
Biochimica et Biophysica Acta 1814 (2011) 1624–1630

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbapap
Human inter-α-inhibitor is a substrate for factor XIIIa and tissue transglutaminase☆

Carsten Scavenius a, Kristian W. Sanggaard a, Camilla L. Nikolajsen a, Steffen Bak c, Zuzana Valnickova a,
Ida B. Thøgersen a, Ole N. Jensen b, Peter Højrup b, Jan J. Enghild a,⁎
a Center for Insoluble Protein Structure and Interdisciplinary Nanoscience Center (iNANO) at the Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
b Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
c Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
Abbreviations: IαI, Inter-α-inhibitor; HC, Heavy Cha
tor stimulated gene-6 protein; FXIIIa, Activated Factor X
zymogen; TTG, tissue transglutaminase; ChonABC, Ch
antiplasmin
☆ The work was supported by grants from the Dan
Council (J.J.E. and P.H.).
⁎ Corresponding author at: Department of Molecular

Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. Te
8942 5063.

E-mail addresses: csss@mb.au.dk (C. Scavenius), krs
camillan@mb.au.dk (C.L. Nikolajsen), stbak@health.sdu.
(Z. Valnickova), ibt@mb.au.dk (I.B. Thøgersen), jenseno
php@bmb.sdu.dk (P. Højrup), jje@mb.au.dk (J.J. Enghild

1570-9639/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.bbapap.2011.08.017
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 19 April 2011
Received in revised form 10 August 2011
Accepted 29 August 2011
Available online 14 September 2011

Keywords:
Inter-α-inhibitor
Proteoglycan
Transglutaminase
Extracellular matrix
In this study, we show that inter-α-inhibitor is a substrate for both factor XIIIa and tissue transglutaminase.
These enzymes catalyze the incorporation of dansylcadaverine and biotin–pentylamine, revealing that
inter-α-inhibitor contains reactive Gln residues within all three subunits. These findings suggest that trans-
glutaminases catalyze the covalent conjugation of inter-α-inhibitor to other proteins. This was demonstrated
by the cross-linking between inter-α-inhibitor and fibrinogen by either factor XIIIa or tissue transglutami-
nase. Finally, using quantitative mass spectrometry, we show that inter-α-inhibitor is cross-linked to the
fibrin clot in a 1:20 ratio relative to the known factor XIIIa substrate α2-antiplasmin. This interaction may
protect fibrin or other Lys-donating proteins from adventitious proteolysis by increasing the local concentra-
tion of bikunin. In addition, the reaction may influence the TSG-6/heavy Chain 2-mediated transfer of heavy
chains observed during inflammation.
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1. Introduction

Inter-α-inhibitor (IαI) is a proteoglycan composed of bikunin and
two homologous heavy chains referred to as heavy chain 1 (HC1) and
heavy chain 2 (HC2) [1]. The three components are covalently cross-
linked by an under-sulfated chondroitin-4-sulfate, which originates
from Ser10 of bikunin (Fig. 1) [2–5]. The C-terminal carboxyl
groups of the HCs form ester bonds with the C6 atoms of the internal
N-acetylgalactosamines and these bonds are referred to as protein–
glycosaminoglycan–protein (PGP) cross-links [3].

IαI has been implicated in several biological processes, such as
ovulation, cell migration and inflammation [6]. The suggested roles
of IαI are based on its interactions with hyaluronan-rich extracellular
matrix (ECM) or the protease inhibitory activity associated with
bikunin. The bikunin subunit is composed of two Kunitz-A domains
(http://merops.sanger.ac.uk) [7] and inhibits a broad range of serine
proteases, including plasmin [8]. The concentration of circulating
bikunin and its Ki indicates that IαI is not an effective protease inhib-
itor in plasma [8]. However, several studies have indicated that the
inhibitory capacity of bikunin is increased by interaction with tumor
necrosis factor stimulated gene-6 protein (TSG-6) [9–11].

TSG-6 also mediates the covalent interaction between the HCs and
hyaluronan. Two sequential transesterifications mediated by TSG-6/
HC2 transfer the HCs from the bikunin-associated chondroitin-4-
sulfate to hyaluronan [12–14]. The role of the HC–HA complexes has
yet to be determined, but evidence suggests a role in arthritis, as the
concentration of HC–HAcovalent complexes is increased in the synovial
fluid [15]. In addition, these complexes appear to play a role in the at-
tachment of leukocytes during inflammation [16].

The transglutaminases, including factor XIIIa (FXIIIa) and tissue
transglutaminase (TTG), belong to a family of calcium-dependent en-
zymes (EC 2.3.2.13) and catalyze the formation of Nε(γ-glutamyl)lysine
cross-links [17]. The generation of these isopeptide bonds increasesme-
chanical stability and resistance to adventitious proteolysis. FXIII circu-
lates in the plasma as a non-covalently associated tetramer composed of
two a-chains and two b-chains [18]. In the final phase of blood coagula-
tion, thrombin-activated FXIIIa cross-links the fibrin clot into an acid
and urea stable polymer [19]. Following fibrin cross-linking, FXIIIa
may further covalently incorporate a number of different proteins into
the fibrin clot, including α2-antiplasmin (α2AP) [20], factor V [21],
thrombin-activatable fibrinolysis inhibitor (TAFI) [22], von Willebrand
factor [23] and plasminogen activator inhibitor type 2 (PAI-2) [24].
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Fig. 1. Schematic representation of IαI. Left, IαI (~178 kDa) is a proteoglycan composed of bikunin (approximately 16 kDa) and two homologous heavy chains (HC1, approximately
71 kDa, and HC2, approximately 72 kDa). The three components are covalently cross-linked by protein–glycosaminoglycan–protein (PGP) cross-links mediated by the under-sulfated
chondroitin-4-sulfate that originates from Ser10 of bikunin [3,4]. The ratio between 4-sulfated and unsulfated N-acetyl-galactosamine in the under-sulfated chondroitin-4-sulfate is
1:3, and most of the sulfated moieties are located near the reducing end [5]. Right, Chemical structure of the PGP cross-link. The C-terminal carboxyl groups of the HCs form ester
bonds with the C6 atoms of internal N-acetyl-galactosamines [3]. The PGP-crosslink can be broken by either hydrolysis of the ester-linkage or enzymatic cleavage of the chondroitin-sulfate
chain.
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FXIIIa deficiency leads to severe bleeding complications, reduced
wound healing and recurring miscarriages [25].

In this study, we show that IαI is a substrate for both FXIIIa and
TTG. Using a combination of transglutaminase-mediated biotin–pen-
tylamine incorporation and mass spectrometry, we have identified
sites of modification in all three IαI subunits. Furthermore, we pre-
sent evidence for the cross-linking of IαI and fibrinogen and show
that IαI is cross-linked to the plasma clot in a 1:20 ratio relative to
the known FXIIIa substrate α2-antiplasmin. These data suggest that
transglutaminases cross-link IαI and other substrate proteins in gen-
eral, a reaction that is likely to introduce additional cross-links and
thereby increase the mechanical stability and resistance to adventi-
tious proteolysis. Moreover, our data indicate that IαI plays a direct
role in the formation and stability of the plasma clot.

2. Experimental procedures

2.1. Materials

Dansylcadaverine was purchased from Biochemika, biotin–penty-
lamine (EZ-link) was from Pierce, immobilized monomeric avidin
was from Thermo, biotin was from Fluka and dansyl-PGGQQIV-OH
was from New England Peptide.

Proteins human IαI was purified from human plasma obtained
from Aarhus University Hospital, Skejby, Denmark as previously de-
scribed [1]. Chondroitinase ABC (EC 4.2.2.4) was from Seikagaku.
Guinea pig tissue transglutaminase (EC 2.3.2.13), human fibrinogen,
thrombin and trypsin were from Sigma. Antibodies were from
DAKO, and recombinant human Factor XIII (A subunit) was a kind
gift from Sanofi Aventis.

2.2. SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Samples were boiled in SDS sample buffer in the presence of 50 mM
dithiothreitol (DTT). SDS-PAGE was performed on 5–15% gradient gels
(10 cm×10 cm×0.15 cm) using the glycine/2-amino-2-methyl-1,3-
propanediol/HCl system described previously [26].

2.3. Transglutaminase catalyzed incorporation of dansylcadaverine or
dansyl-PGGQQIV-OH

IαI (3 μg) was titrated with increasing amounts of either TTG of
FXIIIa (0, 0.15, 0.3, 0.6 or 1.2 μg) for 2 h at 37 °C. The reaction was car-
ried out in 20 mM Tris–HCl (pH 7.4) containing 137 mMNaCl, 10 mM
CaCl2 and 0.6 mM dansylcadaverine or dansyl-PGGQQIV-OH. After
the addition of EDTA (10 mM final concentration), the samples were
analyzed by SDS-PAGE, and the reaction products were visualized
under UV light using the FluorChem Q imaging system (Cell Biosci-
ences). All SDS-PAGE-based experiments were repeated at least five
times.

2.4. Activation of FXIII

FXIII (8 mg/ml)was activatedwith thrombin (1 mUnit thrombin/1 μg
FXIII) in 20 mM Tris–HCl (pH 7.4), 137 mM NaCl and 0.1 mM DTT. The
sample was incubated at 37 °C for 15 min prior to use.

2.5. Dissociation of IαI by NaOH or chondroitinase ABC (ChonABC)

IαI was chemically dissociated at alkaline pH by incubating the
protein in 100 mM NaOH at 0 °C. The sample was neutralized after
15 min by addition of Tris–HCl (pH 7.4) to a final concentration of
400 mM.

IαI was enzymatically dissociated by the addition of ChonABC. IαI
was incubated with 3.3 mUnits ChonABC/μg IαI at 37 °C for 16 h. The
dissociated IαI was labeled with dansylcadaverine as described above
using 3 μg IαI and 0.6 μg transglutaminase.

2.6. Identification of reactive Gln residues by incorporation of
biotin–pentylamine

IαI and either TTG or FXIIIa were incubated at a 5:1 ratio (w/w) in
20 mM Tris–HCl (pH 7.4), 137 mM NaCl, and 10 mM CaCl2 containing
0.1 mM DTT and 5 mM biotin–pentylamine. After 6 h at 37 °C, the re-
action was stopped by addition of EDTA to a final concentration of
50 mM. The sample was reduced in 20 mM Tris–HCl and 6 M guani-
dine–HCl (pH 8) containing 5 mM DTT and carboxyamidomethylated
by the addition of 15 mM iodoacetamide.

The reduced and carboxyamidomethylated sample was dialyzed
against 20 mM ammonium bicarbonate and digested with trypsin
(1:40 w/w) for 16 h. The tryptic peptides were lyophilized and dis-
solved in 20 mM phosphate (pH 7.4), 100 mM NaCl and 1 mM phe-
nylmethanesulfonyl fluoride (PMSF). The sample was applied to a
monomeric avidin affinity column equilibrated in 20 mM phosphate
(pH 7.4) and 100 mM NaCl. After extensive washing, the biotin–
pentylamine-labeled peptides were eluted with 2 mM biotin and fur-
ther separated by reverse phase HPLC using a Vydac C18/5 μm, 300 Å
(250×2.1 mm) column connected to an Äkta Explorer system (GE
HealthCare). The peptides were eluted using a 0.1% trifluoroacetic
acid/acetonitrile buffer system with a linear gradient. The eluate
was monitored at 220 nm, and peptides were collected manually.
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2.7. Matrix-assisted laser desorption/ionization mass spectrometry

Aliquots of the fractions from the Vydac C18 column were lyoph-
ilized, dissolved in matrix solution containing 70% acetonitrile,
0.03% trifluoroacetic acid, and 0.4% cyano-4-hydroxycinnamic acid
and spotted onto a MALDI target.

MALDI-MS Analyses MS or MS/MS spectra were collected using a
Q-TOF Ultima Global mass spectrometer (Micromass/Waters Corp.)
calibrated over the m/z range of 50–3000 using a polyethylene glycol
mixture. External calibration of each MS spectrum was performed
using Glu-fibrinopeptide B (m/z 1570.6774). The MS or MS/MS data
obtained were processed using the Masslynx 4.0 software (Micro-
mass). Data were submitted to a local Mascot server (UniProt data-
base) and manually interpreted. The GPMAW software (http://
www.gpmaw.com) was used to generate theoretical biotin–pentyla-
mine-labeled peptides to assist in the manual selection of peptides
for MS/MS analysis. Biotin–pentylamine labeling, peptide separation
and MS analysis were repeated 3 times for both TTG and FXIII.

2.8. Multiple protein sequence alignment

Sequence analyses were performed on the IαI subunits from the
following species:Meriones unguiculatus (Mongolian jird);Mesocrice-
tus auratus (Golden hamster); Pleuronectes platessa (Plaice); Xenopus
tropicalis (Western clawed frog); Salmo salar (Atlantic salmon);
Oncorhynchus mykiss (Rainbow trout); Esox lucius (Northern pike);
X. tropicalis (Western clawed frog); and Danio rerio (Zebrafish). The
multiple protein sequence alignment was made using the CLC main
Workbench (CLCBIO).

2.9. Transglutaminase-mediated cross-linking of IαI to fibrinogen

Amicrotiter plate (Nunc Maxisorp™) was coated with 25 μg/ml fi-
brinogen in 50 mM Tris–HCl and 100 mMNaCl (pH 7.4) (buffer A) for
16 h. The wells were subsequently blocked by adding 300 μl 5% skim
milk in buffer A. After 1 h, the plates were washed 3 times in buffer A,
and a fixed amount of IαI (1 or 4 μg) was added to each well. The
cross-linking reaction was then initiated by the addition of a fixed
(1 μg) or variable (0.04–20 μg) amount of FXIII and 2 mUnits of
thrombin/μg FXIII to the wells. All cross-linking reactions were per-
formed in buffer A containing 10 mM CaCl2. The samples were incu-
bated at 37°C for 4 h, and the reaction was stopped by the addition
of EDTA. To remove non-covalently bound IαI, the plate was sequen-
tially washed 3 times with buffer A containing 6 M guanidine–HCl
and 3 times with buffer A. The plate was incubated for 16 h at 4 °C
in buffer A containing 1% skim milk, 0.1% Tween and a rabbit anti-
IαI antibody (1:2000) (DAKO).

The plate was washed 3 times with buffer A before the addition of
a goat anti-rabbit HRP-conjugated antibody (1:5000) (DAKO) in buff-
er A containing 1% skim milk and 0.1% Tween. The plate was incubat-
ed for 2 h at 25 °C, washed with buffer A and developed using
0.4 mg/ml o-Phenylenediamine dihydrochloride in 24.3 mM citric
acid, 51.4 mM Na2HPO4 and 0.4 μl/ml H2O2. The plate was analyzed
at 450 nm using a FLUOstar Omega microplate reader (BMG Labtech).
All measurements were performed in triplicate.

2.10. Quantifying the relative amount of IαI in a plasma clot

Freshly drawn blood from a healthy male was fractionated by cen-
trifugation at 900 g for 2 min. The plasma fraction was removed and
allowed to clot for 2 h at 37 °C. After clot formation, the clot was re-
moved and extensively washed 3 times for 20 min in each of the fol-
lowing buffers: 1) 50 mM 50 Tris–HCl and 100 mM NaCl (pH 7.4); 2)
10% acetic acid; 3) 6 M guanidine–HCl, 2 M NaCl, and 50 mM Tris–HCl
(pH 7.4) and 4) H2O. The remaining clot was boiled for 10 min in 1%
SDS with 5 mM DTT and alkylated by addition of acrylamide at a final
concentration of 15 mM. The sample was loaded onto an SDS-PAGE
gel. After running the gel, the material in the top of the stacking gel
was prepared for in-gel digestion using a microspin column [27,28].
The washed sample was digested with trypsin (1:20 w/w) for 16 h,
and the tryptic peptides were purified using GELoader tips (Eppen-
dorf) packed with Poros R2 [29]. In short, the sample was acidified
using 0.1% formic acid and loaded onto the tip. The tip was washed
using 0.1% formic acid, and the sample was eluted using 80% acetoni-
trile with 0.1% formic acid. Acetonitrile and formic acid were removed
by lyophilization.

The lyophilized peptides were suspended in 0.1% formic acid. Ap-
proximately 2 μg of peptide was used for each SRM run. The peptides
were loaded onto an EASY-nano LC system (Proxeon, Denmark). They
were trapped on a 2 cm, 100 μm inner diameter, and 360 μm outer di-
ameter ReproSil-Pur C18 AQ 5 μm (Dr. Maisch, Ammerbuch-Entrin-
gen, Germany) reversed phase capillary column and separated using
a 15 cm, 100 μm inner diameter, and 360 μm outer diameter Repro-
Sil-Pur C18 AQ 3 μm (Dr. Maisch, Ammerbuch-Entringen, Germany)
reversed phase capillary column. The peptides were eluted using a
gradient from 0% to 34% phase B (0.1% formic acid and 90% acetoni-
trile) over 40 min at 250 nL/min directly into a triple quadrupole
mass spectrometer (TSQ Vantage, Thermo Scientific, San Jose, CA).
The TSQ Vantage was operated in nano-electrospray mode. For ioni-
zation, a 2300 V spray voltage and a capillary temperature of 200 °C
were used. The selectivity for Q1 was set at 0.7 and Q3 at 0.1 Da
(FWHM). The collision gas pressure of Q2 was set at 1.5 mTorr
argon. The collision energy was calculated by Pinpoint 1.1 (Thermo
Scientific). Data acquisition was performed in iSRM mode [30] using
an overall cycle time of 1 s. A total of 87 primary transitions and
164 secondary transitions were used to target 33 peptides. All raw
files were processed by Pinpoint 1.1. The targeted peptides were ver-
ified by comparing the transition intensities to a MS/MS spectra li-
brary [31]. For each targeted peptide that fulfilled the verification
criteria, the software computed the integrated peak areas of all pri-
mary ions for quantification and calculated coefficient of variation
for three technical replicates.

3. Results

3.1. IαI is a substrate for transglutaminases

The ability of IαI to act as a substrate for FXIIIa or TTG was tested
by co-incubation of dansylcadaverine, IαI and increasing amounts of
FXIIIa or TTG. The samples were incubated for 2 h at 37 °C, analyzed
by SDS-PAGE and visualized under UV light (Fig. 2A and B). It is evi-
dent that both FXIIIa and TTG labeled IαI with dansylcadaverine in a
concentration-dependent manner (Fig. 2A and B, lanes 1–5), indicat-
ing the existence of reactive Gln residues in IαI. To test whether IαI
was able to act as an amine donor (i.e., whether it contains reactive
Lys residues), we co-incubated the transglutaminases with IαI in
the presence of the known transglutaminase substrate dansyl-
PGGQQIV-OH (Fig. 2C and D). The transglutaminase-dependent in-
corporation of dansyl-PGGQQIV-OH demonstrates that IαI contains
reactive Lys residues, but the level of labeling of IαI relative to dansyl-
cadaverine was significantly lower.

3.2. The three IαI subunits are all substrates for TTG and FXIIIa

To determine whether all three IαI subunits (HC1, HC2 and Biku-
nin) contained reactive Gln residues, IαI was dissociated by NaOH or
ChonABC treatment. The reaction products were then incubated with
either TTG or FXIIIa in the presence of dansylcadaverine and analyzed
by SDS-PAGE (Fig. 3). NaOH dissociation (lane 2) and ChonABC treat-
ment (lane 4) of IαI revealed two fluorescently labeled bands follow-
ing TTG incubation. These data indicate that both HC1 and HC2
contain reactive Gln residues. TTG is autocatalytic (lane 5) and co-
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Fig. 2. IαI is a substrate for tissue transglutaminase and FXIIIa. To test for reactive Gln
residues, a fixed amount of IαI was incubated with increasing amounts of either FXIIIa
(A) or TTG (B) in the presence of the amine donor dansylcadaverine. To test for the
presence of reactive Lys residues, IαI was incubated with increasing amounts of either
FXIIIa (C) or TTG (D) in the presence of the amine acceptor dansyl-PGGQQIV-OH. The
samples were incubated for 3 h at 37 °C, and the reaction was stopped by addition of
EDTA. The products were separated by reducing SDS-PAGE and visualized under UV
light. The samples designated “0” lack transglutaminase. FXIIIa and TTG are samples
without IαI and present the autocatalytic activities of FXIIIa and TTG.
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migrates with HC1; therefore, we can only conclude that HC2 is a sub-
strate of TTG. However, the intensities of the HC1 band (lanes 2 and
4) and the TTG band (lane 5) indicate that HC1 is a substrate for
TTG. Similarly to TTG, FXIII generated two fluorescently labeled
bands in IαI treated with either NaOH or ChonABC (lanes 7 and 9).
FXIIIa is also autocatalytic and co-migrated with HC1 (lane 10).
Based on the band intensities, we were not able to conclude that
TTG (T)
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Fig. 3. All three subunits of IαI are substrates for tissue transglutaminase and FXIIIa. IαI
was dissociated by either NaOH (N) or ChonABC (C) treatment. Dissociated IαI was in-
cubated without transglutaminase (−) or with either TTG (T) or FXIIIa (F) in the pres-
ence of dansylcadaverine. The products were analyzed by reducing SDS-PAGE and
visualized under UV light. TTG and FXIII indicate samples without IαI and show the au-
tocatalytic activities of each enzyme.
HC1 is a substrate of FXIIIa; however, if HC1 is a substrate, FXIIIa
does not label it to the same extent as TTG.

Bikunin liberated by NaOH contains the GAG chain and migrates
as a fuzzy band during SDS-PAGE, which makes it difficult to assess
the level of dansylcadaverine incorporation. However, if IαI was en-
zymatically dissociated using ChonABC and incubated with TTG, fluo-
rescently labeled bands corresponding to bikunin were apparent,
suggesting that bikunin is a substrate for TTG (Fig. 3, lane 4). During
the experiment using dissociated IαI, polymerization of IαI subunits
was observed (Fig. 3, lanes 2, 4 and 9). While the polymerization is
most likely due to direct cross-linking of the reactive Lys and Gln res-
idues in the IαI subunits, the existence of transglutaminase/IαI com-
plexes cannot be ruled out.

3.3. Identification of the reactive Gln residues in IαI

IαI was incubated with either FXIIIa or TTG in the presence of
biotin–pentylamine. After incubation, the sample was digested with
trypsin, and the biotin–pentylamine-containing peptideswere extracted
using a monomeric avidin column. The biotin-containing peptides were
further fractionated using reverse phase HPLC (data not shown), and the
fractions were analyzed by MALDI-MS (Fig. 4A). The m/z values of all of
the tryptic peptides containing the biotin–pentylamine modification at
all Gln residues were calculated in silico (GPMAW, Lighthouse data,
http://www.gpmaw.com). The theoretical and measured m/z values
were compared, and the fractions containing peptides with a measured
m/z value within 50 ppm of the theoretical value were characterized by
MALDI-MS/MS (Fig. 4B). The collected mass spectra were manually
inspected, and a peaklist was used to query the UniProt database using
a localMascot server (Matrix Science). TheMS/MS spectra of all of the bi-
otin–pentylamine-labeled peptides contained fragment ions at m/z 329,
395 and 440, which correspond to fragments from the biotin–pentyla-
mine-modified Gln residue. These three fragments were used as a signa-
ture to identify the labeled peptides. The combined MS and MS/MS
analyses identified 10 FXIIIa- and 12 TTG-reactive Gln residues (Fig. 5
and Table 1), 9 ofwhichwere shared by both transglutaminases. Bikunin
contained a single Gln residue utilized by both transglutaminases. HC1
contained 3 TTG-reactive Gln residues, and the most N-terminal residue
also served as a substrate for FXIIIa. HC2 contained 7 residues modified
by both transglutaminases and 2 individual Gln residues that were sub-
strates for either TTG or FXIIIa. Four of the substrate sites in HC2were lo-
cated in a cluster across 18 residueswithin the primary sequence (Fig. 5).
This hot spot in HC2 is C-terminal to the von Willebrand factor type A
domain.

A multiple protein sequence alignment of the available species
found in the UniProt database (UniProt release 15.10) revealed that
5 out of the 13 residues were fully conserved (Bikunin Gln74; HC1
Gln468; HC2 Gln204, Gln420, and Gln431). Furthermore, Gln residues
90, 203, 315 and 438 in HC2 were conserved in all species, except for
Xenopus laevis (African clawed frog) and Xenopus tropicalis (Western
clawed frog). The sequence identity of HC2 homologues compared
with humans varied between 54 and 89%. All sites in HC2, except
for Gln299, were conserved between D. rerio (Zebrafish) and humans,
even though the HC2s in these species only have 54% sequence
identity.

In addition to the modification sites identified in IαI, autocatalytic
labeling gave rise to the identification of modification sites in both
TTG and FXIIIa. Four reactive Gln residues were identified in FXIIIa,
and 2 sites were found in TTG (Table 1).

3.4. Transglutaminase-mediated cross-linking of IαI and Fibrinogen

The biological relevance of the described observations was inves-
tigated by testing the ability of FXIIIa to cross-link IαI to fibrinogen.
A microtiter plate was coated with fibrinogen, and IαI was added
with or without FXIIIa. The plate was washed using denaturing
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Fig. 4. Identification of transglutaminase modification sites by mass spectrometry. IαI was incubated with TTG or FXIIIa in the presence of biotin–pentylamine. The reaction was
quenched by addition of EDTA and subsequently reduced, alkylated and digested with trypsin. The tryptic peptides were separated with monomeric avidin resin and reverse
phase HPLC. The purified labeled peptides were analyzed by MALDI-MS. The figure shows a representative example of a tryptic peptide labeled with biotin–pentylamine.
A) MALDI-MS of a tryptic peptide with an m/z corresponding to AHVSFKPTVAQQR+biotin–pentylamine. B) Table showing (in bold) the confirmed y- and b-ions from MALDI-
MS/MS of m/z 1779.96, which identified the labeled peptide as AHVSFKPTVAQQBiotin-pentylamineR. C) MALDI-MS/MS of the m/z 1779.96 signal with the b-ion series indicated. The
intense m/z 329, 396 and 440 signals originate from the biotin–pentylamine–modified glutamine residue. m/z 396 overlaps with a b-ion. *m/z corresponding to matrix adduct.
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conditions to remove non-covalently bound IαI. The presence of
FXIIIa significantly increased the amount of IαI present in the well fol-
lowing extensive washing (Fig. 6A). Similarly, a titration of FXIIIa was
performed using a fixed concentration of IαI, and a dose-dependent
relationship was observed (Fig. 6B).

The amount of cross-linked IαI leveled out at FXIIIa concentrations
of greater than 25 μg/ml. The relatively low concentration of fibrino-
gen in the wells probably limited the number of available amine
donor sites. The plasma concentration of IαI has been estimated as
600–1100 μg/ml [32], and the plasma concentration of FXIIIa is ap-
proximately 15 μg/ml [33]. Therefore, the concentration of FXIII in this
Bikunin
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Fig. 5. Schematic representation of IαI with the reactive glutamine residues. Both TTG
and FXIIIa utilize the majority of the identified sites. Three sites were only utilized by
TTG (t), and one site was specific for FXIIIa (f). Reactive glutamine residues are found
in all three subunits, indicating that all three can be cross-linked to other proteins.
The inserted sequence is the hot spot found in HC2, which contained four reactive glu-
tamine residues. vWFa is the von Willebrand factor type A domain.
experiment is similar to the plasma concentration, but the IαI concen-
tration used is at least 30 times lower than the normal plasma concen-
tration. Together, these results support the hypothesis that FXIIIa is able
to cross-link IαI to fibrinogen at physiological concentrations.

3.5. Quantifying the relative amount of IαI in a plasma clot

To support the presence of FXIIIa-mediated cross-linking of IαI in
plasma clots, we used a triple quadrupole instrument to quantify the
amount of IαI relative to the known FXIIIa substrate α2-antiplasmin
[20]. Extensive washing, reduction and denaturing gel electrophoresis
were used to isolate the cross-linked proteins in a plasma clot. Four
peptides for each IαI subunit and α2AP were selected for quantifica-
tion based on SRM analysis. The relative amounts of each IαI subunit
relative to α2AP were calculated (Fig. 7) from the obtained SRM data.
Relative to α2AP (100%), there was 3.3% HC1, 5.2% HC2 and 6.1%
Bikunin in the clot. Because the IαI subunits are cross-linked, cross-
linking of a single subunit would result in cross-linking of all three
subunits. The higher amount of HC2 and Bikunin compared with
HC1 may result from hydrolysis of the PGP cross-link during sample
preparation and/or the presence of the HC2/bikunin complex in the
clot [1].

4. Discussion and conclusions

In this study, we show that IαI is a substrate for both TTG and FXIIIa.
Incorporation of dansylcadaverine or biotin–pentylamine demonstrated
the presence of reactive Gln residues (amine acceptors).We have deter-
mined the location of these residues and established that all three



Table 1
Identification of modification sites in IαI. The table summarizes the MALDI-MS and MS/MS data for the identified substrate sites (see Fig. 3). ‘Reactive Q’ corresponds to the position
in the mature polypeptide. (') indicates the modified glutamine residue. The expected masses include the biotin–pentylamine modification and were calculated using the GPMAW
software.

Polypeptide Reactive Q Peptide FXIII TTG Measured Expected ppm

HC2 90 ALAQ'AR + + 1103.60 1103.60 0
203 AHVSFKPTVAQ'Q'R − + 2091.11 2091.14 14
204 AHVSFKPTVAQQ'R + + 1779.96 1779.97 6
299 AEDHFSVIDFNQ'NIR + + 2116.05 2116.03 −9
315 TQ'VADAKR + + 1199.65 1199.66 8
420 LSNENHGIAQ'R + + 1549.77 1549.79 13
426/431 IYGNQ'DTSSQ'LK + − 1976.01 1976.00 −5
431 IYGNQDTSSQ'LK + + 1664.82 1664.83 6
438 FYNQ'CSTPLLR + + 1648.91 1648.89 −12

HC1 8 Q'AVDTAVDGVFIR + + 1701.88 1701.90 12
319 GSLVQASEANLQ'AAQDFVR − + 2315.17 2315.18 4
468 Q'YYEGSEIVVAGR − + 1781.88 1781.89 6

Bikunin 74 ECLQ'TCR + + 1277.57 1277.58 8
FXIII 32 AVPPNNSNAAEDDLPTVELQ'GVVPR + − 2913.56 2913.55 −3

246 AQ'MDLSGR + − 1188.59 1188.59 0
484 FQ'EGQEEER + − 1462.66 1462.66 0
724 HVYGELDVQ'IQR + − 1767.94 1767.92 −11

TTG 237 VVSAMVNCNDDQGVLQ'GR − + 2273.08 2273.07 −4
470 EEAQ'EETGVAMR − + 1660.75 1660.77 12
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subunits of IαI are substrates for transglutaminases. The majority of the
sites have been highly conserved throughout evolution. In addition, we
presented evidence for the in vitro cross-linking of IαI and fibrinogen.

Finally, we presented evidence for the cross-linking of IαI to the fi-
brin clot. It has previously been shown that approximately 30% of the
α2AP present in plasma (1 μM) is cross-linked to the fibrin clot
[34,35]. The normal human plasma concentration of fibrinogen is
9 μM, which gives a molar ratio of α2AP to fibrin of 3:100. Based on
our quantification, the ratio of IαI to fibrin is approximately
1.5:1000. However, because IαI is known to stabilize the ECM and
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Fig. 6. IαI is cross-linked to fibrinogen by FXIIIa. A) A microtiter plate was coated with
or without (No coat) fibrinogen. Fixed amounts of IαI and FXIIIawere added as indicated.
B) A fixed amount of IαI (20 μg/ml) was cross-linked to fibrinogen using increasing con-
centrations of FXIIIa (0.2–100 μg/ml). The graph shows the absorbance relative to a sam-
ple without FXIIIa. Cross-linked IαI was detected using a rabbit anti-IαI antibody. The
indicated values are the averages of three measurements, and the standard deviation is
indicated.
act as a protease inhibitor, a relatively small amount of IαI could af-
fect clot formation and stability. Further studies are needed to charac-
terize the cross-linking between IαI and fibrin and to identify the
cross-linking sites to examine the effect of IαI on the covalent net-
work in the clot.

These findings indicate that transglutaminases are able to catalyze
the cross-linking of IαI and other proteins implicated in the organiza-
tion of connective tissue, wound healing and fibrinolysis.

Studies of the biological function of the HCs have been focused on
the interaction of HCs with hyaluronan and the importance of the
HC–HA complex during development of the cumulus matrix [36–38].
HC2/TSG-6 transfers the HCs from bikunin chondroitin-4-sulfate to
HA through transesterification reactions involving Ser28 of TSG-6
[13,39,40]. However, the molecular mechanisms by which the trans-
ferred HCs stabilize the ECM are not understood. It seems that both
HC–HA complexes [16,36] and IαI are important for the TSG-6-
independent formation of HA-rich ECM and cell adhesion [41,42]. The
self-associated IαI/HA ECM is likely to become more stable because of
the introduction of transglutaminase-generated cross-links between
HCs and/or other HA binding proteins.

Wound healing involves inflammation, proliferation and remodel-
ing [43], which all involve the activity of transglutaminases [44,45].
Cross-linking of IαI to the tissue during wound healing is likely to in-
fluence the wound healing process. During inflammation and prolif-
eration, cross-linking of the HCs to the ECM might provide a
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Fig. 7. Relative quantification of IαI in a plasma clot. The covalently cross-linked pro-
teins in a plasma clot were isolated, and the three IαI subunits were quantified relative
to α2AP using a triple quadrupole mass spectrometer. The measurements are based on
the total intensity of four peptides from each subunit/protein with three technical rep-
licates. The standard deviation is indicated.
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scaffold for migrating cells, a characteristic previously described for
the HC–HA complex [16,41]. Perforation of the skin allows bacteria
to gain access to a wound. These bacteria are normally removed by
neutrophils during inflammation [43], but cross-linking of IαI and
particularly bikunin during wound healing might provide an initial
level of protection against adventitious proteolysis from bacterial or
endogenous proteases.

The inhibitory capacity of bikunin has been shown to be low rela-
tive to its concentration; thus, the physiological relevance of bikunin-
mediated inhibition of several proteases, including plasmin, has been
questioned [8]. Therefore, it is not likely that circulating IαI plays a
role as a fibrinolysis inhibitor. The action of FXIIIa could potentiate
the inhibitory activity of bikunin in two ways; i) bikunin directly
cross-linked to fibrin could generate a higher local concentration of
bikunin or increase plasmin inhibition as seen in its interaction with
TSG-6 [9–11] and ii) because plasmin(ogen) contains at least one
transglutaminase reactive Lys and Gln residue [46], it is possible
that cross-linking of bikunin to plasmin(ogen) results in enhanced
inhibition.

The observations made in this study suggest that transglutami-
nases may generate a covalent bond between IαI and other proteins,
in addition to the covalent bond to glycosaminoglycans that is medi-
ated by TSG-6. Cross-linking between IαI and other ECM proteins
may increase the mechanical and proteolytic stability of the ECM.
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