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Abstract

The Mayer energy partitioning is extended to the case of a general ab initio wavefunction. The key idea is to expand the two-electron
energy in terms of the density matrix elements Dlm, density cumulants klmqr and two-electron integrals [lmjqr] and to partition the cumu-
lants into one-atom and two-atom components. The numerical results are shown at the CI-D level and are compared to those of the Har-
tree–Fock energy partitioning.
� 2006 Elsevier B.V. All rights reserved.

1. Introduction

The strength of the chemical bond plays an extraordi-
nary role in chemistry. Usually, it is measured by the bond
dissociation energy, since it can be both determined exper-
imentally and calculated using quantum-chemical tech-
niques. However, the calculation of the dissociation
energy is usually done by evaluating the energy difference
E(AB) � E(A) � E(B), which requires that the molecule
AB be separated into two well-defined fragments A and
B. This separability is often possible, but it is not applicable
to the bonds that form a part of a ring system or to weak
intramolecular interactions, such as intramolecular hydro-
gen or agostic bonds. Hence, the question about the
strength of such an intramolecular interaction must be
addressed by other means. Some information about the
bond strength is provided by Bader’s atoms-in-molecules
theory [1], by the natural bond orbital (NBO) analysis
[2], and by various bond order schemes [3–7]. Albeit very
useful, these approaches do not yield a direct energetic
measure of bond strength and usually fail to deliver any
meaningful information for weak interactions. Note that
there is a number of energy partitioning methods [8,9],

which turned out to be extremely useful, but they also
require that the molecule be properly divided into
fragments.

Obviously, an interaction energy between two given
atoms in a polyatomic molecule is not an observable prop-
erty. The most sound approach to the diatomic interaction
energy is to decompose the total energy of the molecule
(within a given quantum-chemical method) into a sum of
one-, two-, and possibly many-atom contributions, but
even this can be done in multiple ways. Such a partitioning
is rather simple for semi-empirical methods [10], but no
longer trivial for ab initio methods due to the presence of
four-center two-electron integrals in the total energy
expression.

There are a number of such schemes employing parti-
tioning of energy in the three-dimensional physical space
of the molecule. They take advantage either of the Bader
partitioning into atomic basins [11–15] or of ‘fuzzy atoms’
[13,16]. However, the present work focuses on the parti-
tioning in the Hilbert-space of atomic orbitals. In this case,
various terms of the total energy expression are attributed
to one- or two-atom components according to some rules.
Some requirements should be imposed on an energy parti-
tioning method from the practical viewpoint to ensure its
applicability to chemical problems. Preferably, the result-
ing two-atom energies should: (a) lie on the ‘chemical

0009-2614/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2006.08.124

* Corresponding author. Fax: +34 972 418 356.
E-mail address: vybo@iqc.udg.es (S.F. Vyboishchikov).

www.elsevier.com/locate/cplett

Chemical Physics Letters 430 (2006) 204–209



Aut
ho

r's
   

pe
rs

on
al

   
co

py

scale’, that is, be comparable in value with typical dissoci-
ation energies for bonding interactions; (b) follow the com-
mon trends known for dissociation energies, e.g., increase
in a series of related compounds with increasing bond mul-
tiplicity; (c) provide clearly different values for bonding and
non-bonding interactions. It should be noted, however,
that the point (a) does not imply that the aim of such meth-
ods is to reproduce the dissociation energy. Note that Hil-
bert-space partitioning will become ill-defined in the limit
of the infinite basis set, but this is not a problem in practice.

Of course, the energy partitioning will be different for
each quantum-chemical method. In the case of the Har-
tree–Fock method, an efficient energy partitioning tech-
nique referred to as ‘chemical energy component analysis’
[17,18] was proposed by Mayer and co-workers, who made
use of the one-atom projection operators. Later, Mayer
was able to find a simpler and eventually more efficient par-
titioning scheme [19] by assigning various terms of the total
Hartree–Fock energy expression to different atoms. Note
that Mayer’s method is very similar, though not identical,
to a partitioning suggested earlier by Ichikawa and Yos-
hida [20]. It is also distantly related to Kollmar’s early
scheme [21]. Another Hartree–Fock energy partitioning
was proposed by Nakai and Kikuchi [22].

When the electron correlation is taken into account, dif-
ferent partitioning techniques must be developed. Recently,
we proposed [23] a partitioning of the total energy within
the density functional theory. Our approach is based on
Mayer’s scheme, except that the exchange-correlation
energy is treated differently. In the decisive step, the
exchange-correlation energy density per electron exc is
expanded into a linear combination of atom-centered basis
functions.

In the present Letter, we introduce a technique for the
total energy partitioning for an arbitrary correlated ab initio

method, also based on Mayer’s partitioning [19]. In order
to pave the way for the general ab initio energy partition-
ing, we wish first to present an alternative derivation of
Mayer’s Hartree–Fock energy partitioning, emphasizing
the role of the one-atom and two-atom density matrices

we introduced in paper [23].

2. Hartree–Fock energy partitioning

First, let us consider the total Hartree–Fock energy
expression in terms of atomic spin-orbitals.1

EHF ¼
X
A>B

ZAZB

RAB

þ
X
lm

Dlm½mjT̂ jl� �
X

A

X
lm

Dlm m
ZA

rA

����
����l

� �

þ 1

2

X
lm

X
qr

ðDlmDqr � DlrDqmÞ½lmjqr�

where Dlm is an element of the charge–density bond order
matrix in a real spin-orbital basis calculated from the
MO coefficients Cli:

DHF
lm ¼

Xocc:

i

CliCmi ð1Þ

A one-atom density matrix function qA(xjx 0) and a one-

atom density qA(x) are defined as follows [23,24]:

qAðxjx0Þ ¼
X
l2A

Xall

m

DlmvmðxÞvlðx0Þ

qAðxÞ ¼ qAðxjxÞ ¼
X
l2A

Xall

m

DlmvmðxÞvlðxÞ
ð2Þ

such that the one-atom contributions sum to the total den-
sity: qðxÞ ¼

P
AqAðxÞ. This definition is consistent with the

Mulliken population analysis, as the one-atom density qA

yields the Mulliken atomic population when integrated
over the entire space. Note that these definitions are remo-
tely related to an early work by Ruedenberg [25].

Using the above definitions for qA(x) and qA(xjx 0), the
Hartree–Fock energy expression can be easily rewritten
as follows:

EHF ¼
X
A>B

ZAZB

RAB

þ
X
AB

X
l2A

X
m2B

Dlm½mjT̂ jl�

�
X
AB

Z
ZB

rB

qAðxÞdx

þ 1

2

X
AB

Z Z
qAðxÞqBðx0Þ
jr� r0j dx dx0

� 1

2

X
AB

Z Z
qAðxjx0ÞqBðx0jxÞ

jr� r0j dxdx0 ð3Þ

where x stands for the spatial r and spin x coordinates of
electron.

The two last terms in Eq. (3) that represent the two-elec-
tron interaction are expressed by means of one-atom den-
sity and density matrix. They have a clear physical
meaning of interaction of electrons of atom A with those
of atom B. Analogously, the third term in Eq. (3) describes
the attraction of the electrons of atom A to the nucleus B.
All these terms are assigned to the two-atom energy EAB,
when A 6¼ B, and to the one-atom energy EA, when
A = B. Obviously, the nuclear repulsion ZAZB/RAB is
assigned to EAB. Following Mayer [19], the product
Dlm½mjT̂ jl� in the second term in Eq. (3) – the kinetic energy
– enters the two-atom energy EAB if l 2 A and m 2 B, or the
one-atom energy EA if the basis functions l and m belong to
the same atom A. This is done because the kinetic energy
operator T̂ ¼ �ð1=2Þr2 does not have a pronounced
atomic character.

Upon inserting the definitions from Eq. (2) into Eq. (3),
one obtains formulae that coincide exactly with those for
the Mayer partitioning [19]. Thus, the two-atom energy
EAB is given by:

1 The [11j22] convention for two-electron integrals and second-order
density matrix elements is used throughout the Letter.
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First, this brief derivation demonstrates that the Mayer
partitioning is consistent with the Mulliken population
analysis and Mayer’s bond orders. Second, it makes evi-
dent that the two-electron part of Mayer’s two-atom en-
ergy EAB can be represented as interaction of the
densities (or the density matrices) of atoms A and B.

3. Ab initio correlated energy partitioning

In order to devise an energy partitioning in the case of a
given correlated ab initio method, one needs first to express
the total energy Etot in terms of one- and two-electron inte-
grals. Generally, the expression for Etot is given by

Etot ¼
X
A<B

ZAZB

RAB

þ
X
lm

Dlm½mjT̂ jl�

�
X

A

X
lm

Dlm m
ZA

rA

����
����l

� �
þ
X
lmqr

Clmqr½lmjqr� ð5Þ

or, analogously, in the basis of molecular spin-orbitals:

Etot ¼
X
A<B

ZAZB

RAB

þ
X

ij

Dij½ijT̂ jj� �
X

A

X
ij

Dij i
ZA

rA

����
����j

� �

þ
X
ijkl

Cijkl½ijjkl� ð6Þ

where Dlm, Clmqr, Dij, Cijkl are the elements of first- and sec-
ond-order density matrix in the AO and MO basis, respec-
tively. Note that Dlm in Eq. (5) is no longer given by Eq.
(1), but rather must be determined from the respective cor-
related wavefunction. In the special case of the Hartree–
Fock wavefunction, Eq. (5) reduces to Eq. (3), as C can
be expressed through D:

CHF
lmqr ¼

1

2
ðDlmDqr � DlrDqmÞ ð7Þ

In the general case, C can be expressed through D with the
help of density cumulants klmqr [26]:

Clmqr ¼
1

2
ðDlmDqr � DlrDqmÞ þ klmqr

Note that there is an alternative way to express the total en-
ergy as a sum of the Hartree–Fock and correlation energies
using the Nesbet theorem [27]. That approach was used by
Ayala and Scuseria [28] to establish their decomposition of
the correlation energy.

In general, a correlated wavefunction W is represented as
a linear combination of the ground state determinant U0

and excited determinants UI:

W ¼ C0U0 þ
X

I

CIUI

� C0U0 þ
Xocc

a

Xvirt

r

Cr
aU

r
a þ

Xocc

a<b

Xvirt

r<s

Crs
abU

rs
ab þ � � � ð8Þ

In the case of a CI wavefunction, the total energy is given
by the expectation value hWjĤ jWi. In order to derive an
appropriate partitioning technique for the CI energy, it
should be consistent with Mayer’s Hartree–Fock partition-
ing. That is, if we effectively switch off the electron correla-
tion by setting C0 = 1 and CI = 0, we should recover
Mayer’s one- and two-atom energy components. This
requirement is in addition to the ‘common-sense’ condi-
tions (a)–(c) set forth before.

The first-order density matrix elements Dij and the sec-
ond-order density matrix elements Cijkl can be evaluated
from the CI coefficients in the MO basis using the conven-
tional Condon–Slater rules for the first and second-order
density operators, respectively. The explicit working for-
mulae for constructing the matrix elements of D and C
for different cases were provided by McWeeny [29]. The
matrices D and C can be transformed to the AO basis using
the conventional formulae:

Dlm ¼
X

ij

CliCmjDij

Clmqr ¼
X
ijkl

CliCmjCqkCrlCijkl

Now we are in a position to derive the partitioning of the
total correlated energy. It is advantageous to separate the
‘Hartree–Fock-like’ part of the energy and re-write the en-
ergy expression (5) using the density cumulants:

Etot ¼
X
A<B

ZAZB

RAB

þ
X
lm

Dlm½mjT̂ jl� �
X

A

X
lm

Dlm m
ZA

rA

����
����l

� �

þ 1

2

X
lmqr

ðDlmDqr � DlrDqmÞ½lmjqr�

þ
X
lmqr

klmqr½lmjqr�

This expression emphasizes the freedom of choice we have
when partitioning the cumulant term of the energy, as the
Mayer partitioning of the ‘Hartree–Fock-like’ part will
not be affected. The intuitively easiest way to do such a par-
titioning would be to treat klmqr similarly to how it has
been done for the two-electron part in the Hartree–Fock
case. That is, the cumulant part could be then divided into
one- and two-atom components as follows:
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X
lmqr

klmqr½lmjqr� ¼
X

A

X
B

X
l2A

X
q2B

Xall

m;r

klmqr½lmjqr�

¼
X

A

X
l2A

X
q2A

Xall

m;r

klmqr½lmjqr�
 !

þ
X
A>B

2
X
l2A

X
q2B

Xall

m;r

klmqr½lmjqr�
 !

However, a number of test calculations showed that this
partitioning places too much negative correlation energy
into one-atom components, thus leading to unphysically
positive correlation contributions to two-atom energies.
The reason for this behavior is that the cumulant contribu-
tions klmqr[lmjqr] can be rather large in value and be of dif-
ferent sign. Thus, an unfortunate partitioning of the
cumulant part can lead to rather large one- and two-atom
components of different sign. Note that an earlier attempt
to introduce a partitioning based on the entire C lead to
rather unphysical two-atom energies [30]. Similarly large
positive correlation contributions to the two-atom compo-
nents were observed by Blanco et al. [15] in the context of
their AIM-based partitioning. A solution to this problem
can be found if we re-arrange the cumulant term such that
the summation runs over l 2 A and m 2 B, with l and m
being indices of the same electron:

X
lmqr

klmqr½lmjqr� ¼
X

A

X
B

X
l2A

X
m2B

Xall

q;r

klmqr½lmjqr�

¼
X

A

X
l2A

X
m2A

Xall

q;r

klmqr½lmjqr�
 !

þ
X
A>B

2
X
l2A

X
m2B

Xall

q;r

klmqr½lmjqr�
 !

ð9Þ
We refer to the partitioning obtained using Eq. (9) as Model
1. Another option, which we will label Model 2, is to calculate
the two-atom term in the same manner as in Mayer’s original
partitioning, i.e., using the first-order density matrix only.

To summarize the presentation of the correlated energy
partitioning scheme, we give the working formulae for the
two-atom energy contributions:

Model 1:

EABðM1Þ ¼ ZAZB

RAB

þ 2
X
l2A

X
m2B

Dlm½mjT̂ jl�

�
X
l2A
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m

Dlm m
ZB

rB

����
����l

� �
�
X
l2B
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m

Dlm m
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rA

����
����l

� �

þ
X
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X
q2B
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m;r

ðDlmDqr � DlrDqmÞ½lmjqr�

þ 2
X
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X
m2B
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q;r

klmqr½lmjqr� ð10Þ

Model 2:

EABðM2Þ ¼ ZAZB

RAB

þ 2
X
l2A

X
m2B

Dlm½mjT̂ jl�

�
X
l2A

Xall

m

Dlm m
ZB

rB

����
����l

� �

�
X
l2B

Xall

m

Dlm m
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rA

����
����l

� �

þ
X
l2A

X
q2B

Xall

m;r

ðDlmDqr � DlrDqmÞ½lmjqr� ð11Þ

Both Model 1 and Model 2 are compatible with Mayer’s
partitioning for the Hartree–Fock case. Of course, Model
2 does not provide a complete description of the correla-
tion effects, but it is the easiest to implement, at least inso-
far as only two-atom energies are needed, since only the
first-order density matrix is required.

4. Results and discussion

Using formulae (10) and (11), we calculated two-atom
energy components for a series of covalent molecules
C2H6, C2H4, C2H2, HF, HCl, F2, Cl2, H2CO, H2O,
CH3OH, H2O2, CO2, HCN, Li2, NH3, N2H4, cis and trans

diimide N2H2, as well as for the water dimer (H2O)2 and
for the ionic systems LiH and LiF.

The Hartree–Fock geometry optimization and the eval-
uation of molecular orbitals needed for our calculations
were performed using the GAUSSIAN 03 package [31] with
the standard 6-31G** basis set with Cartesian polarization
functions. In order to calculate the first- and second-order
density matrices, we implemented the Configuration Inter-
action with double excitations (CI-D) within the frozen-
core approximation into our own program. The CI-D
method was chosen because it is the easiest to implement
for the purpose of obtaining the density matrices. It is
expected that other correlation methods will yield similar
results. In order to test the correctness of our program,
the total CI-D energies obtained were compared to the val-
ues calculated by GAUSSIAN 03. The results of the calcula-
tions are reported in Table 1. For the sake of
comparison, we also report the values calculated according
to Mayer’s formulae using the Hartree–Fock first-order
density matrix (Eq. (1)).

One generalization deducible from these results is that
all the two-atom energies obtained are ‘on the chemical
scale’ (see condition (a)). There are clear differences
between the bonding and non-bonding interactions (condi-
tion (c)), with the former exhibiting negative (attractive)
values about dozens or hundreds kcal mol�1, while the lat-
ter have much smaller values, typically within
10 kcal mol�1 (negative or positive).

The comparison of the two-atom energies between the
methods (Model 1 and Model 2 versus Hartree–Fock)
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shows that all three models provide rather similar results.
The two-atom energies for XAH bonds are mostly very
close between the methods, while those for bonds between
heavier atoms differ slightly more, with the general trend of
Model 1 values being slightly lower than the Model 2 and
Hartree–Fock results. For the non-bonding interactions,
including the hydrogen bond in the water dimer, only mar-
ginal differences are found between all three methods.

The water dimer exhibits the two-atom O � � � H energy
for the hydrogen bond of about 53 kcal mol�1 calculated
by all three methods, which is intermediate between typical
covalent and non-bonding interactions. Note that this
value is not directly comparable to the (H2O)2! 2H2O dis-
sociation energy, as the latter includes other diatomic inter-
actions as well as the one-atom components.

Finally, examples of a predominantly ionic character –
lithium fluoride and lithium hydride – demonstrate attrac-
tive two-atom energies, which are rather consistent between
the models.

5. Conclusions

The present work provides a generalization of Mayer’s
Hartree–Fock energy partitioning for the case of an arbi-
trary correlated wavefunction. First, an analysis of Mayer’s
original partitioning is given in terms of one-atom density
matrices. Then, analogous partitioning of the correlated
energy (referred to as Model 1) is presented using the den-
sity cumulants. In general, test shows that the correlated
energy partitioning is reliable, as it satisfies the ‘common-
sense’ conditions imposed on the partitioning schemes of
such kind. The influence of the electron correlation on
the results is moderate. The method is applicable to any
wavefunction, provided that the first- and second-order
density matrices are available. Contrary to the Ayala–
Scuseria scheme [28], it is also applicable, in principle, for
excited-state wavefunctions. The tests indicate that
Mayer’s simple Hartree–Fock-based formula (11) using
the correlated first-order density matrix (Model 2) also pro-
vides meaningful results.

Table 1
Two-atom energies (in kcal mol�1) at CI-D and Hartree–Fock level for a
number of molecules calculated at the RHF/6-31G** optimized geometries
using various schemes (Model 1 and Model 2, see text)

Molecule/bond Model 1 Model 2 Hartree–Fock

C2H6

CAC �115.0 �118.2 �119.0
CAH �111.3 �105.0 �108.0
C � � � H 5.1 4.1 4.4
H � � � Hgem 9.3 8.4 8.6
H � � � Hvic gauch �0.6 �0.6 �0.6

C2H4

CAC �159.1 �167.4 �166.8
CAH �114.2 �108.1 �111.4
C � � � H 7.1 5.7 6.1
H � � � Hgem 11.3 10.7 11.0
H � � � Hvic 3.8 3.9 3.9

C2H2

CAC �295.1 �313.8 �304.6
CAH �103.1 �95.2 �98.4
C � � � H �11.4 �12.2 �11.9
H � � � H 3.6 3.6 3.5

HF �99.8 �96.2 �101.5
HCl �95.1 �95.3 �100.2
F2 �83.5 �89.9 �103.0
Cl2 �79.3 �86.1 �92.6

H2CO
C@O �131.8 �138.9 �149.3
CAH �109.0 �104.4 �107.7
H � � � H 17.7 16.6 17.1

H2O
OAH �122.3 �117.8 �122.5
H � � � H 27.7 27.5 27.8

(H2O)2

OAHa �126.4 �121.8 �125.6
�125.1 �120.7 �124.4

OAHb �128.9 �126.4 �129.8
O � � � Hb �52.6 �52.8 �53.8

CH3OH
CAO �119.8 �125.8 �131.6
CAH �107.4 �101.3 �104.6
OAH �124.8 �120.3 �124.2

H2O2

OAO �99.8 �106.5 �114.9
OAH �99.1 �95.1 �98.7
H � � � H 16.6 16.7 16.8

CO2

C@O �155.5 �167.1 �175.9
O � � � O 27.3 26.8 29.1

HCN
HAC �99.3 �93.4 �96.2
CAN �149.6 �161.4 �171.4

NH3

NAH �131.8 �127.0 �131.3
H � � � H 20.2 19.8 20.0

N2H4

NAN �106.0 �114.7 �118.8
NAH �120.9 �116.2 �119.7
H � � � Hgem 21.5 21.2 21.4
H � � � Hvic gauch 12.0 12.4 12.4

N2H2 cis

N@N �133.7 �147.0 �153.2
NAH �96.5 �93.1 �96.7
H � � � H 17.3 16.9 17.2

N2H2 trans

N@N �144.5 �156.3 �162.1
NAH �100.4 �96.1 �99.6
H � � � H 5.6 5.5 5.4

Li2 �53.0 �43.1 �54.8
LiF �139.2 �145.6 �151.8
LiH �86.0 �88.0 �91.6

The Hartree–Fock column gives the values calculated by means of May-
er’s original partitioning formula (4) using the Hartree–Fock density
matrix.

a Terminal (non-hydrogen bonding) hydrogen.
b hydrogen bonding hydrogen.

208 S.F. Vyboishchikov, P. Salvador / Chemical Physics Letters 430 (2006) 204–209



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Acknowledgements

We thank Dr. Eduard Matito for helpful discussions.
Financial support from the Spanish Ministry of Education
and Science (Ramón y Cajal Program and Grant
CTQ2005-02698) is highly appreciated.

References

[1] R.F.W. Bader, Atoms in Molecules – A Quantum Theory, Oxford
University Press, Oxford, 1990.

[2] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.
[3] B.H. Chirgwin, C.A. Coulson, Proc. R. Soc. A 201 (1950) 196.
[4] R. McWeeny, J. Chem. Phys. 20 (1952) 920.
[5] K.B. Wiberg, Tetrahedron 24 (1968) 1083.
[6] M. Giambiagi, M.S. De Giambiagi, D.R. Grempel, C.D. Heymann,

J. Chim. Phys. 72 (1975) 15.
[7] I. Mayer, Chem. Phys. Lett. 97 (1983) 270.
[8] K. Kitaura, K. Morokuma, Int. J. Quant. Chem. 10 (1976) 325.
[9] T. Ziegler, A. Rauk, Inorg. Chem. 18 (1979) 1558.

[10] H. Fischer, H. Kollmar, Theor. Chim. Acta 16 (1970) 163.
[11] P. Salvador, M. Duran, I. Mayer, J. Chem. Phys. 115 (2001) 1153.

[12] I. Mayer, A. Hamza, Theor. Chem. Acc. 105 (2001) 360.
[13] D.R. Alcoba, A. Torre, L. Lain, R.C. Bochicchio, J. Chem. Phys. 122

(2005) 074102.
[14] A. Sierraalta, G. Frenking, Theor. Chim. Acta 95 (1997) 1.
[15] M.A. Blanco, A. Martı́n Pendás, E. Francisco, J. Chem. Theory

Comput. 1 (2005) 1096.
[16] P. Salvador, I. Mayer, J. Chem. Phys. 120 (2004) 5046.
[17] I. Mayer, Chem. Phys. Lett. 332 (2000) 381.
[18] A. Hamza, I. Mayer, Theor. Chim. Acta 109 (2003) 91.
[19] I. Mayer, Chem. Phys. Lett. 382 (2003) 265.
[20] H. Ichikawa, A. Yoshida, Int. J. Quant. Chem. 71 (1999) 35.
[21] H. Kollmar, Theoret. Chim. Acta 50 (1978) 235.
[22] H. Nakai, Y. Kikuchi, J. Theor. Comput. Chem. 4 (2005) 317.
[23] S.F. Vyboishchikov, P. Salvador, M. Duran, J. Chem. Phys. 122

(2005) 244110.
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