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Each biologically active compound induces phenotypic changes in target cells that are characteristic for its

mode of action. These phenotypic alterations can be directly observed under the microscope or made

visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the

cellular phenotype induced by a compound of interest with the phenotypes of reference compounds

with known cellular targets allows predicting its mode of action. While this approach has been

successfully applied to the characterization of natural products based on a visual inspection of images,

recent studies used automated microscopy and analysis software to increase speed and to reduce

subjective interpretation. In this review, we give a general outline of the workflow for manual and

automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets

could be identified through such approaches.
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1 Introduction

Using bioactive natural compounds for medical applications is
part of the human cultural heritage. The most successful
strategy until today for the identication of their bioactivity and
their medical application has been coined ‘forward pharma-
cology’.1 In this approach, natural products are tested in
phenotypic assays of high relevance for in vivo pharmacology.
For example, the assay may probe their ability to inhibit the
growth of bacterial pathogens or cancer cells, or to induce
cellular differentiation. The major drawback of phenotypic
assays is that the molecular interaction partner(s) of the
bioactive compound remain unknown, rendering a rational
optimisation of their target affinity and selectivity difficult.
While a profound knowledge of the molecular target(s) of
a compound is indispensable for its use as a tool in biochemical
research2 and/or its development as a therapeutic agent,3 the
elucidation of the target(s) starting from phenotypic observa-
tions is still a tedious and time consuming process, as a widely
applicable, generic protocol does not exist.1,4,5 The large number
of possible binding partners render the search for a target
similar to a quest for the “needle in a giant haystack”.4

One way to generate a specic hypothesis about the mode of
action of a compound of interest is to correlate the cellular
phenotype induced upon compound treatment to the pheno-
type of reference compounds with known mode of action. This
approach is based on the assumption that the modulation of
a particular target results in a specic phenotype that is char-
acteristic for such a modulation; therefore compounds that
induce highly similar phenotypes may share the same
Nat. Prod. Rep.
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molecular target. The cellular phenotypes can be molecular
signatures (e.g. the cellular transcriptome, proteome or
metabolome),6,7 bioactivity patterns,8 or changes in cellular
morphology.5,9,10 An important strength of techniques based on
such correlation signals is that they reect ‘global’ compound
effects that capture direct target interactions as well as the
downstream consequences of the interactions in a hypothesis-
free manner. In addition, they usually do not require labelling
or chemical modication of the compound of interest, thereby
avoiding an articial perturbation of its cellular interactions.
On the other hand, a major limitation is that they can only
detect matches to known modes of action of the reference set;
therefore, they are not suited to disclose targets that are not
addressed by the reference set. Moreover, as various algorithms
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always propose ‘most similar’ signatures, there is an inherent
danger of not clearly discerning false positive matches. There-
fore, all target predictions derived from correlation of cellular
phenotypes need to be veried by subsequent biochemical or
biophysical experiments.

Here, we will review how imaging techniques that monitor
changes in cellular morphology have been applied to the mode
of action analysis of natural products and other small mole-
cules. The analysis can be done visually by comparing micro-
scopic images. The information content of such images can
greatly be enhanced by staining specic cellular components,
especially with immunouorescence techniques. The intro-
duction of immunouorescence has been a decisive step in
elucidating modes of action by image analysis, as they are able
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to visualise almost every potential target in the cell.11 The
second important step was the development of microscopes
that are able to record large amounts of microscopic images
automatically. Using specic image analysis soware, the
information stored in these images serves to construct detailed
phenotypic proles of compounds that are compared by
statistical analysis.9

In the following we will give an overview of target identi-
cation by image analysis starting from a visual inspection of
cellular morphology and of immunouorescence pictures, fol-
lowed by a general outline of the workow for an automated
image analysis. Natural products whose bacterial and eukary-
otic targets could be identied through such approaches are
highlighted along this path.

2 Phenotypic changes related to
specific modes of action
2.1 Morphological phenotypes

Each biologically active compound induces phenotypic changes
in target cells that are more or less characteristic for its mode of
action. The simplest cases are striking alterations in the
morphology of incubated cells that can easily be observed under
the microscope. Myxothiazole, a strong inhibitor of complex III
of the respiratory chain12 induced striking changes in the
morphology of L-929 mouse broblasts. The cells became
bigger and more circular in shape with an outspread cytoplasm.
Their shape resembled that of “fried eggs” (Fig. 1). This fried
eggs effect, easily seen directly under the microscope or aer
Giemsa staining, was found to be characteristic for this type of
inhibitors. The same morphological changes were observed
again with neopeltolide and helped to elucidate the mode of
action of this marine natural product, which is unrelated to
myxothiazole in terms of structure and phylogenicity of the
producer (Scheme 1).13

Alterations in the shape and size of the cellular nucleus and
the number of nuclei in a cell can be observed either visually or
aer staining. Propidium iodide and DAPI are sensitive uores-
cent dyes that can easily be applied to stain nuclei and chro-
mosomes in alcohol-xed cells. Compounds interfering with
mitotic spindle formation induce a characteristic multi-
mininucleation (Fig. 2) that is due to mitotic slippage.14 DAPI
Fig. 1 L-929 mouse fibroblasts show a “fried eggs effect” when
incubated with inhibitors of complex III of the respiratory chain.13 The
cells in the right image were incubated with neopeltolide (50 ng ml�1)
for 1 day. The left picture shows control cells. Cells were stained with
Giemsa.

This journal is © The Royal Society of Chemistry 2016
staining was used to screen for spindle interfering compounds
like paclitaxel and epothilone, which are used as anticancer
drugs.15 The active principle of some positive extracts of the
myxobacterium Sorangium cellulosum was shown to be disorazol,
which had been detected ten years earlier as a highly active
compound.16 The induction of multimininucleation gave rst
hints to elucidate its mode of action. In subsequent studies, it
was shown that disorazol induced microtubule depletion in cells
and inhibited tubulin polymerisation in vitro.17

Compounds interfering with actin polymerisation lead to an
increase of nuclei in the cell, as they inhibit the function of the
contractile ring, which consists of myosin and actin. In the
example depicted in Fig. 2, the cytokinesis at the end of mitosis
was inhibited, which resulted in many cells having a double
nucleus. This phenotype can clearly be discriminated from the
multimininucleation effect. The observation of double nuclei
led to the elucidation of the modes of action of the myx-
obacterial products chondramide and chivosazole.18,19

Due to their bigger size, it is much easier to observe specic
morphological changes in eukaryotic cells than in prokaryotes.
But in principle it should also be possible to nd changes in
bacterial morphology that are typical for a certain mode of
action. A striking phenotype was observed with acyldepsipep-
tides (ADEPs), which target ClpP, the core unit of a major
bacterial protease. ADEPs induced an uncontrolled proteolysis
which led to inhibition of bacterial cell division. As a conse-
quence, a lamentation of Bacillus subtilis was observed when
incubated with ADEPs.20 An unusual morphology of altered,
elongated mycobacteria was also the rst hint to a novel mode
of action for griselimycins, cyclic peptides produces in Strepto-
myces with a strong activity againstMycobacterium tuberculosis.21

Half a century later, genome sequencing techniques enabled
the discovery that inhibition of the DNA sliding clamp DnaN
caused the unusual phenotype.22

Due to the undercritical size of a well-characterised reference
set, a prediction of bacterial mechanisms based on morphology
alone is not possible yet.
2.2 Phenotypes based on cellular protein patterns

Fluorescent and especially immunouorescence techniques are
able to specically visualise almost each protein in the cell.23 They
highly increase the number of phenotypes that can be distin-
guished in cells when incubated with bioactive compounds.
Alterations of themain structures of the cytoskeleton can easily be
made visible. F-actin can directly be stained by uorescently
labelled phalloidin, a toxin isolated from Amanita phalloides
mushrooms. Microtubules are stained by an immunostaining
protocol using a primary antibody against tubulin and
a secondary, uorescently labelled antibody that recognises the
primary one.11 Recently, far-red uorogenic probes for live-cell
imaging of the cytoskeleton were designed that show minimal
cytotoxicity with excellent brightness and photostability. Silicon-
rhodamine was conjugated to docetaxel and desbromo-des-
methyl-jasplakinolide, which bind to microtubules and F-actin,
respectively. The interaction with the polar protein surfaces
switched the uorophores to the ON state.24 Photostatins are
Nat. Prod. Rep.
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Scheme 1 Natural products that induce specific cellular phenotypes.

Fig. 2 Themorphology of cellular nuclei and their number per cell can
easily be visualised by DAPI staining. Left: Compounds interfering with
spindle assembly induce the formation of multimininucleated cells.17

L-929 cells were incubated with disorazol A1 (50 pg ml�1) for 2 d.
Right: Compounds interfering with actin polymerisation induce cells
with double nuclei. Human A-431 epidermoid cancer cells were
incubated with chivosazole F (200 ng ml�1) for 16 h. (Microtubules are
stained green, microfilaments red).

Nat. Prod. Rep.
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microtubule inhibitors that can be switched on and off in living
cells by visible light to optically control microtubule dynamics.25

Staining F-actin of cells incubated with the myxobacterial
compound chivosazole A or F isolated from Sorangium cellulo-
sum showed a depletion of microlaments within 15 min,
resulting in short pieces and small spots of F-actin. The spot-
tiness of the actin cytoskeleton aer one day of incubation
could be quantied by image analysis. Follow-up experiments
proved that the chivosazoles inhibit actin polymerisation.19 On
the contrary, chondramides isolated from Chondomyces crocatus
induced stronger actin laments with knots and nally big F-
actin clumps (Fig. 3).18 In vitro experiments with isolated actin
showed an enhancement of actin polymerisation by chon-
dramides (Scheme 1).

Compounds acting on tubulin through inhibition or
enhancement of tubulin polymerisation induce a depletion of
microtubules in the cell, or they give rise to microtubule
This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/c5np00113g


Fig. 3 Phenotypic changes in the F-actin cytoskeleton stained by
fluorescently labelled phalloidin (red or green). Top left: PtK2 cells
treated with the vehicle only; top right: Ptk2 cells incubated with
chondramide B (200 ng ml�1) for 2 h; bottom left: F-actin of L-929
cells treated with chondramide B (200 ng ml�1) overnight; bottom
right: PtK2 cells incubated with chivosazole F (200 ng ml�1) for 15 min.
Nuclei were stained blue.

Scheme 2 Compounds for which image based profiling was applied
to identify their MoA (left side). Respective reference compounds with
similar phenotypic effect and cellular target are depicted on the right
side.
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bundling, respectively.26 The observation of microtubule
depletion led directly to the elucidation of the mode of action of
tubulysins.27,28 Both categories of compounds interfere with the
high dynamics of these structures, which are particularly
sensitive during mitotic spindle formation. Abnormal spindles
with multipolar conguration were reported for compounds
interfering with tubulin polymerisation like tubulysins and
disorazols.17,27 Multiple asters are typical phenotypes of micro-
tubule stabilizing natural products like paclitaxel, epothilones,
and taccalonolides (Fig. 4).29,30 Detailed studies with GFP-b-
tubulin expressing HeLa cells also showed differences due to
the compound's specic mode of action. Paclitaxel-induced
asters oen coalesced over time resulting in fewer, larger asters
whereas numerous compact asters persisted once they were
formed in the presence of the taccalonolides.30

Also compounds that do not target tubulin directly can
induce specic phenotypic changes of spindle formation. A
prime example is monastrol, an inhibitor of the motor protein
kinesin-5, which is needed to separate the centrosomes.31

Monastrol induces monopolar spindle formation.
The endoplasmic reticulum (ER) is an organelle that forms

a network that spans over the whole eukaryotic cell. Its structure
can be visualised by staining HSP90B1 (also known as endo-
plasmin, gp96, grp94 and ERp99), a chaperone protein that is
located in the ER membrane.32 Observing phenotypic changes
in the ER structure, i.e., in the HSP90B1 distribution, helped
elucidating the modes of action of the myxobacterial products
archazolid and apicularen, which showed the same phenotype
as concanamycin, a known inhibitor of V-ATPase.33 It also gave
a valuable hint for the mode of action of cruentaren, whose
phenotype resembled oligomycin, a known inhibitor of F-
ATPase (Fig. 5).34
This journal is © The Royal Society of Chemistry 2016
3. Definition of key terms
3.1 High throughput screening (HTS)

HTS describes the process of testing large numbers of chemical
compounds (in the order of >105/week) for biological activity in
pre-designed testing systems, which usually are biochemical in
vitro assays. Due to the focus on throughput and speed mostly
single read out measurements in 384- or 1536-well micro-
titerplates are performed.43,58,59 HTS is mostly used for the
identication of bioactive compounds from libraries of
synthetic small molecules and/or natural products.
Nat. Prod. Rep.
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Fig. 4 Microtubules in interphase and mitotic PtK2 cells stained in
green by a tubulin specific antibody. Control cells show a normal
bipolar mitotic spindle (left), cells incubated with epothilone B (50 ng
ml�1) overnight show multiple asters instead (right). Nuclei and chro-
mosomes were stained blue by DAPI.

Fig. 5 PtK2 cells were incubated with different ATPase inhibitors
overnight, fixed and stained green for HSP90B1, a marker for the ER.
The cells were treated with (from top to bottom) the vehicle only,
oligomycin A, apicularen A (left panel) and thapsigargin, cruentaren A,
and archazolid A (right panel). Each type of inhibitor induced a different
phenotype, and inhibitors with the same mode of action showed the
same phenotype. The images obtained with F-ATPase inhibitors oli-
gomycin and cruentaren are similar, as well as those with V-ATPase
inhibitors apicularen and archazolid. Thapsigargin, an inhibitor of Ca-
dependent ATPase, induced a third phenotype.
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3.2 High content screening (HCS)

HCS is regarded as a combination of high throughput screening
with cellular imaging. The data obtained aremultiple image-based
measurements derived from a cell-based assay. Phenotypic
screens for cellular effects of bioactive compounds usually draw on
HCS. In a HCS experiment assay handling and data evaluation are
more complex, thus going along with a lower throughput of tested
Nat. Prod. Rep.
compounds (in the order of 104/week). HCS requires robotic
handling platforms and an automated imaging system for the
arrayed cell sample (384 well) as well as specialised image analysis
soware and bioinformatics data management for the interpre-
tation of the multidimensional results. Cellular morphology or
alterations in the amount of cellular components (proteins, RNAs,
ions) are most commonly visualised by using uorescent protein-
tags, uorescent proteins or physiological indicator dyes. A special
benet of HCS is the possibility to monitor effects on a single cell
level. The stored images provide the opportunity to visually inspect
the cellular morphology induced by hit compounds and to
discriminate from false positives.

3.3 High content analysis (HCA)

HCA bears on the same instrumentation and methods as HCS.
In contrast to HCS, which usually aims at screening medium
sized (>104) compound collections, HCA is generally performed
on a lower number of compounds. Instead, the total parameters
(descriptors) extracted from each image are higher (up to 100).
When multiplying the number of single cells analysed with the
serial dilutions of each compound, a HCA campaign can easily
generate billions of single data-points.9 Hence, HCA requires
considerably more efforts regarding data processing and data
reduction as compared to HCS.55,59,60

3.4 Cellular proling

Cellular proling is applied for comparing cellular reactions to
bioactive compounds with each other. In general, proling
refers to the generation of distinct proles or footprints from
datasets in order to identify or predict certain patterns or
correlations. In a biological context, methods like transcrip-
tional proling and proteomic proling start from molecular
measurement of cellular responses to different perturbations.
Data gathered are in turn used to generate proles which allow
for receiving information on compound activity and target
mechanisms. However, the aforementioned biological proling
techniques are limited as they can only measure an average
from a population of treated cells. Cellular proling circum-
vents this problem by considering data obtained from single
cells and therefore bears heavily on HCA. Evaluation of HCA
incorporates the use of descriptors that were calculated from
image analysis for creating a multi-dimensional cellular prole
(e.g., intracellular protein translocation, organelle structure
changes, overall morphology changes, three dimensional
structure modications),38 reecting the phenotypic signature
of a cell treated with a given compound.

4 High content image analysis
4.1 Automated microscopy as a basis for high content
analysis and cellular proling

As illustrated above, the visual assessment of phenotypical
changes of cells can add a signicant measure to target-/mode of
action-predictions of yet mechanistically uncharacterised
compounds. However, comparing greater numbers of microscopy
images taken from differently treated cells by the naked eye and
This journal is © The Royal Society of Chemistry 2016
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evaluating various phenotypical parameters makes the process
extremely time-consuming, with only a relative small number of
cells being visualised at a time. Eventually, such analyses bear the
risk of introducing a bias to the evaluation due to subjective
estimations made by the experimenter, especially when
comparing minute variations in uorescence staining.

Thus, to combine more subtle and unbiased approaches
with a higher throughput, an automation of the whole image-
acquisition/data-gathering/evaluation-process is inevitable.

Fluorescence microscopy has already been well-established
since the end of the 1980s. Yet, the evolving number of multi-
colour uorescent dyes, the introduction of high throughput
plate readers, advances in digital imaging microscopy together
with the emergence of high-performance computer hardware
were prerequisites for the invention of the rst automated
microscopes in the mid-to-late 1990s.35–37 Nowadays a number of
commercial providers (ESI, Table S1†) and a growing number of
open-source informatics tools for image analysis are available.38,39

Modern automated microscopes can read whole microtiterplates
within minutes depending on the exposure time, the number of
images acquired per well, the number of uorescence channels
used and the image resolution. This implies that imaging of one
microtiterplate can easily produce tens of gigabytes of image
data, which in turn requires proper storage systems.38 As the
whole acquisition process underlies automation, the data
generated can be regarded as completely unbiased and statisti-
cally more robust than images taken by the experimenter from
a manually operated microscope. On this account, automated
microscopy has been regarded “as a technology to bridge the gap
between depth and throughput of biological experiments”39 and
thus provides the basis for high content screening (HCS), high
content analysis (HCA) and cellular proling.

HCA has proven to be powerful for the generation of cellular
proles. Besides possessing the capability to analyse processes like
protein phosphorylation, receptor/ligand interactions, cellular
uptake, protein expression, cell cycle regulation, enzyme activation
or cell proliferation, HCA excels at discerning cell-morphological
changes from images of thousands of individual cells, which are
generally not traceable by conventional biochemical methods.
Morphological changes include intracellular protein trans-
location, organelle structure changes (e.g. changes in mitochon-
drial membrane potential, cytoskeletal remodelling, formation of
micronuclei or quantication of internalization) and three
dimensional structure modications.38 This approach then allows
for proling of dose-dependent phenotypic effects induced by
different compounds targeting distinct cellular processes, e.g.,
cytostatic agents, transcription inhibitors, translation inhibitors or
agents interfering with DNA replication.

The following sections will briey outline how to conduct
a HCA and how the data collected have been used to generate
cellular proles in order to classify orphan compounds.
Fig. 6 Conversion of image data to numeric data. The microscopic
image on the left shows Hoechst stained nuclei of eukaryotic cells. The
white line marks the detection region for the fluorescence intensity
profile shown in themiddle. A threshold value (red arrowhead) is set for
defining a cellular object by its fluorescence intensity. The pixel area
above this threshold is then considered as cellular object and marked
by software generated masks as depicted on the right.
4.2 Acquiring primary microscopy data from biological
samples

The rst step in the process of a HCA is the creation of arrays of
biological samples in microtiterplates. Typically human-borne
This journal is © The Royal Society of Chemistry 2016
cell lines or primary cells are chosen as models for in vivo
systems. One should always bear in mind that each cell type
might respond in a different way to a given compound
depending on its proteome, its membrane permeability or its
physiological origin in general.40

Arrayed cells are treated with test and reference compounds
at various concentrations in order to obtain reliable compara-
tive phenotypic proles. Aer treatment cells are usually xed,
washed and stained in an automated manner.38,41 This proce-
dure implies that any data obtained reect a single endpoint.
Thus, the half time of cellular responses to a certain treatment
needs to be estimated by the experimenter, and the time of
xation has to be set accordingly.

Hereaer, microscopic images are acquired by automated
microscopes making use of laser- and/or image-based autofocus
optics, so that microtiterplates are rapidly imaged.23 By
choosing lower magnications (5� to 10�) higher cell numbers
can be imaged at a time, which is generally desirable for cellular
proling approaches to obtain statistically more meaningful
results.
4.3 From image data to numeric data

Each image set contains large amounts of imaging data. For
example, if cells were imaged using three different channels and
four sites of a well were visualised per sample, the 2D-readout of
a whole 384-well will create 4608 single images. Such numbers
cannot be inspected by eye and thus the huge amount of infor-
mation contained in respective images has to be extracted bio-
informatically, i.e. it has to be converted to numeric data. For
example, the size of an object can be expressed by the consti-
tuting number of pixels. It should be noted that high quality
images are fundamental for a reliable gain of information, as
algorithms will generate numeric data even out of bad images
(e.g., blurry, out of focus, artefacts).

The process of image conversion into numeric data
comprises three key steps that have recently been reviewed in
detail: (I) image pre-processing, (II) object identication and
segmentation and (III) feature extraction.38,42 In brief, aer
image pre-processing (involving background corrections and
other procedures), objects have to be identied and segmented.
In the example given in Fig. 6, cell nuclei were stained with the
Nat. Prod. Rep.
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DNA-binding, blue-uorescent dye Hoechst 33342 (Hoechst).
The line drawn across the Hoechst-stained nucleus marks the
section for which a uorescence intensity prole was generated.
This step exemplies the direct conversion of image informa-
tion into numeric data, as the uorescence intensity is now
expressed as relative grey values. With the intensity prole at
hand, minimal uorescence intensity may be determined as
a threshold value for the identication of this nucleus (red
arrowhead). Each pixel with a higher intensity is then consid-
ered as part of the nucleus of that particular cell. Based on the
intensity levels a mask for all Hoechst-stained objects in the
image is calculated by the soware.

A subsequent segmentation step is essential for separating
cells grown as a conuent layer in order to assign the features
correctly to each individual cell.

Feature extraction refers to the act of measuring values from
shapes or portions of objects in a given image. Such features,
also termed descriptors, are extracted from the information
covered by the respective thresholded masks, representing
detection areas. In the case of DAPI-stained nuclei depicted in
Fig. 7, features like number, size, shape, uorescence intensity
or nuclear texture might be extracted, as they are all integral
part of the thresholded mask dened by the object-identifying
algorithm.43 Such features are captured for each cell of an
analysed image area; they serve for the generation of cellular
proles induced by different compound treatments.

Remarkably, a higher number of features does not neces-
sarily generate more signicant cellular proles.44,45 It is more
relevant to select features that reasonably represent the cellular
reaction in response to a given compound. For instance, in
a setup that aims at probing cytostatic agents, a feature like
“shape of tubulin-staining” will add more informative content
to a cellular prole than a feature like “average intensity of
nuclear staining”.
Fig. 7 Conversion of image data into features. The multicolour image
shows triply stained cells. The nucleus is stained with DAPI (blue), ER-
membranous compartments are visualised with Alexa Fluor 488-
conjugated concanavalin A (green) and the cytosolic isoform of
clusterin (CLU) was immunodetected using a cyanin 3-labeled anti-
body. For the single channel images thresholds were determined. All
pixels included for analysis are combined below the channel-specific
thresholded mask. From the respective masks, distinct features can be
extracted that are characteristic for every object.

Nat. Prod. Rep.
4.4 From numeric data to target identication

With the cellular prole in form of numerical features
(descriptors) at hand, the mode of action of a compound of
interest can be predicted by comparing its descriptor set to the
sets of reference compounds with knownmodes of action. Fig. 8
depicts exemplary cellular proles of 28 different references and
one compound assumed to have an unknown mode of action
(denoted “X”). Each prole consists of 15 features derived from
three uorescence channels.

For comprehensive visualization, the response of a given
feature has to be normalised, so that the relative intensity range
for all features is equal. Based on this, a colour intensity range can
be applied expressing the relative change of a feature in response
to a certain treatment. In a next step, hierarchical cluster analysis
can be performed to calculate the extent of similarity between
cellular proles of differentially treated samples.46 The Euclidian
distance as a similarity measure between the different proles is
then plotted as a dendrogram to indicate clustering of given
compounds. In the example given in Fig. 8, compound X is closely
clustering together with reference compound 20, pointing towards
a potential similar mode of action.

Several proling approaches have been described where
different strategies were applied in order to classify reference
compounds. In these broadly conceived studies, the number of
cellular features extracted from microscopic images vastly
exceeds the 15 features depicted in our example. A simple cluster
analysis is not feasible anymore, as underlying mathematical
algorithms cannot incorporate any number of descriptors.
Hence, numeric data obtained from these HCA must further be
converted bioinformatically by the use of different mathematical
strategies (Table S2†). In an important comparative study by
Ljosa et al., a single image dataset was used to create compound
Fig. 8 Profile clustering for detecting similarities. (A) Exemplary
compound profile consisting of measured features for the different
fluorescence images and channels. (B) Hierarchical cluster analysis of
29 compound profiles (28 reference compounds and one unknown X).
The dendrogram on the left visualises the relationship between
different profiles. Highly similar profiles are clustered together whereas
diverging profiles are located far away from each other.

This journal is © The Royal Society of Chemistry 2016
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Fig. 9 Overview of bioinformatic strategies for generating compound profiles. (Top) Experimental design. Cultured cells in microtiter plates are
compound treated, labeled, fixed, and imaged. Then features are extracted from respective images. One of the profiling methods under
investigation condensed thesemeasurements into a profile (vector of numbers) that describes each sample. A sample with unknownmechanism
of action (MOA) was predicted to have the same MOA as the sample whose profile is most similar to that of an unknown sample. (Bottom)
Illustrations of five profiling methods. (A) Means of raw per-cell features. (B) Kolmogorov–Smirnov (KS) statistic relative to negative control. (C)
Normal vector of decision plane of linear support-vector machine (SVM) versus negative control. (D) Proportion of cells in each component of
a Gaussian mixture (GM). (E) Latent feature extraction using factor analysis. Figure modified from Ljosa et al.47
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proles following different bioinformatical approaches (Fig. 9).
Subsequently, the accuracy of the obtained mode of action
predictions was determined; the authors concluded that “the
proles that best represented the phenotypes were obtained
using factor analysis”, with an accuracy of 94% in correctly
classifying compounds with different modes of action.47

4.5 Application examples for cell-based proling

In a study by Young et al. arrayed cells were treated with a total of
6547 different compounds, 58% of whichwere of natural origin.48

HCA was performed with the stained cells and cellular proling
was achieved by mining the numerical data obtained with factor
analysis (Fig. 9E). A total of 36 cytological features were extracted
and reduced to 6 signicant factors. For instance, 12 of the
original features were combined to a single factor “nuclear size”.
From the relative change in the value of the different factors,
cellular proles were generated by cluster analysis. Eventually,
the top 5% of the whole screening set (211 compounds) whose
induced phenotypic responses were signicantly different to the
average control phenotypes (i.e. they show the highest Euclidean
distance) were identied as hits. 96% of all hit-compounds with
similar structure showed strikingly similar phenotypes, such as
the cyclic depsipeptides aurantimycin A and diperamycin or the
glucocorticoids clobetasol-17-propionate and dexamethasone.
However, it became evident that a given phenotype must not
necessarily point to a single structural class of compounds.
Instead, structurally different classes of compoundsmay produce
similar phenotypes, as shown for entobex. The latter clustered
together with abovementioned glucocorticoids, but is structurally
completely unrelated to these. In additional studies, the authors
This journal is © The Royal Society of Chemistry 2016
performed a computed target prediction of their hit-compounds
by means of an annotated chemogenomics database (WOMBAT).
Through combining the results obtained from the target-
prediction algorithm together with the phenotype proles it was
conrmed, that phenotypes correlate well with the predicted
compound targets.

Even though there is no example of mode-of-action identi-
cation of an uncharacterised compound given in this study, it
successfully merges complex imaging data with additional
databases in order to predict mechanisms of action.

In a study by Slack et al., cellular proles were generated based
on cellular subpopulations.45 A total of 35 different compounds
were screened. Ten of these had either miscellaneous or unde-
ned modes of action (e.g. green tea polyphenols, valproic acid,
see Scheme 2). For each cell acquired, a 1536-dimensional feature
vector was computed and subsequently reduced to 25 dimensions
by PCA. Based on the principal components, subpopulations of
cells were identied by application of a Gaussian mixture model
(see Table S2,† Fig. 9D). The authors found that drugs of similar
mechanism oen yield similar subpopulation proles. Interest-
ingly, analysing a higher number of subpopulations (>5) did not
necessarily allow for amore accurate classication of compounds.
Green-tea phenols and valproic acid both clustered with gluco-
corticoid (GC) receptor agonists. Additional biochemical experi-
ments conrmed that a GFP-tagged GC-receptor is internalised by
these compounds. However, two other compounds that clustered
with GC-receptor agonists did not induce positive results in the
biochemical assay, implying that the classication of compound
treatments into mechanisms of action by the Gaussian Mixture
Model is susceptible to false positives. In fact, the accuracy of this
Nat. Prod. Rep.
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model was calculated to be 83% compared to the abovementioned
factor analysis model with 94% accuracy.47

Caie et al. 2010 correlated phenotypic drug response with
several cancer cell types of different genetic background.49 A
library of well-characterised drugs was investigated and HCA
was run in a four-wavelength assay with four different cancer
cell lines. Aer segmentation of imaged cells by identifying
nuclear and cytoplasmic boundaries, 100 features were extrac-
ted. The multiparametric phenotypic response was then
simplied by PCA. Compounds inducing distinct phenotypes
compared to the control cells were classied by calculating the
multidimensional Mahalanobis distance. To further compare
the phenotypic responses across the different cancer cell types,
a Kohonen neural network (self-organizing map) was calculated
(Table S2†). The resulting map visualised the phenotypic data
for each compound across dose response and the four cell types
used. It was found that some compounds, for example the
microtubule stabilizer epothilone B, induced similar pheno-
types across all cell lines tested. In case of the translation
inhibitor emetine (Scheme 2), phenotypic responses of the cell
lines cluster differently, indicating highly sensitive, cell-specic
responses against this particular drug. It was speculated that
p53 is important for emetine activity, as the phenotypic prole
of MCF7-p53 was signicantly different to MCF7-wt, thus
pointing to p53 as a mediator of emetine function. The authors
then performed a k-nearest neighbour classication to make
a prediction of a particular compound's mode of action. The
analysis revealed that the different compound classes clustered
well together in MCF7-wt, MCF7-p53 and MiaPaCa2 cells,
providing proof of concept. In OvCar3 cells, however, mecha-
nistically unrelated compounds were ranked as nearest neigh-
bours, e.g. proteasome inhibitor 1 was closely clustered with
kinase inhibitor PP2 and protein synthesis inhibitors aniso-
mycin and cycloheximide. This illustrates that the manifesta-
tion of a certain cellular prole can be dependent on the cell
type analysed.

Perlman et al. developed a cytological proling approach
comprising multidimensional measurements of cells treated
with a wide concentration range of a reference drug set, selected
to cover commonmechanisms of toxicity or therapeutic action.9

One hundred compounds, including many natural products,
were screened and a sum of 93 descriptors were extracted from
stained cells. For generating compound proles, the descriptors
were plotted as a cumulative distribution and then reduced to
a single number that represented the point of maximum
difference between the control and treated population (Fig. 9B).
Heat plots were generated for all reduced descriptors at
different compound concentrations. For 61 of the 100
compounds, a strong response was obtained by this analysis.
Structurally unrelated compounds sharing a common target
showed similar response proles. By applying a titration-
invariant similarity score (TISS) the authors compared dose–
response proles obtained from analyses of different starting
dosages. Unsupervised clustering of compound proles by their
TISS value revealed that compounds with similar targets can be
successfully clustered together. For the subset of kinase inhib-
itors no clustering was observed even in case of overlapping
Nat. Prod. Rep.
targets, maybe due to a variable inhibition of other kinases. The
authors also included three poorly characterised compounds in
their proling approach. One of these, austocystin, clustered
together with transcription and translation inhibitors. Accord-
ing to unpublished preliminary data, the authors were able to
verify inhibition of transcription of this compound in vitro. In
this case, HCA correctly assigned a compound to a mode of
action class. Of note, austocystin D was later on shown to be
activated by CYP-enzymes and to induce DNA damage.50

The image set of Perlman et al. was reanalysed in a study by
Loo et al. They aimed at providing a multivariate method for
classication of single cells in order to obtain better proling
accuracies.44 Based on more than 300 descriptors the cells were
displayed in the high-dimensional descriptor space. A support-
vector machine (SVM) determined the optimum hyperplane
that separated control from treated cells (Fig. 9C). By applying
a SVM recursive feature elimination algorithm, 20–40 features
were identied to be essential for the classication of most of
the compounds. Similar normal vectors in a concentration
series were clustered to yield a representative dosage (d)-prole.
Signicant d-proles were then used for category prediction and
the authors observed better classication accuracy, as also the
kinase inhibitors grouped together in their analysis.

A proling study by Tanaka et al. draws on simple compar-
ison of means for each descriptor in order to construct cellular
proles (Table S2,† Fig. 9A). They found that the compound
hydroxy-PP induced a distinct phenotype that did not correlate
with that of structurally related kinase inhibitors and micro-
tubule polymerisation inhibitors.51 It was not possible to assign
hydroxy-PP a certain mode of action by comparison to reference
compounds, thus it was postulated that hydroxy-PP must exert
a different mode of action. The cellular target was then identi-
ed as carbonyl reductase 1 through a chemical pull down with
immobilised hydroxy-PP. In this particular case, HCA gave the
hint for a novel mode of action.
4.6 Phenotyping of prokaryotic cells

All of the above mentioned proling approaches phenotyped
eukaryotic cells. For microscopic imaging of prokaryotic cells
a particular challenge is given by their comparably small size and
potential movement due to agella. In a rst in eld study per-
formed by Nonejuie et al., the phenotypic effects of inhibitors
targeting the ve major pathways namely translation, transcrip-
tion, DNA replication, lipid synthesis and peptidoglycan synthesis,
were evaluated.52 Images of E. coli cells immobilised on agarose
pads were manually acquired using an inverted microscope with
a 100� objective. Hereaer images were modied and evaluated
on single image basis by image editing and analysis programs.
Eventually cellular proles were generated by extracting 14
features from the edited images. Following PCA different inhibitor
classes were successfully separated from each other and charac-
terised correctly. As a proof of concept spirohexenolide A, a natural
product with activity against Gram-positive bacteria and E. coli
lptD4213 and formerly unknown MoA, was shown to possess
a similar prole as the antibacterial peptide nisin. Further exper-
iments validated that spirohexenolide A compromised membrane
This journal is © The Royal Society of Chemistry 2016
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integrity and the proton motive force, as known for nisin. The
study provides a proof-of-concept for the validity of phenotypic
proling of bacterial cells.

5 Perspectives

A major bottleneck in the exploration of natural products as
tools for chemical biology research and as lead structures for
therapeutic applications is the identication of their mode of
action on a molecular and cellular level. As the initial bioactivity
of natural products has been oen discovered in phenotypic
assays (like growth inhibition of bacterial or eukaryotic cells)
that do not capture target information, a mode of action
assignment is particularly relevant for natural products
compared to other sources of bioactive compounds. Assign-
ments based on image analysis have been successfully applied
in multiple cases, as outlined in this review. Most application
examples involve a visual inspection of images, while the use of
automated HCA is still limited, maybe due to its technical
complexity and the limited number of labs with fully estab-
lished HCA workows.

The central assumption of target identication by image
analysis is that the modulation of a particular target results in
a specic phenotype. However, not all phenotypes may become
clearly visible with the applied set of antibodies and descriptors.
Provided that no antibody is included that captures a given kind
of phenotypic alteration, evaluation of HCA might lead to false
negative results. Furthermore if a compound has an effect
merely on cellular metabolism or a signalling pathway without
inducing a visible morphological change, immunostainings
may not be applicable for target identication. In this case the
use of physiological indicator dyes can be taken into consider-
ation. Yet, the repertoire of these is limited and only few specic
processes can be monitored, e.g., Ca2+-distribution by Ca2+-
sensitive fura-dyes. Eventually, the applied concentration of
compounds to be screened is a critical parameter that has to be
carefully considered. Too high concentrations may induce
apoptosis, thus masking any specic morphological change
occurring at lower concentrations. This may lead to a false
positive classication, e.g., with general apoptosis inducers. On
the contrary, too low concentrations may give false negative
results, as the characteristic phenotypic effects are not yet
induced. Hence target prediction via cellular proling can easily
become ambiguous or lead into the wrong direction. Even so, it
has to be pointed out that cellular image proling is always
preliminary and has to be proven by more specic biochemical
or biophysical methods.

The potential of HCA itself can be further enhanced: assay-
ing more complex model systems, such as 3D cell cultures or
even whole tissues by HCA will further increase the impact of
cellular proling in the course of drug discovery, as they better
resemble the physiological state in a living system. Promising
advances in this direction have been made in the quantication
of tumor model phenotypes across whole tissues.53 In terms of
target identication it may be advantageous to use an ‘easy to
handle’ model system for proling and apply more complex
model systems for nal validation.
This journal is © The Royal Society of Chemistry 2016
An emerging alternative method for cellular proling by
automated microscopes could be imaging ow cytometry (IFC).
IFC represents a combination of ow cytometry withmicroscopic
imaging and allows for analysis of 300–1000 events per second,
albeit at lower spatial resolution compared to microscopic
analysis.54

So far only data from xed endpoints assays have been used
for cellular proling. Yet, modern instrumentation already
permits kinetic measurements that capture the dynamics of cells
and biological processes over time, thereby adding a signicant
dimension to cellular proling analysis.55 Hence, automated live
cell imaging has recently been regarded as an important trend.56

Indeed, live cell HCA combined with RNA-interference tech-
niques has successfully been applied for proling gene knock-
downs on basis of the induced cellular phenotypes.57

Also for prokaryotic cells HCA-based proling could be of
interest in order to classify the mode of actions of novel anti-
biotics. One disadvantage to overcome so far is the high amount
of manual work that is necessary for bacterial proling. Until
now microscopic analysis of prokaryotic cells in microtiter
plates is not possible due to the minor size and movement of
living bacteria. They can only be imaged at high resolution and
by applying techniques that prevent motility.

Overall, we see a high potential in HCA for accelerating the
target identication process, in particular when the method is
combined with orthogonal target identication techniques: in
such a workow, HCA could be utilised to quickly identify
a compound's cellular target if this belongs to a known mode of
action class. The compound can then be directed to specic
target-based biochemical and/or biophysical assays to verify the
hypothesis generated by HCA. For compound proles that
cannot be matched, direct identication techniques like genetic
screens or pulldown probes need to be applied. Such a system-
atic approach may render the assignment of a biological prole
for natural products more efficient and increase their value for
life sciences signicantly.
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46 G. J. Székely and M. L. Rizzo, Journal of Classication, 2005,
22, 151–183.

47 V. Ljosa, P. D. Caie, R. Ter Horst, K. L. Sokolnicki,
E. L. Jenkins, S. Daya, M. E. Roberts, T. R. Jones, S. Singh,
A. Genovesio, P. A. Clemons, N. O. Carragher and
A. E. Carpenter, J. Biomol. Screen., 2013, 18, 1321–1329.
This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/c5np00113g


Review Natural Product Reports

Pu
bl

is
he

d 
on

 1
8 

Ja
nu

ar
y 

20
16

. D
ow

nl
oa

de
d 

by
 H

el
m

ho
ltz

 Z
en

tr
um

 f
ue

r 
In

fe
kt

io
ns

fo
rs

ch
un

g 
on

 2
1/

01
/2

01
6 

08
:4

6:
30

. 
View Article Online
48 D. W. Young, A. Bender, J. Hoyt, E. McWhinnie, G. W. Chirn,
C. Y. Tao, J. A. Tallarico, M. Labow, J. L. Jenkins,
T. J. Mitchison and Y. Feng, Nat. Chem. Biol., 2008, 4, 59–68.

49 P. D. Caie, R. E. Walls, A. Ingleston-Orme, S. Daya,
T. Houslay, R. Eagle, M. E. Roberts and N. O. Carragher,
Mol. Cancer Ther., 2010, 9, 1913–1926.

50 K. M. Marks, E. S. Park, A. Arefolov, K. Russo, K. Ishihara,
J. E. Ring, J. Clardy, A. S. Clarke and H. E. Pelish, J. Nat.
Prod., 2011, 74, 567–573.

51 M. Tanaka, R. Bateman, D. Rauh, E. Vaisberg,
S. Ramachandani, C. Zhang, K. C. Hansen, A. L. Burlingame,
J. K. Trautman, K. M. Shokat and C. L. Adams, PLoS Biol.,
2005, 3, e128.

52 P. Nonejuie, M. Burkart, K. Pogliano and J. Pogliano, Proc.
Natl. Acad. Sci. U. S. A., 2013, 110, 16169–16174.

53 B. L. Falcon, J. Stewart, S. Ezell, J. Hanson, J. Wijsman, X. Ye,
E. Westin, G. Donoho, K. Credille and M. T. Uhlik, Drug
Discovery Today, 2013, 18, 510–522.
This journal is © The Royal Society of Chemistry 2016
54 N. S. Barteneva, E. Fasler-Kan and I. A. Vorobjev, J.
Histochem. Cytochem., 2012, 60, 723–733.

55 D. L. Taylor, Methods Mol. Biol., 2007, 356, 3–18.
56 R. Pepperkok and J. Ellenberg, Nat. Rev. Mol. Cell Biol., 2006,

7, 690–696.
57 B. Neumann, M. Held, U. Liebel, H. Ere, P. Rogers,

R. Pepperkok and J. Ellenberg, Nat. Methods, 2006, 3, 385–
390.

58 B. Liu, S. Li and J. Hu, Am. J. PharmacoGenomics, 2004, 4,
263–276.

59 Y. Feng, T. J. Mitchison, A. Bender, D. W. Young and
J. A. Tallarico, Nat. Rev. Drug Discovery, 2009, 8, 567–578.

60 J. V. Peppard, C. Rugg, M. Smicker, C. Dureuil, B. Ronan,
O. Flamand, L. Durand and B. Pasquier, Curr. Chem.
Genomics Transl. Med., 2014, 8, 3–15.
Nat. Prod. Rep.

http://dx.doi.org/10.1039/c5np00113g

	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g

	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g

	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g

	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g
	Target identification by image analysisElectronic supplementary information (ESI) available. See DOI: 10.1039/c5np00113g


