Theorem 3.7. In any pocrim A, the following conditions are equivalent:
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(a) A is Brouwerian semilattice.

(b) Any filter of A is an implicative filter of A.

(c) {1} is an implicative filter of A.
Proof. (a ⇒ b): Let A be Brouwerian semilattice and F be an arbitrary filter of A then

x2 = x, for all x ∈ A. To show that F is an implicative filter we use (e) of Theorem 3.6. Since
x2 = x then x → x2 = 1 ∈ F and F is an implicative filter.

(b ⇒ c): is clear.

(c ⇒ a): Since {1} is implicative filter by Theorem 3.6, we get x → x2 = 1, for all x ∈ A.
Hence x ≤ x2. By Lemma 2.2, x2 ≤ x and so x2 = x. Therefore A is Brouwerian semilattice.

Theorem 3.8. Suppose F and G are filters of A and F ⊆ G. If F is an implicative filter
then G is an implicative filter.

Proof. Let F and G are filters of A, F ⊆ G, F an implicative filter and x ∈ A. Since
F is implicative filter, by Theorem 3.6 we get x → x2 ∈ F , for all x ∈ A and since F ⊆ G,
x → x2 ∈ G, for all x ∈ A. Therefore F is implicative filter.

Theorem 3.9. Let F be a filter of A. Then F is an implicative filter if and only if A/F

is Brouwerian semilattice.
Proof. Let F be a implicative filter of A and [x] ∈ A/F . By Theorem 3.6, x → x2 ∈ F .

Hence [x] → [x2] = [x → x2] = [1] and so [x] ≤ [x2] = [x]2. On the other hand by Lemma 2.2,
[x]2 ≤ [x]. Then [x] = [x]2, for all x ∈ A. Therefore A/F is Brouwerian semilattice. Conversely,
suppose that A/F be Brouwerian semilattice and x ∈ A. Then

[x → x2] = [x] → [x2] = [x] → [x]2 = [1]

and so x → x2 ∈ F . Therefore by Theorem 3.6, F is implicative filter.
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Abstract B. D. Acharya and E. Sampathkumar [1] defined Graphoidal cover as partition of

edge set of G into internally disjoint paths (not necessarily open). The minimum cardinality

of such cover is known as graphoidal covering number of G. Let G = {V, E} be a graph

and let ψ be a graphoidal cover of G. Define f : V ∪ E → {1, 2, . . . , p + q} such that

for every path P = (v0v1v2 . . . vn) in ψ with f∗(P ) = f(v0) + f(vn) +
n∑
1

f(vi−1vi) = k,

a constant, where f∗ is the induced labeling on ψ. Then, we say that G admits ψ-magic

graphoidal total labeling of G. A graph G is called magic graphoidal if there exists a minimum

graphoidal cover ψ of G such that G admits ψ-magic graphoidal total labeling.
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§1. Introduction

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of
a graph G denoted are by V (G) and E(G) respectively. C+

n is a crown, Cn ¯ Pn is a Dragon
and Cm ¯ Pn is a Armed Crown. Terms and notations not used here are as in [3].

§2. Preliminaries

Let G = {V, E} be a graph with p vertices and q edges. A graphoidal cover ψ of G is a
collection of (open) paths such that

[1] Every edge is in exactly one path of ψ.
[2] Every vertex is an interval vertex of atmost one path in ψ.

We define γ(G) = min
ψ∈ζ

|ψ|, where ζ is the collection of graphoidal covers ψ of G and γ is

graphoidal covering number of G.

Let ψ be a graphoidal cover of G. Then we say that G admits ψ-magic graphoidal total
labeling of G if there exists a bijection f : V ∪ E → {1, 2, . . . , p + q} such that for every path

P = (v0v1v2 . . . vn) in ψ, then, f∗(P ) = f(v0) + f(vn) +
n∑
1

f(vi−1vi) = k, a constant, where f∗

is the induced labeling of ψ. A graph G is called magic graphoidal if there exists a minimum
graphoidal cover ψ of G such that G admits ψ- magic graphoidal total labeling. In this paper,
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we proved that Crown C+
n , Dragan Cn ¯ Pn and Armed grown Cm ¯ Pn is graph in which a

path of length n is joined at every vertex of the cycle Cm are magic graphoidal.
Result 2.1.[11] Let G = (p, q) be a simple graph. If every vertex of G is an internal vertex

in ψ then γ(G) = q − p.

Result 2.2.[11] If every vertex v of a simple graph G, where degree is more than one
ie d(v) > 1, is an internal vertex of ψ is minimum graphoidal cover of G and γ(G) = q − p + n

where n is the number of vertices having degree one.
Result 2.3.[11] Let G be (p, q) a simple graph then γ(G) = q−p+ t where t is the number

of vertices which are not internal.
Result 2.4.[11] For any tree G, γ(G) = ∆ where ∆ is the maximum degree of a vertex in

G.

Result 2.5.[11] For any k-regular graph G, k ≥ 3, γ(G) = q − p.

Result 2.6.[11] For any graph G with δ ≥ 3, γ(G) = q − p.

Result 2.7.[11] Let G be a connected unicyclic graph with n vertices of degree 1, Z be its
unique cycle and let m be the number of vertices of degree at least 3 on Z. Then

γ(G) =





1 if m = 0;

n + 1 if m = 1 and d(v) = 3 where v is the unique vertex of

degree ≥ 3 on z;

otherwise





.

§3. Magic graphoidal on special type of unicyclic graphs

Theorem 3.1. Crown C+
n is magic graphoidal.

Proof. Let V (C+
n ) = {ui, vi : 1 ≤ i ≤ n},

E(C+
n ) = {[(uiui+1) : 1 ≤ i ≤ n− 1] ∪ (u1un) ∪ (uivi) : 1 ≤ i ≤ n}.

Define f : V ∪ E → {1, 2, 3, . . . , p + q} by

f(ui) = i, 1 ≤ i ≤ n;

f(v1) = 3n + 1;

f(vi+1) = 4n + 1− i, 1 ≤ i ≤ n− 1;

f(uiui+1) = 3n + 1− i, 1 ≤ i ≤ n− 1;

f(u1un) = 2n + 1;

f(u1v1) = 2n;

f(uivi) = n + (i− 1), 2 ≤ i ≤ n.

Let ψ = {[(uiui+1vi+1) : 1 ≤ i ≤ n − 1] ∪ (unu1v1)}. Clearly, ψ is a minimum graphoidal
cover.

f∗[(unu1v1)] = f(un) + f(v1) + f(unu1) + f(u1v1)

= n + 3n + 1 + 2n + 1 + 2n

= 8n + 2. (1)
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For 1 ≤ i ≤ n− 1,

f∗[(uiui+1vi+1)] = f(ui) + f(vi+1) + f(uiui+1) + f(ui+1vi+1)

= i + 4n + 1− i + 3n + 1− i + n + i

= 8n + 2. (2)

From (1) and (2), we conclude that ψ is minimum magic graphoidal cover. Hence, Crown C+
n

is magic graphoidal. For example, the magic graphoidal cover of C+
4 is shown in Figure 1.

s

s

sss

s s

s

u1 u2

u3u4

v3

v4

v2

v1

15

6

3
104714

9 11

1
12 2

5 16

13

8

Figure 1. C+
4

ψ = {(u1u2v2), (u2u3v3), (u3u4v4), (u4u1v1)}, γ = 4, K = 34.

Theorem 3.2. Dragan Cn ¯ Pn, (n -even) is magic graphoidal.
Proof. Let G = Cn ¯ Pn.

Let V (G) = {[ui, vi : 1 ≤ i ≤ n− 1], un};
E(G) = {[(uiui+1) : 1 ≤ i ≤ n− 1] ∪ (u1un) ∪ (unvn−1)

∪ [(vivi+1) : 1 ≤ i ≤ n− 2]}.
Define f : V ∪ E → {1, 2, 3, . . . , p + q} by

f(vi) = i, 1 ≤ i ≤ n;

f(u1) = 4n− 2;

f(ui) = n + (i− 2), 2 ≤ i ≤ n− 2;

f(un−2) = 2n− 2;

f(vn) = f(un) = 2n− 1;

f(uiui+1) =





4n− 4− 2(i− 1) if i ≡ 1 mod 2, 1 ≤ i < n;

4n− 5− 2(i− 2) if i ≡ 0 mod 2, 1 ≤ i < n;

f(u1un) = 2n− 3;

f(vivi+1) =





4n− 3− 2(i− 1) if i ≡ 1 mod 2, 1 ≤ i < n;

4n− 6− 2(i− 2) if i ≡ 0 mod 2, 1 ≤ i < n, with vn = un.
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Let ψ = {(u1u2 . . . un), (v1v2 . . . vn−1unu1)}. Clearly, γ(G) = 2.

f∗[(u1u2 . . . un)] = f(u1) + f(un) +
n−1∑

i=1

f(uiui+1)

= 4n− 2 + 2n− 1 +
n−1∑

i=1,3

{
(4n− 4)− 4

(
i− 1

2

)}

+
n−2∑

i=2,4

{
(4n− 5)− 4

(
i− 2

2

)}

=
6n2 + 3n− 4

2
; (3)

f∗[(v1v2 . . . vn−1unu1)] = f(v1) + f(u1) +
n−1∑

i=1

f(vivi+1) + f(unu1)

= 1 + 4n− 2 + 2n− 3 +
n−1∑

i=1,3

{
(4n− 3)− 4

(
i− 1

2

)}

+
n−2∑

i=2,4

{
(4n− 6)− 4

(
i− 2

2

)}

=
6n2 + 3n− 4

2
. (4)

From (3) and (4), we conclude that ψ is minimum magic graphoidal cover. Hence, Cn ¯ Pn,

(n-even) is magic graphoidal. For example, the magic graphoidal cover of C6 ¯ P6 is shown in
Figure 2.

ss s

ss s ss s s s

u1u2u3

u4 u5 u6

v1v2
v3v4v5111210158

16

7 19 6 20 22

9

13 5 14 4 17 3 18 2 21 1

Figure 2. C6 ¯ P6

ψ = {(u1u2u3u4u5u6), (v1v2v3v4v5u6u1)}, γ = 2, K = 115.

Theorem 3.3. Dragan Cn ¯ Pn, (n-odd) is magic graphoidal cover.

Proof. Let G = Cn ¯ Pn.

Let V (G) = {ui, vi : 1 ≤ i ≤ n− 1, un};
E(G) = {[(uiui+1) : 1 ≤ i ≤ n− 1] ∪ (u1un) ∪ (unvn−1)

∪ [(vivi+1) : 1 ≤ i ≤ n− 2]}.
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Define f : V ∪ E → {1, 2, 3, . . . , p + q} by

f(vi) = i, 1 ≤ i ≤ n− 1;

f(u1) = 4n− 2;

f(ui) = n + (i− 2), 2 ≤ i < n;

f(un) = f(vn) = 2n− 1;

f(uiui+1) =





4n− 4− 2(i− 1) if i ≡ 1 mod 2, 1 ≤ i < n;

4n− 5− 2(i− 2) if i ≡ 0 mod 2, 1 ≤ i < n;

f(u1un) = 2n− 2;

f(vivi+1) =





4n− 3− 2(i− 1) if i ≡ 1 mod 2, 1 ≤ i < n;

4n− 6− 2(i− 2) if i ≡ 0 mod 2, 1 ≤ i < n, with vn = un.

Let ψ = {(u1u2 . . . un), (v1v2 . . . vn−1unu1)}. Clearly, γ(G) = 2.

f∗[(u1u2 . . . un)] = f(u1) + f(un) +
n−1∑

i=1

f(uiui+1)

= 4n− 2 + 2n− 1 +
n−2∑

i=1,3

{(4n− 4)− 2(i− 1)}

+
n−1∑

i=2,4

{(4n− 5)− 2(i− 2)}

= (6n− 3)
(

n + 1
2

)
; (5)

f∗[(v1v2 . . . vn−1unu1)] = f(u1) + f(un) + f(unu1) +
n−1∑

i=1

(vivi+1)

= f(u1) + f(un) + f(unu1)

+
n−2∑

i=1,3

f(vivi+1) +
n−1∑

i=2,4

f(vivi+1)

= 1 + 4n− 2 + 2n− 2 +
n−2∑

i=1,3

{(4n− 3)− 2(i− 1)}

+
n−1∑

i=2,4

{(4n− 6)− 2(i− 2)}

= (6n− 3)
(

n + 1
2

)
. (6)

From (5) and (6), we conclude that ψ is minimum magic graphoidal cover. Hence, Cn ¯ Pn,

(n-odd) is magic graphoidal. For example, the magic graphoidal cover of C5 ¯ P5 is shown in
Figure 3.
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Figure 3. C5 ¯ P5

ψ = {(u1u2u3u4u5), (v1v2v3v4v5u1)}, γ = 2, K = 81.

Theorem 3.4. Armed grown CmṖn is magic graphoidal.
Proof. Let G = Cm ¯ Pn.

Let V (G) = {vi : 1 ≤ i ≤ m,uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n};
E(G) = {[(vivi+1) : 1 ≤ i ≤ m− 1] ∪ (v1vm)

∪ (uijuij+1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}.

Let v1 = um1, vi = u(i−1)1, 2 ≤ i ≤ m.

Let ψ = {(vivi+1ui2ui3 . . . uin), 1 ≤ i ≤ m− 1 ∪ (vmv1um2um3 . . . umn)}.
Case (i) n is even.
Define f : V ∪ E → {1, 2, . . . , p + q} by

f(vi) = i, 1 ≤ i ≤ m;

f(vivi+1) = 2m + 1− i, 1 ≤ i ≤ m;

f(v1vm) = m + 1;

f(uijuij+1) = (j + 1)m + i, j ≡ 1 mod 2, 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1;

f(uijuij+1) = (j + 2)m + 1− i, j ≡ 0 mod 2, 1 ≤ i ≤ m, 1 ≤ j ≤ n− 2;

f(uin) = (n + 2)m + 1− i, 1 ≤ i ≤ m;

f∗[(vmv1um2um3 . . . umn)] = f(vm) + f(vmn) + f(vmv1) + f(v1um2)

+ f(um2um3) + · · ·+ f(umnumn)

= m + (n + 2)m + 1−m + m + 1

+
n−1∑

j=1,3

{(j + 1)m + m}+
n−2∑

j=2,4

{(j + 2)m + 1−m}

= nm + 2m + 1 +
n

2
+ nm

(n

2
+ 1

)
. (7)

For 1 ≤ i ≤ m− 1,

f∗[(vivi+1ui2ui3 . . . uin)] = f(vi) + f(uin) + f(vivi+1) + f(vi+1 = ui1, ui2)

+ f(ui2ui3) + · · ·+ f(uinuin+1)

= i + (n + 2)m + 1− i + 2m + 1− i

+
n−1∑

j=1,3

{(j + 1)m + i}+
n−2∑

j=2,4

{(j + 2)m + 1− i}
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= nm + 2m + 1 +
n

2
+ nm

(n

2
+ 1

)
. (8)

From (7) and (8), we conclude that ψ is minimum magic graphoidal cover. Hence, Cm ¯ Pn

(n-even) is magic graphoidal. For example, the magic graphoidal cover of C4 ¯ P4 is shown in
Figure 4.

ss s s s s s s

ss s s s s s s

u31(v4) u21(v3)

u32u33u34

u44 u43 u42

u41(v1) u11(v2)

u12 u13 u14

u22 u23 u24

22 19 14 11
4 6 3

10 15 18 23

75

21 20 13 12
1 28

17 249 16

Figure 4. C4 ¯ P4

ψ = {(v1v2u12u13u14), (v2v3u22u23u24), (v3v4u32u33u34), (v4v1u42u43u44)}, γ = 4, K = 75
Case (ii) n is odd.

f(vi) = i, 1 ≤ i ≤ m;

f(vivi+1) = m + i, 1 ≤ i ≤ m;

f(v1vm) = 2m;

f(ui1ui2) = 4m + 1− 2i, 1 ≤ i ≤ m;

f(uijuij+1) = (j + 2)m + i− 1, j ≡ 0 mod 2, 1 ≤ i ≤ m, 2 ≤ j ≤ n− 1;

f(uijuij+1) = (j + 3)m− i, j ≡ 1 mod 2, 1 ≤ i ≤ m, 3 ≤ j ≤ n− 2;

f(uin) = (n + 3)m− i, 1 ≤ i ≤ m;

f∗[(vmv1um2um3 . . . umn)] = f(vm) + f(umn) + f(vmv1) + f(um1um2)

+ f(um2um3) + · · ·+ f(umnumn)

= m + (n + 3)m−m + 2m + 4m + 1− 2m

+
n−1∑

j=2,4

{(j + 2)m + m− 1}+
n−2∑

j=3,5

{(j + 3)m−m}

= nm + 12m + 1−
(

n− 1
2

)
+ 2m(6 + 8 + · · ·+ n + 1). (9)

For 1 ≤ i ≤ m− 1,

f∗[(vivi+1ui2ui3 . . . uin)] = f(vi) + f(uin) + f(vivi+1) + f(ui1ui2) + f(ui2ui3)

+ · · ·+ f(uinuin)

= i + (n + 3)m− i + m + i + 4m + 1− 2i

+
n−1∑

j=2,4

{(j + 2)m + m− 1}+
n−2∑

j=3,5

{(j + 3)m−m}

= nm + 12m + 1−
(

n− 1
2

)
+ 2m(6 + 8 + · · ·+ n + 1). (10)
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From (9) and (10), we conclude that ψ is minimum magic graphoidal cover. Hence, Cm ¯ Pn

(n-odd) is magic graphoidal. For example, the magic graphoidal cover of C3 ¯ P5 is shown in
Figure 5.

s s s s s s

s ssss

ss s s
u11(v2) u12 u13 u14 u154u31(v1)u32u33u34u35

21 20 15 14 7 1 2 11 12 17 18 23

221916139

5

3
6

u21(v3) u22 u23 u24 u25

Figure 5. C3Ṗ5

ψ = {(v1v2u22u23u24u25), (v2v3u32u33u34u35), (v3v1u12u13u14u15)}, γ = 3, K = 86.
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Abstract All lightlike hypersurfaces of a semi-Euclidean space that can locally be written as

the sum of functions of one variable are parametrized and showed that they are hyperplanes.

Also the only minimal translation lightlike hypersurfaces (zero mean curvature in all points)

are hyperplanes.
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§1. Introduction and preliminaries

Semi-Riemannian geometry is the study of smooth manifolds with non-degenerate metric.
The special cases are Riemannian geometry, with a positive definite metric and Lorentz ge-
ometry, the mathematical theory used in general relativity. Moreover, for any semi-Euclidean
manifold there is a natural existence of null (lightlike) subspaces. The growing importance
of lightlike hypersurfaces in mathematical physics, in particular their extensive use in relativ-
ity and very limited information available on the general theory of lightlike submanifolds, has
attracted interest of many mathematicians [2].

Minimal surfaces are one of the most important surface classes in differential geometry. In
previous studies, minimal surfaces have been studied in 3-dimensional and in higher dimensional
Euclidean (or semi Euclidean) space by a number of differential geometricians. For instance,
the minimal surfaces of revolution, ruled, translation and homothetical surfaces in the R3

1 are
completely determined in [1,4,5,8,9,10,11]. Moreover the minimal surfaces of translation of a
higher dimensional Euclidean space are obtained in [13] and of a semi-Euclidean space are
investigated in [12]. In particular Lopez [6] proved that the only minimal translation surfaces
in hyperbolic space are totally geodesic planes.

A hypersurface Mn in (n+1)-dimensional Euclidean (or semi-Euclidean) space determined
by the transformation

ϕ = ( x1, x2, . . . , xm, F )

is called translation, if the function F is the sum of the smooth functions f1, f2, . . . , fm of one
variable such that

F (x1, x2, . . . , xm) = f1(x1) + f2(x2) + · · ·+ fm(xm) [12].
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We assume that fi vanishes nowhere (i = 1, 2, . . . , n). Otherwise Mn is a hyperplane.
In this paper, we determine parametrization of the translation lightlike (degenerate) hyper-

surfaces of the semi-Euclidean space and show that they are hyperplanes. Also the translation
lightlike (degenerate) hypersurfaces are minimal.

§2. Lightlike hypersurfaces of semi-riemannian manifolds

Let M be a hypersurface of a (m + 2)-dimensional semi-Riemannian manifold M of index
q ∈ {1, . . . , m + 1}, m > 0. Let g be the semi-Riemannian metric on M . g induces on M a
symmetric tensor field g of type (0, 2).

The radical (null) space of TuM is

Rad TuM = { ξu ∈ TuM : gu(ξu, Xu) = 0, ∀Xu ∈ TuM}.

Since
TuM⊥ = {Vu ∈ TuM : gu(Vu,Wu) = 0, ∀Wu ∈ TuM},

we have
Rad TuM = TuM ∩ TuM⊥.

In this section, which follows almost entirely [2].
Definition 2.1. Let M be a hypersurface of an (m + 2)-dimensional semi-Riemannian

manifold M , m > 0. If Rad TuM 6= {0} for any u ∈ M , M is called a lightlike (degenerate)
hypersurface of M .

If M is a lightlike hypersurface of M , TuM⊥ is a one-dimensional vector subspace of
the tangent space. Each m-dimensional subspace in TuM that does not contain the subspace
TuM⊥ is orthogonal to TuM⊥ and called a screen space at point u. The vector bundle that
is constituted by choosing a screen space each point of M is said to be a screen distribution
on M , denoted by S(TM). Thus we have

TM = S(TM)⊥TM⊥.

TM�M is a vector bundle that has M as base space and assigns TuM to each point u of M . gu

is non-degenerate on S(TuM). If a subspace is non-degenerate, its complementary orthogonal
subspace is also non-degenerate and is uniquely determined. Thus, the vector bundle that is
determined by the complementary orthogonal subspace is called the orthogonal complemen-
tary vector bundle to S(TM) in TM�M , denoted by S(TM)⊥. Also we have

TM�M = S(TM)⊥S(TM)⊥.

Theorem 2.2. Let (M, g, S(TM) ) be a lightlike hypersurface of a semi-Riemannian
manifold (M, g). Then there exists a unique vector bundle tr(TM) of rank 1 over M , such
that for any non-zero ξ ∈ Γ(TM⊥) on a coordinate neighbourhood U ∈ M , there exists a unique
section N of tr(TM) on U with the following properties:

g(N, ξ) = 1,
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and
g(N, N) = g(N, W ) = 0, ∀W ∈ Γ(S(TM)�U ).

The space that is the union of subspaces spanned by the vector Nu at each point u ∈ M

is a lightlike vector bundle and is called the lightlike transversal vector bundle of M with
respect to S(TM). It is denoted by tr(TM). tr(TM)u is the subspace spanned by the vector
Nu. Hence we have

TM�M = S(TM)⊥ (TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM).

Definition 2.3.[1] Let (M, g, S(TM)) be a lightlike hypersurface of a (m+2)− dimensional
semi-Riemannian manifold (M, g) and O be the Levi-Civita connection on M with respect to
g. If X, Y ∈ Γ(TM), then ∇XY ∈ Γ(TM). Using the decomposition TM�M = TM ⊕ tr(TM),
we obtain the formulas

∇XY = ∇XY + h(X, Y ) (2.1)

and
∇XV = −AV X +∇t

XV, (2.2)

for any X, Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where ∇XY and AV X belong to Γ(TM) while
h(X, Y ) and ∇t

XV belong to Γ(tr(TM)). It is easy to check that ∇ is a torsion-free linear
form on M , h is a symmetric F(M)-bilinear form on Γ(TM), which has range Γ(tr(TM))
and AV is a F(M)-linear operator on Γ(TM) and ∇t is a linear connection on the lightlike
transversal vector bundle tr(TM). We call ∇ and ∇t the induced connections on M and
tr(TM) respectively. Consistent with the classical of Riemannian hypersurfaces we call h and
AV the second fundamental form and the shape operator respectively, of the lightlike
immersion of M in M . Also, we name (2.1) and (2.2) the Gauss and Weingarten formulae,
respectively.

Definition 2.4. Let (M, g, S(TM)) be a lightlike hypersurface of a (m + 2)-dimensional
semi-Riemannian manifold (M, g). Next, if P denotes the projection morphism of TM on
S(TM) with respect to the decomposition TM = S(TM)⊥TM⊥ we obtain

∇XPY =
∗
∇XPY +

∗
h(X, PY ) (2.3)

and

∇XU = −
∗
AUX +

∗
∇

t

XU, (2.4)

where
∗
∇XPY and

∗
AUX belong to Γ(S(TM)) while

∗
h(X, PY ) and

∗
∇

t

XU belong to Γ(TM⊥). It

follows that
∗
∇ and

∗
∇

t

are linear connections on vector bundles S(TM) and TM⊥ respectively,
∗
h is a Γ(TM⊥)-valued F(M)-bilinear form on Γ(TM)×Γ(S(TM)) and

∗
AU is Γ(S(TM))-valued

F(M)-linear operator on Γ(TM). We call
∗
h and

∗
AU the second fundamental form and

the shape operator of the screen distribution S(TM), respectively. Also, equations (2.3) and
(2.4) are the Gauss and Weingarten equations for the screen distribution S(TM).

Proposition 2.5. On any lightlike Monge hypersurfaces M of Rm+2
q , the shape operators

AN and
∗
Aξ of M and of the naturel screen distribution are related by

AN =
1
2

∗
Aξ. (2.5)
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Definition 2.6. Let ξ be a normal null section. The trace of −
∗
Aξ is called the lightlike

mean curvature Hξ on M associated with ξ. Then

Hξ = trace(−
∗
Aξ) = −trace(

∗
Aξ).

One of the good properties of the lightlike mean curvature is that it does not depend on
the screen distribution chosen, but only of the local normal null section ξ [3].

§3. Mimimal translation lightlike (degenerate) hypersur-

faces of semi-euclidean spaces

Let y0, y1, . . . , ym+1 be coordinate functions in Rm+2 and x1, x2, . . . , xm+1 be coordinate
functions in Rm+1. If the coordinate axes are embedded in Rm+2, then we have

yk(0, a1, a2, . . . , am+1) = xk( a1, a2, . . . , am+1),

where 1 ≤ k ≤ m + 1. Hence yk�{0}×Rm+1 =xk.

Let M be a lightlike Monge hypersurface determined by the function ϕ = (F, x1, x2, . . . , xm+1),
where F a smooth function F : D → R and D is an open subset of Rm+1. We have

∂α ◦ ϕ = Fxα

∂

∂y0
◦ ϕ +

∂

∂yα
◦ ϕ, 1 ≤ α ≤ m + 1

where ∂1, ∂2, . . . , ∂m+1 are coordinate frame fields on M . Since g(∂α ◦ϕ, ξ) = 0 for each α, we
have

ξ ◦ ϕ =
∂

∂y0
◦ ϕ−

q−1∑

j=1

Fxj

∂

∂yj
◦ ϕ +

m+1∑
α=q

Fxα

∂

∂yα
◦ ϕ,

where ξ is the normal vector field on M .

Vector field N determined by equation

N = − ∂

∂y0
+

1
2
ξ (3.1)

satisfies the conditions of Theorem 2.2. and spans vector bundle tr(TM). N defined here, is
named the natural lightlike transversal vector bundle of M [2].

Theorem 3.1.[2] The hypersurface ϕ = (F, x1, x2, . . . , xm+1) is lightlike if and only if

1 +
q−1∑

j=1

F 2
xj

=
m+1∑
α=q

F 2
xα . (3.2)

Theorem 3.2.[7] Given an open subset D ⊂ Rm+1 and a smooth transformation F :
D → R. Let M be the lightlike Monge hypersurface determined by ϕ = (F, x1, x2, . . . , xm+1).
The matrix that corresponds to the shape operator of the lightlike hypersurface M in the
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semi-Euclidean space Rm+2
q is

AN =
1
2




Fx1x1 · · · Fx1xq−1 Fx1xq
Fx1xq+1 · · · Fx1xm+1

Fx2x1 · · · Fx2xq−1 Fx2xq Fx2xq+1 · · · Fx2xm+1

Fx3x1 · · · Fx3xq−1 Fx3xq
Fx3xq+1 · · · Fx3xm+1

...
...

...
...

...
...

...

Fxq−1x1 · · · Fxq−1xq−1 Fxq−1xq
Fxq−1xq+1 · · · Fxq−1xm+1

−Fxqx1 · · · −Fxqxq−1 −Fxqxq −Fxqxq+1 · · · −Fxqxm+1

−Fxq+1x1 · · · −Fxq+1xq−1 −Fxq+1xq
−Fxq+1xq+1 · · · −Fxq+1xm+1

...
...

...
...

...
...

...

−Fxm+1x1 · · · −Fxm+1xq−1 −Fxm+1xq
−Fxm+1xq+1 · · · −Fxm+1xm+1




.

Proposition 3.3.[7] In the semi-Euclidean space Rm+2
q the lightlike mean curvature of the

lightlike hypersurface represented by ϕ = (F, x1, x2, . . . , xm+1) respect to normal section ξ is
determined by the following equation

Hξ = −
q−1∑

j=1

Fxjxj
+

m+1∑
α=q

Fxαxα
.

Corollary 3.4.[7] In the semi-Euclidean space Rm+2
q , the lightlike hypersurface M deter-

mined by the transformation ϕ = (F, x1, x2, . . . , xm+1) is minimal if and only if

q−1∑

j=1

Fxjxj
=

m+1∑
α=q

Fxαxα
.

Remark 3.5. Let M be a translation hypersurface of Rm+2
q . Then M can locally always

be seen as the graph of a function F : Rm+1 → R. In what follows, we will assume that
F is a function of the coordinates x1, x2, . . . , xm+1. This can easily be achieved possibly by
rearranging the coordinates of Rm+2

q . So M is locally given by

x0 = F (x1, x2, . . . , xm+1) = f1(x1) + f2(x2) + · · ·+ fm+1(xm+1).

Let εj = g(
∂

∂yj
,

∂

∂yj
) =





−1, j = 1, ...q − 1

+1, j = q, ...m + 1
.

Theorem 3.6. In the semi Euclidean space Rm+2
q , the (m + 1)− dimensional translation

hypersurface given by

ϕ = (
m+1∑

j=1

fj , x1, x2, . . . , xm+1)

is lightlike if and only if
m+1∑

j=1

εj(f
′
j)

2 = 1 (3.3)

(F 6= 0 in any point).
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Proof. Substitute F =
m+1∑
j=1

fj in the equation (3.2).

Theorem 3.6. In the semi-Euclidean space Rm+2
q , if the (m+1)− dimensional translation

hypersurface given by

ϕ = (
m+1∑

j=1

fj , x1, x2, . . . , xm+1)

is lightlike, then

ϕ = (
m+1∑

j=1

ajxj + b, x1, x2, . . . , xm+1) with
m+1∑

j=1

εja
2
j = 1,

on the corresponding domain where fj is not constant and aj , b is some constant.
Proof. Derivative of the equation (3.3) with respect to xj for j = 1, ..., m + 1 :

f
′
jf

′′
j = 0.

Since f
′
j 6= 0 on an interval, then

f
′′
j = 0.

We twice integrate this equation
fj = ajxj + b,

where
m+1∑
j=1

εja
2
j = 1, i.e. (0, a1, a2, ...am+1) ∈ Sm+1

q .

Corollary 3.7. In the semi-Euclidean space Rm+2
q , every translation lightlike hypersurface

is minimal.
Remark 3.8. The minimality condition of translation lightlike hypersurface M given by

ϕ = (
m+1∑
j=1

fj , x1, x2, . . . , xm+1) can be developed as

m+1∑

j=1

εjf
′′
j = 0.

Clearly, every translation lightlike hypersurface is minimal.
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which a generalized f -derivation is an order-preserving for lattice with a greatest element,

modular lattice, and distributive lattice.
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§1. Introduction

The concept of derivation for BCI-algebra was introduced by Y. B. Jun and X. L. Xin [3].
Further, in 2009, C. Prabprayak and U. Leerawat [7] also studied the derivation of BCC-algebra.
In 2005, J. Zhan and Y. L. Liut [7] introduced the concept of a f -derivation for BCI-algebra
and obtained some related properties. In 2008, L. X. Xin, T. Y. Li and J. H. Lu [6] studied
derivation of lattice and investigated some of its properties. In 2010, N. O. Alshehri introduced
the concept of a generalized derivation and investigated some of its properties. In 2011, S.
Harmaitree and U. Leerawat studied the f -derivation of lattice and investigated some of its
properties. The purpose of this paper, we applied the notion of a generalized f -derivation for
a lattice and investigate some related properties.

§2. Preliminaries

We first recall some definitions and results which are essential in the development of this
paper.

Definition 2.1.[5] An (algebraic) lattice (L,∧,∨) is a nonempty set L with two binary
operation “∧”and “∨”(read “join”and “meet”, respectively) on L which satisfy the following
condition for all x, y, z ∈ L:

(i) x ∧ x = x, x ∨ x = x;
(ii) x ∧ y = y ∧ x, x ∨ y = y ∨ x;
(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z;
(iv) x = x ∧ (x ∨ y), x = x ∨ (x ∧ y).
We often abbreviate L is a lattice to (L,∧,∨) is an algebraic lattice.
Definition 2.2.[5] A poset (L,≤) is a lattice ordered if and only if for every pair x, y of

elements of L both the sup{x, y} and the inf{x, y} exist.
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Theorem 2.3.[5] In a lattice ordered set (L,≤) the following statements are equivalent for
all x, y ∈ L:

(a) x ≤ y; (b) sup{x, y} = y; (c) inf{x, y} = x.
Definition 2.4.[8] Let L be a lattice. A binary relation “≤”is defined by x ≤ y if and only

if x ∧ y = x and x ∨ y = y.
Lemma 2.5. Let L be a lattice. Then x ∧ y = x if and only if x ∨ y = y for all x, y ∈ L.
Proof. Let x, y ∈ L and assume x ∧ y = x. Then x ∨ y = (x ∧ y) ∨ y = y. Conversely, let

x ∨ y = y. So x ∧ y = x ∧ (x ∨ y) = x.
Corollary 2.6. Let L be a lattice. Then x ≤ y if and only if either x∧ y = x or x∨ y = y.
Lemma 2.7.[8] Let L be a lattice. Define the binary relation “≤”as Definition 2.3. Then

(L,≤) is a poset and for any x, y ∈ L, x ∧ y is the inf{x, y} and x ∨ y the sup{x, y}.
Theorem 2.8.[5] Let L be a lattice. If we define x ≤ y if and only if x∧ y = x then (L,≤)

is a lattice ordered set.
Definition 2.9.[5] If a lattice L contains a least (greatest) element with respect to ≤ then

this uniquely determined element is called the zero element (one element), denoted by 0 (by 1).
Lemma 2.10.[5] Let L be a lattice. If y ≤ z, then x ∧ y ≤ x ∧ z and x ∨ y ≤ x ∨ z for all

x, y, z ∈ L.
Definition 2.11.[5] A nonempty subset S of a lattice L is called sublattice of L if S is a

lattice with respect to the restriction of ∧ and ∨ of L onto S.
Definition 2.12.[5] A lattice L is called modular if for any x, y, z ∈ L if x ≤ z, then

x ∨ (y ∧ z) = (x ∨ y) ∧ z.
Definition 2.13.[5] A lattice L is called distributive if either of the following condition

hold for all x, y, z in L: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) or x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
Corollary 2.14.[5] Every distributive lattice is a modular lattice.
Definition 2.15.[5] Let f : L → M be a function from a lattice L to a lattice M .
(i) f is called a join-homomorphism if f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ L.
(ii) f is called a meet-homomorphism if f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ L.
(iii) f is called a lattice-homomorphism if f are both a join-homomorphism and a meet-

homomorphism.
(iv) f is called an order-preserving if x ≤ y implies f(x) ≤ f(y) for all x, y ∈ L.
Lemma 2.16.[5] Let f : L → M be a function from a lattice L to a lattice M . If f is

a join-homomorphism (or a meet-homomorphism , or a lattice-homomorphism), then f is an
order-preserving.

Definition 2.17.[5] An ideal is a nonempty subset I of a lattice L with the properties:
(i) if x ≤ y and y ∈ I, then x ∈ I for all x, y ∈ L;
(ii) if x, y ∈ I, then x ∨ y ∈ I.
Definition 2.18.[3] Let L be a lattice and f : L → L be a function. A function d : L → L

is called a f -derivation on L if for any x, y ∈ L, d(x ∧ y) = (dx ∧ f(y)) ∨ (f(x) ∧ dy).
Proposition 2.19.[3] Let L be a lattice and d be a f -derivation on L where f : L → L is

a function. Then the following conditions hold : for any element x, y ∈ L,
(1) dx ≤ f(x);
(2) dx ∧ dy ≤ d(x ∧ y) ≤ dx ∨ dy;
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(3) If L has a least element 0, then f(0) = 0 implies d 0 = 0.

§3. The generalized f-derivations of lattices

The following definitions introduces the notion of a generalized f -derivation for lattices.
Definition 3.1. Let L be a lattice and f : L → L be a function. A function D : L → L

is called a generalized f -derivation on L if there exists a f -derivation d : L → L such that
D(x ∧ y) = (D(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) for all x, y ∈ L.

We often abbreviate d(x) to dx and Dx to D(x).
Remark. If D = d, then D is a f -derivation.
Now we give some examples and show some properties for a generalized f -derivation in

lattices.
Example 3.2. Consider the lattice given by the following diagram of Fig. 1.

c

c
c

c

1

b

a

0

Fig. 1

Define, respectively, a function d, a function D and a function f by

dx =





0, if x = 1;

b, if x = b;

a, if x = 0, a.

Dx =





a, if x = 0, a, 1;

b, if x = b.
f(x) =





a, if x = 0, a;

b, if x = 1,b.

Then it is easily checked that d is a f -derivation and D is a generalized f -derivation.
Example 3.3. Consider the lattice as show in Fig. 2.

c

c

c c

1

a b

0

Fig. 2

Define, respectively, a function d, a function D and a function f by

dx =





0, if x = 0,b, 1;

a, if x = a.
Dx =





0, if x = 0,b;

a, if x = a, 1.
f(x) =





x if x = 1, a;

b if x = 0,b.
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Then it is easily checked that d is a f -derivation and D is a generalized f -derivation.
Proposition 3.4. Let L be a lattice and D be a generalized f -derivation on L where

f : L → L is a function. Then the following hold: for any element x, y ∈ L,
(1) dx ≤ Dx ≤ f(x);
(2) Dx ∧Dy ≤ D(x ∧ y) ≤ Dx ∨Dy.
Proof.(1) For all x ∈ L, we have Dx = D(x ∧ x) = (Dx ∧ f(x)) ∨ (f(x) ∧ dx) = (Dx ∧

f(x)) ∨ dx. Then Dx ∧ dx = ((Dx ∧ f(x)) ∨ dx) ∧ dx = dx and so dx ≤ Dx. Also we get
Dx ∨ f(x) = ((Dx ∧ f(x)) ∨ dx) ∨ f(x) = (Dx ∧ f(x)) ∨ f(x) = f(x). So Dx ≤ f(x).

(2) Let x, y ∈ L, we have D(x ∧ y) = (Dx ∧ f(y)) ∨ (f(x) ∧ dy) ≥ Dx ∧ f(y) ≥ Dx ∧Dy.
Moreover, we get D(x ∧ y) = (Dx ∧ f(y)) ∨ (f(x) ∧ dy) ≤ Dx ∨ dy ≤ Dx ∨Dy.

Proposition 3.5. Let L be a lattice and D be a generalized f -derivation on L where
f : L → L is an order-preserving. Suppose x, y ∈ L be such that y ≤ x. If Dx = f(x), then
Dy = f(y).

Proof. Since f is an order-preserving, f(y) ≤ f(x). Thus Dy = D(x∧ y) = (Dx∧ f(y))∨
(f(x) ∧ dy) = (f(x) ∧ f(y)) ∨ (f(x) ∧ dy) = f(y) ∨ dy = f(y).

Proposition 3.6. Let L be a lattice with a least element 0 and D be a generalized
f -derivation on L where f : L → L is a function. Then

(1) if f(0) = 0, then D0 = 0;
(2) if D0 = 0, then Dx ∧ f(0) = 0 for all x ∈ L.
Proof. (1) By Proposition 3.4(1).
(2) Let x ∈ L. It is easily show that d0 = 0. Then

0 = D0 = D(x ∧ 0) = (Dx ∧ f(0)) ∨ (f(x) ∧ d0) = Dx ∧ f(0).

The following result is immediately from Proposition 3.7(2).
Corollary 3.7. Let L be a lattice with a least element 0 and D be a generalized f -

derivation on L where f : L → L is a function such that D0 = 0. Then we have,
(1) Dx ≤ f(0) if and only if Dx = 0 for all x ∈ L;
(2) f(0) ≤ Dx for all x ∈ L if and only if f(0) = 0;
(3) if f(0) 6= 0 and there exist x ∈ L such that Dx 6= 0, then (L,≤) is not a chain.
Proposition 3.8. Let L be a lattice with a greatest element 1 and D be a generalized

f -derivation on L where f : L → L is a function. Then
(1) if D1 = 1, then f(1) = 1;
(2) if f(1) = 1, then Dx = (D1 ∧ f(x)) ∨ dx for all x ∈ L.
Proof. (1) By Proposition 3.4(1).
(2) Note that Dx = D(1 ∧ x) = (D1 ∧ f(x)) ∨ (f(1) ∧ dx) = (D1 ∧ f(x)) ∨ (1 ∧ dx) =

(D1 ∧ f(x)) ∨ dx.
Corollary 3.9. Let L be a lattice with a greatest element 1 and D be a generalized

f -derivation on L where f : L → L is a function such that f(1) = 1. Then we have, for all
x ∈ L,

(1) D1 ≤ f(x) if and only if D1 ≤ Dx;
(2) if D1 ≤ f(x) and D is an order-preserving, then Dx = D1;
(3) f(x) ≤ D1 if and only if Dx = f(x);
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(4) D1 = 1 if and only if Dx = f(x).

Proposition 3.10. Let L be a lattice and D be a generalized f -derivation on L where f :
L → L is a join-homomorphism. Then D = f if and only if D(x∨y) = (Dx∨f(y))∧(f(x)∨Dy)
for all x, y ∈ L.

Proof. (⇒) Let x, y ∈ L. Then D(x∨y) = f(x∨y) = f(x∨y)∧f(x∨y) = (f(x)∨f(y))∧
(f(x) ∨ f(y)) = (Dx ∨ f(y)) ∧ (f(x) ∨Dy).

(⇐) Assume that D(x∨y) = (Dx∨f(y))∧(f(x)∨Dy). By putting y = x in the assumption,
we get Dx = f(x) for all x ∈ L.

Proposition 3.11. Let L be a lattice and D be a generalized f -derivation on L where
f : L → L is an order-preserving. Then Dx = (D(x ∨ y) ∧ f(x)) ∨ dx for all x, y ∈ L.

Proof. Let x, y ∈ L. Then dx ≤ f(x) ≤ f(x ∨ y). So Dx = D((x ∨ y) ∧ x) = (D(x ∨ y) ∧
f(x)) ∨ (f(x ∨ y) ∧ dx) = (D(x ∨ y) ∧ f(x)) ∨ dx.

Proposition 3.12. Let L be a lattice and D be a generalized f -derivation on L where
f : L → L is a function. If D is an order-preserving, then Dx = D(x ∨ y) ∧ f(x) for all x ∈ L.

Proof. Let x, y ∈ L. Then dx ≤ Dx ≤ D(x ∨ y) ≤ f(x ∨ y). So Dx = D((x ∨ y) ∧ x) =
(D(x∨y)∧f(x))∨ (f(x∨y)∧dx) = (D(x∨y)∧f(x))∨dx. Since dx ≤ D(x∨y) and dx ≤ f(x),
dx ≤ D(x ∨ y) ∧ f(x). Hence Dx = D(x ∨ y) ∧ f(x).

Theorem 3.1.3 Let L be a lattice and D be a generalized f -derivation on L where f :
L → L is a function. Then the following conditions are equivalent:

(1) D is an order-preserving;

(2) Dx ∨Dy ≤ D(x ∨ y) for all x, y ∈ L;

(3) D(x ∧ y) = Dx ∧Dy for all x, y ∈ L.

Proof. (1) ⇒ (2) Let x, y ∈ L. Then Dx ≤ D(x ∨ y) and Dy ≤ D(x ∨ y). Therefore
Dx ∨Dy ≤ D(x ∨ y).

(2) ⇒ (1): Assume that (2) holds. Let x, y ∈ L be such that x ≤ y. Then Dy = D(x∨y) ≥
Dx ∨Dy but we have Dy ≤ Dx ∨Dy. So Dy = Dx ∨Dy, it follow that Dx ≤ Dy.

(1) ⇒ (3): Let x, y ∈ L. Then D(x ∧ y) ≤ Dx and D(x ∧ y) ≤ Dy. Therefore D(x ∧ y) ≤
Dx ∧Dy. By Proposition 3.4(2), we have D(x ∧ y) ≥ Dx ∧Dy. Hence D(x ∧ y) = Dx ∧Dy.

(3) ⇒ (1): Assume that (3) holds. Let x, y ∈ L be such that x ≤ y. Then Dx = D(x∧y) =
Dx ∧Dy, it follow that Dx ≤ Dy.

Theorem 3.14. Let L be a lattice with a greatest element 1 and D be a generalized
f -derivation on L where f : L → L is a meet-homomorphism such that f(1) = 1. Then the
following conditions are equivalent:

(1) D is an order-preserving;

(2) Dx = f(x) ∧D1 for all x ∈ L;

(3) D(x ∧ y) = Dx ∧Dy for all x, y ∈ L;

(4) Dx ∨Dy ≤ D(x ∨ y) for all x, y ∈ L.

Proof. By Theorem 3.13, we get the conditions (1) and (4) are equivalent.

(1)⇒(2): Assume that (1) holds. Let x ∈ L. Since x ≤ 1, Dx ≤ D1. We have Dx ≤ f(x).
So we get Dx ≤ f(x) ∧ D1. By Proposition 3.8(2), we have Dx = dx ∨ (f(x) ∧ D1). Thus
Dx = f(x) ∧D1.
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(2)⇒(3): Assume that (2) holds. Then Dx∧Dy = (f(x)∧D1)∧ (f(y)∧D1) = f(x∧ y)∧
D1 = D(x ∧ y).

(3)⇒(1): Assume that (3) holds. Let x, y ∈ L such that x ≤ y. By (3), we get Dx =
D(x ∧ y) = Dx ∧Dy, it follows that Dx ≤ Dy.

Theorem 3.15. Let L be a distributive lattice and D be a generalized f -derivation on L

where f : L → L is a join-homomorphism. Then the following conditions are equivalent:
(1) D is an order-preserving;
(2) D(x ∧ y) = Dx ∧Dy for all x, y ∈ L;
(3) D(x ∨ y) = Dx ∨Dy for all x, y ∈ L.
Proof. By Theorem 3.13, we get the conditions (1) and (2) are equivalent.
(1)⇒(3): Assume that (1) holds and let x, y ∈ L. Then dx ≤ Dx ≤ D(x ∨ y) ≤ f(x ∨ y).

By Proposition 3.11, we have Dx = dx ∨ (f(x) ∧ D(x ∨ y)). Then Dx = (dx ∨ f(x)) ∧
(dx ∨ D(x ∨ y)) = f(x) ∧ D(x ∨ y). Similarly, we can prove Dy = f(y) ∧ D(x ∨ y) . Thus
Dx ∨ dy = (f(x) ∧D(x ∨ y)) ∨ (f(y) ∧D(x ∨ y)) = f(x ∨ y)) ∧D(x ∨ y) = D(x ∨ y).

(3)⇒(1): Assume that (3) holds and let x, y ∈ L be such that x ≤ y. Then Dy = D(x∨y) =
Dx ∨Dy by (3). It follows that Dx ≤ Dy, this shows that D is an order-preseving.

Theorem 3.16. Let L be a modular lattice and D be a generalized f -derivation on L

where f : L → L is a join-homomorphism. If there exist a ∈ L such that Da = f(a), then D is
an order-preserving implies D(x ∨ a) = Dx ∨Da for all x ∈ L.

Proof. Let x ∈ L. Suppose that there exist a ∈ L such that Da = f(a) and D is an
order-preserving. Then Da ≤ D(x ∨ a). By Proposition 3.12, we get Dx = D(x ∨ y) ∧ f(x).
So Dx ∨Da = (D(x ∨ a) ∧ f(x)) ∨Da = D(x ∨ a) ∧ (Da ∨ f(x)) = D(x ∨ a) ∧ (f(a) ∨ f(x)) =
D(x ∨ a) ∧ f(x ∨ a) = D(x ∨ a).

Let L be a lattice and D be a generalized f -derivation on L where f : L → L is a function.
Denote FixD(L) = {x ∈ L|Dx = f(x)}.

In the following results, we assume that FixD(L) is a nonempty proper subset of L.
Theorem 3.17. Let L be a lattice and D be a generalized f -derivation on L where

f : L → L is a lattice-homomorphism. If D is an order-preserving, then FixD(L) is a sublattice
of L.

Proof. Let x, y ∈ FixD(L). Then Dx = f(x) and Dy = f(y). Then f(x ∧ y) =
f(x)∧f(y) = Dx∧Dy ≤ D(x∧y). So D(x∧y) = f(x∧y), that is x∧y ∈ FixD(L). Moreover,
we get f(x∨ y) = f(x)∨ f(y) = Dx∨Dy ≤ D(x∨ y) by Theorem 3.13. So D(x∨ y) = f(x∨ y),
this shows that x ∨ y ∈ FixD(L).

Theorem 3.18. Let L be a lattice and D be a generalized f -derivation on L where
f : L → L is a lattice-homomorphism. If D is an order-serving, then FixD(L) is an ideal of L.

Proof. The proof is by Proposition 3.5 and Theorem 3.17.
Let L be a lattice and D be a generalized f -derivation on L where f : L → L is a function.

Denote kerD = {x ∈ L|Dx = 0}.
In the following results, we assume that kerD is a nonempty proper subset of L.
Theorem 3.19. Let L be a distributive lattice and D be a generalized f -derivation on

L where f : L → L is a lattice-homomorphism. If D is an order-preserving, then kerD is a
sublattice of L.
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Proof. The proof is by Theorem 3.15.
Definition 3.20. Let L be a lattice and f : L → L be a function. A nonempty subset I of

L is said to be a f -invariant if f(I) ⊆ I where denote f(I) = {y ∈ L|y = f(x) for some x ∈ I}.
Theorem 3.21. Let L be a lattice and D be a generalized f -derivation on L where

f : L → L is a function. Let I be an ideal of L such that I is a f -invariant. Then I is a
D-invariant.

Proof. Let y ∈ DI. Then there exist x ∈ I such that y = Dx. Since I is a f -invariant,
f(x) ∈ I. We have y = Dx ≤ f(x). Since I is an ideal and f(x) ∈ I, y ∈ I. Thus dI ⊆ I.
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