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Diradical character from the local spin analysis†

Eloy Ramos-Cordoba and Pedro Salvador*

Diradical species are analyzed in light of the local spin analysis. The atomic and diatomic contributions

to the overall hŜ2i value are used to detect the diradical character of a number of molecular species

mostly in their singlet state, for which no spin density exists. A general procedure for the quantification

of diradical character for both singlet and triplet states is achieved by using a recently introduced index

that measures the deviation of an actual molecule from an ideal system of perfectly localized spin

centers. The index is of general applicability and can be easily determined in equal footing from a

multireference or an open-shell single-determinant wave function.

Introduction

Salem1 defined diradicals as molecules with two electrons
occupying two near degenerate orbitals. Indeed, how close to
degeneracy these orbitals are (HOMO–LUMO gap) or more
generally the singlet–triplet gap is one of the characteristic
features of diradical systems. Diradicals are important in
chemistry since they emerge as intermediates of many chemical
reactions.2 Pure, ideal diradicals such as a dissociated H2

singlet can be easily characterized theoretically from different
indicators, depending on the nature of the wave function.
However, the quantification of the diradical or diradicaloid3

character of short-lived singlet diradicals is not so trivial
because the formally unpaired electrons do interact to some
extent. There is a continuum between the closed-shell spin-
paired and the perfectly localized spin-entangled situations, as
exemplified by the dissociation curve of singlet H2.

Several indices have been proposed in the literature in order
to detect and quantify the diradical character of molecular
systems, the simplest probably being the value of hŜ2i of a
broken symmetry spin-unrestricted wave function.4,5 For a
system with an equal mixture of singlet and triplet components
one should expect a hŜ2i value close to 1.6 Accordingly, Bachler
et al.7 proposed the following index

nrad ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ŝ

2
D E

BS

r
; (1)

where hŜ2iBS represents a UHF broken-symmetry wave function.
An alternative index can be built making explicit use of the
occupation numbers of spin-unrestricted natural orbitals

(UNOs). In a system with diradical character, a pair of bonding
and antibonding orbitals are typically associated with the two
radical sites. The closer to 1 the occupation of the antibonding
orbital is, the higher the diradical character. Jung and Head-
Gordon3 and Seierstad et al.8 used the occupation numbers
obtained from perfect-pairing approaches and Lopez et al. used
the occupation number computed at the natural orbital func-
tional (NOF) level of theory9 to assess the extent of diradical
character of different molecules. Rivero et al. also studied the
extent of radical character from the occupation numbers that are
close to one from a spin-projected Hartree–Fock calculation.10

Similarly, Kamada et al.11 used the index,

y ¼ ð1� TÞ2

1þ T2
and T ¼ nHOMO � nLUMO

2
(2)

where nHOMO and nLUMO are the occupations of the bonding
and antibonding UNOs. In a purely closed-shell system nHOMO = 2
and nLUMO = 0, and hence y = 0. When the occupations of the
two orbitals are equal the system is a pure diradical and y = 1.

When a multiconfigurational wave function is used the
occupation numbers of the orbitals of the radical sites can be
replaced by the weights of appropriate configurations of the
CI expansion. In the simplest two-electrons in two-orbitals (the
so-called magnetic orbitals) model, the 2 � 2 CI wave function
is build up from a configuration in which the bonding combi-
nation of the magnetic orbitals is doubly occupied, and another
that includes the double excitation to the antibonding combi-
nation of the magnetic orbitals. Bachler et al.7 proposed the
following indicator for diradical character

nCIrad ¼
ffiffiffi
2
p

cdj j (3)

where cd is the weight of the doubly-excited configuration. Later
on, other authors suggested an improved version12 that also
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incorporates the weight of the other configuration

d ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0

2cd
2

c02 þ cd2

s
: (4)

None of the indices described above is of general applicability.
Beyond diradicals a signature of polyradical character may be
derived from the shape and occupation of the natural orbitals.10,13

The applicability of the indices given in eqn (1) to (4) is thus
restricted to diradical systems that can be well described with a
two-electron two-orbital model. A noteworthy alternative is the
analysis of the so-called density of effectively unpaired electrons,
u(-r ), defined by Takatsuka et al.14 as

u(-r ) = 2r(-r ) �
Ð
r(-r;-r0)r(-r0;-r )d-

r0. (5)

This quantity can be easily obtained at any level of theory from
the first-order density matrix r(-r;

-
r0), and provides a spatial dis-

tribution of the unpaired or ‘‘odd’’ electrons in the system, even if
the spin density vanishes (e.g. for multiconfigurational singlet
wave functions). The total number of unpaired electrons, ND,
can be recovered upon integration of u(-r ) over the whole space.
The topology u(-r) and the ND values have been used by Staroverov
and Davidson to analyze the evolution of the radical character
upon a chemical reaction, e.g. the Cope rearrangement.15,16 Cheng
and Hu17 found a good correlation between ND and the singlet–
triplet gap for a set of B2P2 ring derivative diradicaloids. Moreover,
population analysis techniques such as Mulliken16 or QTAIM18

have also been applied to recover the average number of unpaired
electrons on a given atom/fragment. It is worth noting that
Mulliken populations of u(-r ) are identical to Mayer’s free valence
index19,20 for singlet wave functions.

In singlet diradicals the presence of some local spin associated
with a given atom or a fragment of the molecular system is assumed.
The spin properties of molecular systems are usually characterized
by the analysis of the spin density. In fact, spin-unrestricted single-
determinant calculations often result in broken-symmetry solutions
with non-vanishing spin density. In this case, however, the state of
the system is not described as a pure singlet, as it appears to be
contaminated with higher spin states. When a proper multireference
wave function is used to describe a pure singlet the spin density
exactly vanishes at all points of the space. Yet, one can still
invoke the concept of local spins in the system.

Local spins can be retrieved from wave function analysis by a
number of decomposition schemes.21–27 The most appropriate
approach to the problem, as pointed out by Mayer,23 is probably the
exact decomposition of the expectation value of the spin-squared
operator into a sum of atomic and diatomic contributions as

Ŝ
2

D E
¼
X
A

Ŝ
2

D E
A
þ
X

A;BaA

Ŝ
2

D E
AB
: (6)

A proper formulation of eqn (6) can provide vanishing one-
and two-center terms for restricted single-determinant wave
functions (thereby distinguishing electron pairing in bonds
from antiferromagnetic coupling), and non-zero ones for pure
singlets described by correlated wave functions, thus overcoming
the limitation of use of the spin density. The actual expressions

for the one- and two-center contributions fulfilling these conditions,
henceforth local spin analysis, can be found elsewhere.27

In the local spin analysis, the hŜ2iA values indicate and
quantify the presence of local spin within the molecule, namely
on atom/fragment A. The magnitude and sign of the diatomic
contributions hŜ2iAB with B a A inform about the nature of
the couplings between these local spins.21,28,29 The physical
interpretation of the hŜ2iA and particularly hŜ2iAB values is
somewhat intricate, and has been recently discussed in detail
in several papers.30,31

The ability of both local spin methods and the density of
effectively unpaired electrons to capture the diradical nature of
molecular systems has already been discussed in the recent
literature.15,16,32–36 However, their use as a general index for the
quantification of the diradical character has not yet been fully
explored. This is the main goal of the present work.

Computational details

Since nondynamical correlation is essential to describe the low-
spin components of diradicals, the use of a multireference
method is mandatory. All wave functions for the molecular
systems studied have been obtained at the CASSCF level with
the cc-pVTZ basis set, unless otherwise indicated. For the simple
diradical model systems the STO-3G basis set in combination with
CASSCF or UHF levels of theory has been used instead. The first-
and second-order density matrices have been obtained using a
modified version of Gaussian0337 and an auxiliary program38 that
reads and processes the CASSCF outputs. All local spin compo-
nents are given in atomic units. All calculations have been carried
out at the geometrical structure of the molecules optimized at the
current level of theory, unless otherwise indicated. The local spin
analysis has been performed with the program APOST-3D.39 For
this work we have made use of the atomic domains provided by
the recently introduced topological fuzzy Voronoi cells (TFVC)
scheme.40 It is a fuzzy-atom based alternative41 to Bader’s QTAIM
domains that produces very similar results with much less
computational effort.40

Results and discussion
Local spin vs. density of effectively unpaired electrons

In Fig. 1 and 2 we plot the evolution of the indices of eqn (1)–(4)
for diradical character for a simple model system, namely the
dissociation of a singlet H2 into two doublet H atoms described
with minimal basis at the UHF and FCI levels of theory,
respectively. The values of the number of effectively unpaired
electrons averaged over one of the H atom, NH

D and the local
spin, hŜ2iH, are also included. The later has been rescaled to
vary from 0 to 1 for better comparison.

For a single-determinant wave function the diradical character
is exactly zero for all indices when no BS solution exists (see
Fig. 1). As the H–H distance stretches and a BS solution is found,
the diradical character monotonically increases in all cases. At
large distances all indices tend to 1, indicating a perfect diradical.
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For intermediate distances, the index y from eqn (2) seems to
underestimate the extent of diradical character with respect to
the other indicators. Both the local spin and the number of
effectively unpaired electrons closely follow the value of hŜ2i. For
this model system the nrad index is equivalent to the occupation
of the LUMO orbital (nLUMO).

For correlated wave functions the diradical character
predicted by the different indices is always different from zero.
The d index of eqn (4) yields a 20% of diradical character for
H2 at the equilibrium distance (0.74 Å), which is probably
somewhat too large. The local spin and number of effectively
unpaired electrons on the H atoms give a similar and much
smaller diradical character, and the index given in eqn (3)
lies in between. In this case, the occupation of the LUMO
(antibonding) orbital consistently yields a smaller diradical
character than the other indices. At intermediate atomic
distances the differences between all indices are smaller than
in the case of the UHF-BS description.

It is worth noting that Clark and Davidson32 also applied their
local spin formalism to the dissociation profile of diatomics such
as H2 at RHF, UHF and FCI levels of theory. In their method, the
hŜ2iA value also tends to 3/4 at the dissociation limit, but for
interatomic distances near equilibrium it tends to 3/8 of the bond
order. The non-vanishing local spin contributions for a genuinely
diamagnetic system like H2 at the equilibrium distance difficult
their use as an indicator of diradical character.

We have just seen that both the number of effectively unpaired
electrons and the local spin analysis quantify in a similar manner
the diradical character for a simple model system. Indeed, several
studies have shown that both are very useful tools for the char-
acterization of the spin distribution in actual molecular systems, in
particular for singlet states.15,16,32–35 However, u(-r ) also exhibits
some unattractive peculiarities. First of all, the upper bound for ND

was found to be 2N, where N is the total number of electrons. Thus,
the number of effectively unpaired electrons may be larger than the
actual number of electrons.42 This unphysical upper bound hinders
the use of ND as an absolute index for radical character. Another
rather puzzling result was found in the dissociation of O2 in its 3Sg

�

ground state into two triplet 3P oxygen atoms. Staroverov and
Davidson42 obtained a value of ND = 5 at the dissociation limit,
i.e., each O atom carries an average of 2.5 unpaired electrons,
instead of the expected value of 2 for an isolated triplet. It is worth
mentioning that this finding motivated an alternative definition of
u(-r ) by Head-Gordon,43 although not without controversy.44,45

We have further explored this paradigmatic system by consider-
ing for a number of different electronic states the dissociation of O2

into two O atoms. In the dissociation limit one can have either two
radical centers with two unpaired electrons each (when the O2

dissociates into two triplet 3P oxygen atoms), or no spin centers at
all when it dissociates into two 1D singlet O atoms. Note that neither
situations can be described with eqn (1) to (4). In Table 1 we collect
the values of ND and local spin on the O atoms upon dissociation for
several molecular (and atomic) electronic states. The wave functions
have been obtained at the CASSCF(8,6)/6-31G* level of theory.

For the ground 3Sg
� state, a value of ND = 5 is obtained upon

dissociation into two triplet 3P oxygen atoms, as already noted
by Staroverov and Davidson.42 However, this is not always the
case. For instance, for the dissociation of the 1Dg and 3Pu states
into two triplet O atoms, the expected ND = 4 value is recovered.

Fig. 1 Indices for diradical character along dissociation of the H2 model
system at the UHF level of theory. hŜ2iH values have been rescaled (see
the text).

Fig. 2 Indices for diradical character along dissociation of the H2 model
system at the FCI level of theory. hŜ2iH values have been rescaled.

Table 1 Number of effectively unpaired electrons (ND) and local spin
values for the O atoms, hŜ2iO, at the dissociation limit of several O2

molecular electronic states

Molecular
elec. state ND hŜ2iO1

/hŜ2iO2

Atomic
elec. statea

3Sg
� 5 2/2 3P/3P

1Dg 4 2/2 3P/3P
1Sg

+ 5 2/2 3P/3P
1Su
� 5 2/2 3P/3P

3Pu 4 2/2 3P/3P
1Pg 5 2/2 3P/3P
1Pu 5 2/2 3P/3P
1Du 5.33 0/0 1D/1D
1Pu 4.99 0/0 1D/1D

a Atomic electronic states at the dissociation limit.
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The 1Du state dissociates into two 1D singlet oxygen atoms, but
the ND value is 16/3, consistent with the uniform distribution of
8 electrons into 6 degenerate p orbitals. Thus, by looking at the
ND values at the dissociation limit one cannot distinguish two
triplets from two singlet oxygen atoms (in this case the distinc-
tion is evident from the energy values). Moreover, different ND

values can be obtained for a system consisting of two disso-
ciated triplet oxygen atoms, depending on the overall electronic
state. It is worth noting that using Head-Gordon’s43 alternative
formulation one would obtain ND = 4 in all cases (in fact, as
long as the natural occupations are greater or equal than 1).

On the other hand, the local spin values always yield the
expected values for the dissociating oxygen atoms. Matito and
Mayer24 already reported proper asymptotics of the atomic local
spin contributions for the lowest-lying triplet and singlet states.
We have considered here the dissociation of five more molecular
singlet and triplet states that dissociate into two 3P oxygen atoms
and in all cases hŜ2iO = 2 (see Table 1). For the states that dissociate
into two singlet 1D oxygen atoms, namely 1Du and 1Pu, the local
spin analysis yields hŜ2iO = 0. The diatomic spin components also
differentiate when the two oxygen triplets are coupled as a singlet,
like in the 1Dg state for which hŜ2iO,O =�2, or as a triplet, like in the
3Sg
� state, for which hŜ2iO,O = �1 is obtained.
Thus, the local spin analysis appears to be more suitable tool

than the number of effectively unpaired electrons when it comes to
the formal breaking of more than one bond. This is in essence
because the hŜ2iA terms include contributions from the cumulant of
the second order-density matrix, whereas the number of effectively
unpaired electrons is obtained only from the first-order density
matrix. Accordingly, our goal, which is the quantification of diradical
character, will be better accomplished by making use of the
descriptors obtained from the local spin analysis.

Quantification of diradical character in molecules

The spin distribution of diradical species has already been analyzed
in light of the number of effectively unpaired electrons and different
local spin indicators. Typically studied examples are benzyne
isomers.26,46–48 Clark and Davidson analyzed their electronic struc-
ture making use of the density of effectively unpaired electrons49 and
also their local spin formalism.32,33 The evolution of local spins32

and the number of unpaired electrons34 along reactive processes
involving benzyne were also discussed in detail.

For the present work we have studied a number of diradical
and diradicaloid species at equilibrium geometries. The species
considered are depicted in Fig. 3. For all of them we have
performed the local spin analysis, but the results will not be
discussed in detail here (for that we refer to the ESI†). Instead,
we will focus essentially on the actual quantification of the
diradical character. For this purpose, only the atomic contribu-
tions of the local spin analysis will be taken into account.

Most recently we have introduced as a general measure of
k-radical character the following index

DðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
A

Ŝ
2

D E
A
� Ŝ

2
D Eid

A

� �2
n

vuuut
; (7)

where the hŜ2iidA represent the atomic ideal values and n is the total
number of atoms/fragments considered in the local spin analysis
(for most applications the hydrogen atoms can be safely ignored).31

Since the ‘‘ideal’’ value for the diatomic terms depends upon the
particular electronic state (singlet, triplet, . . .) and also the type of
wave function (broken-symmetry vs. multireference), the index only
uses the atomic contributions of the local spin analysis. The main
advantage of this index is that, contrary to most approaches in the
literature, it is calculated in the same manner from both multi-
reference and unrestricted single-determinant wave functions, and
for any electronic state. The smaller the D(k) value the closer the
system is to a reference picture of k perfectly localized spin centers.
So far, the use of eqn (7) has been restricted to k = 3, for the
quantification of the triradical character.31

For diradical or diradicaloid species in the singlet-state one
can calculate both D(0) and D(2) values. The former will measure
average deviation from a nonradical closed-shell picture, and
the latter will indicate the deviation from a perfect diradical.
This provides a numerical criterion to identify diradicaloids as
either diradicals or nonradical species.

The computed D(0) and D(2) values for the species of Fig. 3 are
gathered in Table 2. The trends of the D(0) and D(2) values along the
series of singlet ortho-, meta- and para-benzyne are very illustrative.
For ortho-benzyne D(0) = 0.18 and D(2) = 0.28, indicating a smaller
deviation of this species with respect to a closed-shell picture. For
meta-benzyne the situation is just the opposite, and the system is
better identified as a diradical. For para-benzyne the D(2) value is
very small (0.12) and much smaller than the D(0) one (0.49), which
is consistent with a diradical picture. Thus, both D(0) and D(2) values
are able to reproduce the assumed trend ortho o meta o para of
the diradical character of benzyne isomers.32,46,47 For triplet states
only the D(2) values are meaningful. The values are quite small and
do not differ too much from one isomer to another. The trend
along the series is the same as for the singlet states, i.e., triplet
para-benzyne is more diradical than ortho-benzyne.

Fig. 3 Diradicals and diradicaloids considered in this work.
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Sometimes the spin delocalization hinders the recognition
of the formal spin centers, like in the well-studied tetra-
methylenethane (TME) diradical.50,51 At the CASSCF level of
theory the lowest energy structure has D2 symmetry, with a
dihedral angle relating the two allyl moieties of 70.6 deg.
The active space included 6 electrons and 6 orbitals (in the
D2h symmetry they correspond to the set of 6 p orbitals). The
results of the local spin analysis are discussed in detail in the
ESI.† Essentially, the analysis reveals that TME is made up from
two independent allyl radicals bonded by the central carbon
atoms. The spin distribution among the atoms of the allyl
fragments is very similar for both the singlet and triplet states.

Thus, for this molecule it is more appropriate to consider two
allyl fragments in eqn (7), instead of all atoms separately. The local
spin contribution of a molecular fragment is simply obtained by
summing up all atomic and diatomic contributions of the atoms
that form the molecular fragment. The D(2) value taking the two allyl
moieties as spin centers is very small (0.02) in the singlet state, and
somewhat larger in the triplet (0.05) due to the enhanced delocaliza-
tion of the spins between the two moieties. The D(0) value is clearly
too large to consider this system as a closed-shell species at all.

The distinction between a singlet diradical and a nonradical
closed-shell species is sometimes not so evident. Diphosphadibor-
etanes and their analogues are some of the most controversial
systems discussed in the literature. Scheschkewitz et al.52 reported
several years ago a 1,3-diphospha-2,4-diboretane derivative singlet
diradical that exhibited indefinite stability at room temperature.
Several theoretical studies3,8,17,53 followed that work, aimed at the
quantification of the diradical character of this species and its
analogues. We depict in Fig. 3 some of these four-member ring
diradicaloids. The species (CH)2(CH2)2 corresponds to a planar
transition state structure on the singlet potential energy surface of
bicyclobutane (a triplet state lies ca. 2–3 kcal mol�1 lower in energy).
(BH)2(PH2)2 is simplest diphosphadiboretane and (BH)2(NH2)2

is a diaza-analogue of the former. This system is interesting
because even though it exhibits a much shorter B–B distance
(2.04 Å) than in diphosphadiboretane (2.60 Å), its diradical
character was estimated to be smaller.53

We have studied these systems with an unrestricted single-
determinant wave function (UB3LYP) for both their singlet and
triplet states. We have also considered a single-point CASSCF(2,2)

wave function at the UB3LYP optimized structures for compar-
ison. For the singlet states, the atomic local spin values are
very similar for CASSCF(2,2) and UB3LYP methods, provided a
broken-symmetry solution is found for the latter (the local spin
contributions are exactly zero for a restricted single-determinant
wave function, as in (BH)2(PH2)2). Remarkably, a broken-
symmetry wave function that yields a wrong value of hŜ2i does
seem to provide appropriate atomic hŜ2iA contributions. The flaw
of the broken-symmetry solution is found on the diatomic spin–
spin interactions between the local spin centers: the UB3LYP
values are significantly smaller than the CASSCF(2,2) ones. Yet,
the negative sign still indicates the antiparallel arrangement of the
local spins (see ESI†). For triplet states the local spin analysis
yields very similar one- and two-center contributions for both
methods. This is not surprising since with a CASSCF(2,2)
approach the mS = |S| state is described by a ROHF wave function.
Therefore, since the indices of eqn (7) use only the atomic local
spin contributions, their values for a broken-symmetry and a
CASSCF wave function will be very similar.

We find that singlet (CH)2(CH2)2 is best described as a diradical.
The D(2) value is similar to that of para-benzyne (0.12), whereas D(0) is
much larger. These values are indeed almost the same for
CASSCF(2,2) and UB3LYP wave functions. The D(0) value for
(BH)2(PH2)2 is trivially zero at the UB3LYP level of theory, as it
corresponds to a restricted closed-shell solution. For CASSCF(2,2) the
value slightly increases to 0.10 but still is significantly smaller than
the D(2) value. Clearly, this species cannot be considered a diradical,
in agreement with Jung et al.53 For the diaza analogue, D(0) increases
to ca. 0.17 and D(2) decreases to 0.41. Thus, (BH)2(NH2)2 is more
diradical than (BH)2(PH2)2, but still it is best described as a closed-
shell species. For triplet states, the local spin analysis reveals in the
case of (BH)2(PH2)2 and (BH)2(NH2)2 that the four atoms of the ring
exhibit similar but small local spin contributions (see ESI†). The
large D(2) values for the triplet states of (BH)2(PH2)2 and (BH)2(NH2)2
are thus consistent with the observed delocalized-spin picture.

Finally, the nature of the central C–C bond in strained systems
such as propellanes has been subjected to debate in the literature
for years. The formal picture of these species in the absence of this
bond would be a diradical. However, the diradical character in the
ground state has been ruled out in the case of [1,1,1]propellane by
Wu et al.,54 on the basis of a large vertical singlet–triplet gap (over
100 kcal mol�1). The authors used a detailed valence bond analysis
to classify the central C–C interaction as a charge-shift bond.
Lobayan et al.55 also analyzed the density of unpaired electrons
and their topology for this species at the CISD level of theory and
ruled out the presence of a 3c-2e bond. Yet, the overall number
of unpaired electrons (ND) they obtained at the CISD/6-31G* level
of theory was quite significant (ca. 1.22).

We have performed the local spin analysis for [1,1,1]propellane
and [2,2,2]propellane species at the CASSCF(10,10)/cc-pVTZ//
UB3LYP/cc-pVTZ level of theory. The results are gathered
in Table 3. For [1,1,1]propellane, the central C–C distance is
1.568 Å, very similar to that of ethane for the same level of
theory (1.528 Å). We have found that the local spin on the
central C atoms is completely negligible. In fact it is even
smaller than the local spin on the C atoms of ethane described

Table 2 k-radical character index, D(k), for a set of diradicals and diradi-
caloids. Values in parentheses computed at the UB3LYP level of theory

Molecule

Singlet Triplet

D(0) D(2) D(2)

ortho-Benzyne 0.18 0.28 0.14
meta-Benzyne 0.28 0.19 0.13
para-Benzyne 0.49 0.12 0.12
TME 0.77 0.02 0.05
(CH)2(CH2)2 0.41 (0.42) 0.12 (0.12) 0.12 (0.12)
(BH)2(PH2)2 0.10 (0.00) 0.46 (0.53) 0.39 (0.34)
(BH)2(NH2)2 0.17 (0.18) 0.41 (0.40) 0.38 (0.36)
[1,1,1]Propellane 0.02 0.47 —
[2,2,2]Propellane (RC–C = 1.536 Å) 0.01 0.36 —
[2,2,2]Propellane (RC–C = 1.988 Å) 0.16 0.22 —
[2,2,2]Propellane (RC–C = 2.532 Å) 0.05 0.33 —
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at the same level of theory (0.009 and 0.018, respectively). Accord-
ingly, the D(0) value is very close to zero (0.018), as expected for
a nonradical species. For this level of theory we obtain an overall
ND = 0.46, a value significantly smaller than that obtained by
Lobayan and in more agreement with a nonradical picture.

The potential energy surface of [2,2,2]propellane was studied
in detail by Davidson56 with different levels of theory with the
6-31G* basis set. There are two similar minimum energy
structures for the singlet state. In the most strained one, the
central C–C distance is ca. 1.54 Å. Another minimum energy
structure is found at a much longer C–C distance (2.54 Å). Both
are connected by a transition state structure at an intermediate
distance of ca 2 Å. Both UB3LYP and CASSCF(n,n) methods with
n = 2, 4, 8 yield similar structures and energetics. The strained
minimum structure is about 5–10 kcal mol�1 higher in energy
than the stretched one, and the barrier for the interconversion
(from the strained structure) is about 15–20 kcal mol�1.56 The
multireference average quadratic coupled cluster (MRAQCC)
results obtained by Antol et al.57 with the same basis set were
very similar to those reported by Davidson. It is worth noting that
Davidson found that a low-energy broken-symmetry solution
occurs from a C–C distance of ca. 1.7 Å at the UHF/6-31G* level,
whereas for UB3LYP the broken-symmetry solution only exists
between C–C distances of 1.9 to 2.3 Å.

We have optimized the three structures at the UB3LYP/
cc-pVTZ level of theory. Only the transition state structure leads
to a broken-symmetry solution. Then we carried out single-
point energy calculations at the CASSCF(10,10)/cc-pVTZ level
to perform the local spin analysis. The a1

0, a2
00 and two sets of

e0 and e00 orbitals were included in the active space. For the
strained minimum (RC–C = 1.536 Å) the local spin in the central
C atoms is again negligible (0.028), and so is the number of
unpaired electrons (ND = 0.095). The corresponding D(0) value is
similar to that obtained for [1,1,1]propellane.

In the stretched global minimum structure (RC–C = 2.532 Å)
there is no central C–C bond. The bond orders are 0.15 and 0.00
for the exchange and fluctuation formulations, respectively.58

Also, the number of unpaired electrons is significantly larger
than for the strained structure (ND = 0.70). Yet, the local spin on
the central C atoms is still very small (0.091). The D(2) value of
0.33 is too large to consider this species as a diradical at all,
specially when compared with the value for D(0) (0.05). Since the
UB3LYP description of this species is spin-restricted, D(0) = 0 by
definition at this level of theory.

The transition state structure (RC–C = 1.988 Å) does exhibit
significant local spin in the central C atoms (0.31), as well as
larger number of effectively unpaired electrons (ND = 1.08). The
D(0) and D(2) values are 0.16 and 0.22, respectively. Thus, the
diradicaloid character at the transition state is larger than that
of the minimum energy structures, but the species is still best
pictured as a nonradical.

Conclusions

The general quantification of diradical character from wave
function analysis is shown to be a non-trivial task, particularly
for singlet states. In this work we illustrate how the descriptors
obtained from a local spin analysis can be used to define a
general measure of the diradical character. Indices D(0) and D(2)

quantify deviation from a nonradical and a perfect diradical
picture, respectively. The method reproduces the expected trend
ortho-benzyne o meta-benzyne o para-benzyne of diradical
character, for both the singlet and the triplet states. Also, it is
found that diphosphadiboretane and its diaza-analogue are best
described as closed-shell and delocalized-spin species in their
singlet and triplet states, respectively. The analysis performed on
strained propellanes also confirms their nonradical nature, even
in the absence of the central C–C bond.
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