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a b s t r a c t

Climatic changes in Arabia are of critical importance to our understanding of both monsoon variability
and the dispersal of anatomically modern humans (AMH) out of Africa. The timing of dispersal is
associated with the occurrence of pluvial periods during Marine Isotope Stage (MIS) 5 (ca. 130e74 ka),
after which arid conditions between ca. 74 and 10.5 ka are thought to have restricted further migra-
tion and range expansionwithin the Arabian interior. Whilst a number of records indicate that this phase
of aridity was punctuated by an increase in monsoon strength during MIS 3, uncertainties regarding the
precision of terrestrial records and suitability of marine archives as records of precipitation, mean that
the occurrence of this pluvial remains debated. Here we present evidence from a series of relict lake
deposits within southeastern Arabia, which formed at the onset of MIS 3 (ca. 61e58 ka). At this time, the
incursion of monsoon rainfall into the Arabian interior activated a network of channels associated with
an alluvial fan system along the western flanks of the Hajar Mountains, leading to lake formation.
Multiproxy evidence indicates that precipitation increases intermittently recharged fluvial systems
within the region, leading to lake expansion in distal fan zones. Conversely, decreased precipitation led to
reduced channel flow, lake contraction and a shift to saline conditions. These findings are in contrast to
the many other palaeoclimatic records from Arabia, which suggest that during MIS 3, the latitudinal
position of the monsoon was substantially further south and did not penetrate the peninsula. Addi-
tionally, the occurrence of increased rainfall at this time challenges the notion that the climate of Arabia
following MIS 5 was too harsh to permit the further range expansion of indigenous communities.

� 2013 Elsevier Ltd and INQUA.
1. Introduction

The Arabian Peninsula is uniquely positioned with respect to
both archaeological and palaeoclimate studies (see Groucutt and
Petraglia, 2012 for review). While much of Arabia presently expe-
riences arid/hyper-arid conditions, the palaeoenvironmental re-
cord confirms that during the Late Quaternary, many regions within
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the interior experienced periods of increased humidity. During
such times, the arid Arabian environment was transformed into an
ameliorated landscape with a sufficient supply of freshwater to
support awide variety of flora and fauna (Parker, 2009). Conversely,
during periods of increased aridity, the deserts of Arabia likely
presented a considerable obstacle to human expansion. Our un-
derstanding, therefore, of early demographic shifts is informed by
palaeoclimatic records through which ‘windows’ of favourable
climatic conditions can be identified. Unfortunately, there is a
paucity of climatic data for key periods such as Marine Isotope
Stage (MIS) 3 (ca. 60e24 ka). As such, the suitability of Arabia for
the expansion and/or occupation of early communities at this time
remains unresolved.
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Climatic changes within Southeast Arabia are critically tied to
the periodic migrations of the Inter-Tropical Convergence Zone
(ITCZ) and associated monsoon rainfall belt. These are driven by a
landesea thermal contrast and transequatorial pressure differ-
ences, directly coupled with insolation changes and glacial
boundary conditions (e.g. Prell and Kutzbach, 1992; Clemens and
Prell, 2003; Fleitmann et al., 2003; Leuschner and Sirocko, 2003).
Periodic incursions of the Indian Ocean Monsoon (IOM) system
during times of increased summer season insolation, are recorded
in a variety of palaeoenvironmental archives, which reveal an in-
crease in monsoon rainfall during MIS 5, specifically, at ca. 130e
120 ka (MIS 5e), ca. 105e100 ka (MIS 5c) and ca. 82e78 ka (MIS
5a) (e.g. Burns et al., 1998; Fleitmann et al., 2003; Fleitmann and
Matter, 2009; Fleitmann et al., 2011; Rosenberg et al., 2011, 2012).
During these periods, the favourable climatic conditions within SE
Arabia enabled the dispersal and range expansion of human pop-
ulations into the peninsula (Armitage et al., 2011; Petraglia et al.,
2011; Rose et al., 2011; Rosenberg et al., 2012). However, detailed
evidence for climatic changes for the period between 74 and
10.5 ka, is scarce. Problems regarding geochronology and data
availability mean that at the present, there are few terrestrial re-
cords that provide detailed palaeoclimatic data for these periods,
which are generally considered to have been hyper-arid. For
instance, climatic conditions during MIS 4 (ca. 74e60 ka), which
were typified by a period of intense hyper-aridity, witnessed an
increase in dune mobility resulting in only minor aeolian deposi-
tion and sediment preservation (e.g. Preusser et al., 2002; Radies
et al., 2004; Stokes and Bray, 2005; Preusser, 2009).

2. MIS 3 in Southeast Arabia

Radiocarbon age estimates of lake deposits and fluvial terraces
within the Arabian interior have been used to suggest the occur-
rence of late MIS 3 humid episodes between ca. 35 and 20 ka (e.g.
McClure, 1976, 1984; Whitney, 1983; Sanlaville, 1992; Woods and
Imes, 1995). These early records, however, suffer from a lack of
well-defined chronologies and significant age-estimation prob-
lems. Recent redating of lacustrine sediments from Mundafan and
Khujaymah (Rosenberg et al., 2011) utilising Optically Stimulated
Luminescence (OSL) indicates that lake formationwithin the region
occurred ca. 125 ka (MIS 5e), ca. 100 ka (MIS 5c), and ca. 80 ka (MIS
5a). These age estimates, therefore, are synchronous with evidence
for increased monsoon rainfall derived from established speleo-
them records and indicate that humid episodes within Arabia have
been largely confined toMIS 5.Whilst these findings do not directly
challenge radiocarbon data from other regions (i.e. Clark and
Fontes, 1990; Sanlaville, 1992), they provide a stark reminder of
the fallibilities of early/mid-MIS 3-age radiocarbon age estimates,
which lie at the upper end of the dating limit for the technique.

A number of marine records, however, indicate a notable in-
crease in monsoon intensity during the early stages of MIS 3 (e.g.
Schulz et al., 1998; Altabet et al., 2002; Higginson et al., 2004; Des
Combes et al., 2005; Ivanochko, 2005; Govil and Naidu, 2010;
Kessarkar et al., 2010). The onset of MIS 3 was also characterised by
intense millennial-scale temperature oscillations that exceeded
6 �C; more than half of the glacialeinterglacial temperature change
itself (Sakai and Peltier, 1999). There is a paucity of terrestrial evi-
dence for an early MIS 3 humid phase, however, with only a small
number of records providing possible evidence of monsoon vari-
ability. Blechschmidt et al. (2009) report evidence from alluvial fans
within the southwestern margin of the Oman Mountains, from
which OSL age estimates indicate that minor channel regeneration
occurred at 45 � 5 ka. Additionally, McLaren et al. (2008) identify a
series of interstratified sands and gravel deposits within central
Saudi Arabia, which indicate that the aggradation of fluvial gravels
occurred prior to 53.9 � 4.2 ka. Both studies state, however, that
fluvial aggradation at this time may have been the result of local-
ised regional changes in precipitation, rather than increased con-
tinental humidity. Recent geological mapping of the UAE has also
confirmed the presence of fluvio-lacustrine deposits near Remah,
Abu Dhabi which have been dated to the early stages of MIS 3
(Farrant et al., 2012). OSL ages from the uppermost part of a fluvio-
lacustrine sequence have yielded dates of 54.1 � 3.1 and
53.4 � 3.8 ka. Additional evidence of early MIS 3 monsoon vari-
ability, albeit outside the Arabian interior, comes from d18O values
of speleothems from Socotra Island in the Indian Ocean (Burns,
2003). U/Th age determinations indicate that between ca. 55 and
42 ka, SE Arabia experienced an increase in monsoon precipitation,
fluctuations of which were coeval with North Atlantic temperature
variations over Dansgaard/Oeschger (D/O) Events 9e13. The
emerging palaeoclimatic record suggests, therefore, that whilst
increased humidity at this time was not as pronounced as the last
interglacial, monsoon rainfall may have penetrated the Arabian
Interior.

Similarly, the archaeological record of Arabia at this time is also
sparse. However, there is now enough evidence to verify the
presence of human populations across southern Arabia during MIS
3. Of particular importance is the stratified archaeological sequence
at Jebel Faya rockshelter in the United Arab Emirates, which pro-
vides evidence for a lithic assemblage (A) dating toMIS 3 (Armitage
et al., 2011). Analysis of Assemblage A has led to the conclusion that
the technology may be derived from the underlying Assemblage B
and has no analogies to any other lithic industry in or around
Arabia. The findings suggest, therefore, that the MIS 3 population at
Jebel Faya must derive from a local tradition confined to eastern
Arabia (Armitage et al., 2011), perhaps associated with the posited
Gulf Oasis refugium (Rose, 2010). In addition to the stratified site of
Jebel Faya, two in situ assemblages e Shi’bat Dihya (SD) 1 and 2,
were excavated from a sedimentary basin in Wadi Surdud, Yemen,
with bracketing ages of ca. 63 and 42 ka (Delagnes et al., 2012).
Similar technological traits within the SD1 and SD2 assemblages,
indicating cultural continuity through the MIS 3 sequence. The
assemblages from Wadi Surdud do not belong to any coeval tech-
nocomplex in Africa, the Levant, or Jebel Faya Assemblage A, indi-
cating that, like Jebel Faya, the technology developed from a local
Middle Palaeolithic industry.

There is some overlap between Wadi Surdud and the
unidirectional-parallel/convergent core reduction strategies
described from Wadi Dauan (Amirkhanov, 2006), as well as with
numerous ‘Nejd Leptolithic’ surface scatters mapped throughout
the Dhofar region in southwestern Oman (Hilbert et al., 2012). It has
been suggested that many of these blade-based assemblages
distributed across southern Arabia belong to an autochthonous
Upper Palaeolithic (or Late Palaeolithic) tradition (Rose and Usik,
2009; Hilbert et al., 2012). Most recently, researchers working in
the Dhofar region of southwestern Oman, report 78 surface sites
belonging to an undated lithic industry, the Mudayyan, that ap-
pears to be derived from the preceding MIS 5c Nubian Complex
occupation (Usik et al., 2013) and is estimated to fall somewhere
between MIS 5a and MIS 3. Importantly, there is a resemblance
between Mudayyan core reduction strategies and MIS 3 Middlee
Upper Palaeolithic transitional assemblages in the southern
Levant (e.g., Marks, 1983; Clark et al., 1997; Richter et al., 2001). As
such, this industry is particularly relevant to the question of pop-
ulation movements within Arabia during MIS 3 and, therefore, the
existence of an early MIS 3 humid phase.

From the current archaeological evidence, it seems that after
MIS 5, the different lithic traditions within Arabia develop along
separate trajectories, with no indication of additional input from
Africa. Recent genetic evidence (Fernandes et al., 2012) also
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indicates that the relict distribution of minor haplogroups N1, N2
and X, reflects an ancient ancestry of these groups within the
Arabian Peninsula which, the authors conclude, then spread from
the Gulf region toward the Near East and Europe between 55 and
24 ka. The potential occurrence of increased humidity within the
Arabian interior during MIS 3 would, therefore, have been instru-
mental in determining the success and trajectory of the autoch-
thonous development of early human communities within the
region at this time. Although Rosenberg et al. (2012) may be correct
in their description of Arabia between ca. 75 and 10.5 ka as a natural
barrier for human dispersal, it is possible that indigenous in-
habitants may have persisted in environmental refugia around
Arabia, such as the Gulf Oasis (e.g. Rose, 2010). The occurrence of a
pluvial phase during the early stages of MIS 3, therefore, may have
facilitated a range expansion of early humans previously contained
Fig. 1. Map of the study region within the UAE (inset). Location of the study sites at Jebel Aq
shown.
within such refugia. To address these important issues, we present
a multiproxy record of an early MIS 3 wet phase from a palaeolake
sequence within the continental interior of SE Arabia.

3. Environmental setting

The study area is situated approximately 35 km south of Al
Dhaid, an oasis town located within the Emirate of Sharjah, UAE
(Fig. 1). The region is dominated by the Al Faya Anticline which
extends approximately 30 km from Jebel Buhais in the south,
through Jebel Faya, Jebel Emaylah and Jebel Al A’zab, to Sha’biyyat
As Saman, reaching maximum height of 407 m on Jebel Emaylah
(Farrant et al., 2006). The region is largely covered by Quaternary
sediments, although Palaeogene limestones and Oman-UAE
ophiolite, which constitutes most of the Hajar Mountains, are
abah (1) and Jebel Emaylah (2), geomorphological/drainage features and lithologies are
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well exposed in the Al Faya range. Outcrops of the fluvial
conglomerate Barzaman Formation also occur locally along the
mountain front and within interdunal areas (Macklin et al., 2012).
The presence of the Al Faya anticline strongly determines the
morphology of alluvial and aeolian features within the region,
presenting a barrier to the eastward migration of dunes and a
confluence point for W/NW-oriented channels that drain towards
the Gulf.

Fluvial channels within the Faya region comprise the mediale
distal component of alluvial fan drainage systems that emanate
from the Hajar Mountains, approximately 16 km east of the site,
trending WeNW towards the Gulf. These form part of a vast bajada
of alluvial fans that flank the Oman Mountains from the northern
Fig. 2. Stratigraphic log of the sequence at Aqabah. Grain size (laser granulometry)
Emirates down to the Wahiba Sands in Oman. Their extent is nar-
row within the northern Emirates (Styles et al., 2006), whereas
directly west of the Wahiba they widen to around 200 km (Glennie
and Singhvi, 2002). These sediments, termed the Hili Formation,
are a lithologically variable unit of Late Quaternary fluvial deposits
that extend as far west as Abu Dhabi, which comprise a fining-up
sequence of interbedded alluvial fan silts, sands and gravels
(Farrant et al., 2006). Within the study region, the alluvial fan ex-
tends west to Jebel Faya, where it is dominated by distal fan sand-
skirts and braid plains (Fig. 1). The bedrock inliers of the Faya range
serve to channelise flow into two distinct wadis. Wadi Iddayyah,
themain drainage feature within the Al Faya complex, channels run
off from as far south as Jebel Sumayni in Oman, passing to the west
values, location of OSL dates and interpreted lake phases (LP1e5) are shown.
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of Jebel Aqabah. Periods of fluvial aggradation by this major wadi
induced local ponding and subsequent lake formation at the lower
end of the smaller wadi Baraq, which passes between Jebel Aqabah
and the southern end of Jebel Faya. The competitive aggradation of
these two streams led to the deposition of a thick (>10m) sequence
of fluvio-lacustrine and aeolian sediments within this tributary
valley. Subsequent incision has left these sediments preserved as a
series of terraces either side of the Jebel Aqabah d Jebel Buhais
valley (Drechsler, 2008), up to 20 m above the present valley floor.
Geomorphological evidence, therefore, suggests that fluvio-
lacustrine deposits within this valley were formed during sus-
tained humid episodes that enabled sufficient aggradation of the
larger Wadi Iddayyah to block stream flow from Wadi Baraq.

Very little pre-Holocene palaeoclimatic research has been con-
ducted within the immediate vicinity of the Al Faya complex,
although there is some evidence for a pluvial phase within the
region during the early stages of MIS 3. Two OSL dates from a wadi
terrace near the base of Jebel Emaylah suggest that wadi activation
occurred at some point occurred between 48 � 5 and 63 � 5 ka
(Krbetschek, 2008). Whilst such dates provide an important
confirmation of wadi activation during MIS 3, an absence of a
refined chronology, or sedimentological and environmental evi-
dence, means that it is difficult to determine a framework of cli-
matic and landscape change for the region from these dates alone.

4. Methodology

4.1. Field measurements

Following a detailed geomorphological investigation of the Jebel
Aqabah d Jebel Buhais valley, a partially exposed sequence of
interstratified aeolian, fluvial and lacustrine sediments ca. 50 m
from the base of the adjacent Jebel Aqabah (N25�02016.800

E055�48022.100) was excavated to a depth of 7.35 m (Fig. 2). The
section (JA08) was cleared and logged in the field, whilst samples
for optically stimulated luminescence (OSL) dating were removed
in lightproof tubes from both Aqabah and an ephemeral stream
deposit which channels run off from the adjacent Jebel Emaylah
(approximately 2 km east of Jebel Aqabah). This was to provide a
Table 1
Summary of OSL data from Aqabah (OSL1-6) and Jebel Emaylah site (X3857).

Sample field
code

Sample laboratory
code

Radioisotopesa Field water
(%)

In situ external g-dose
rateb (Gy/ka)

Total dose rate
(Gy/ka)

Palaeodose (Gy) Age (ka)

K (%) Th (ppm) U (ppm)

OSL 1 X3586 0.89 1.0 0.8 3 � 3 0.365 � 0.018 1.27 � 0.07 70.73 � 6.20 55 � 5.6
OSL 2 X3588 0.92 1.4 0.8 3 � 3 (0.365 � 0.370) 1.29 � 0.07 71.20 � 6.10 55 � 5.7
OSL 3 X3590 1.00 1.4 0.9 3 � 3 0.365 � 0.018 1.33 � 0.07 77.38 � 12.53 58 � 9.9
OSL 4 X3345 0.98 2.2 1.0 3 � 3 0.417 � 0.021 1.40 � 0.07 80.31 � 11.57 57 � 8.8
OSL 5 X3346 0.96 1.2 0.6 3 � 3 0.373 � 0.019 1.08 � 0.05 72.59 � 19.34 58 � 15.8
OSL 6 X3347 0.99 1.2 0.6 3 � 3 0.379 � 0.019 1.15 � 0.06 77.33 � 9.60 61 � 8.3
Emaylah X3875 0.83 1.6 0.9 3 � 2 Not measured 1.25 � 0.08 72.80 � 3.48 58 � 4.5

a Measurements were made on dried, homogenised and powdered material by fusion ICPeMS with an assigned systematic uncertainty of �5%. Dry beta dose rates
calculated from these activities were adjusted for the measured field water content expressed as a percentage of the dry mass of the sample.

b Based on in situ measurements made by Dr S. Armitage (Royal Holloway, University of London) using a portable g-ray spectrometer equipped with a NaI (Tl) scintillator
crystal and calibrated against the Oxford blocks (Rhodes and Schwenninger, 2007). No field spectroscopy measurement was available for sample X3588 but given the identical
external dose rate calculated for the overlying and underlying samples we used the same value with an inflated error of 10%.
supporting date that would help to establish that fluvial channels
within the wider relict terrace sequence were coeval with lake
formation at Aqabah. Mass specific, low frequency magnetic sus-
ceptibility measurements (clf) were obtained in the field using a
Bartington MS2 meter with an MS2C sensor at 0.1 SI sensitivity
(Dearing, 1999). Contiguous 1.5 cm samples were extracted from
JA08 to a depth of 7.35 m for further analysis in the laboratory.
Multiproxy analyses were limited to samples between 3.75 m and
the base of the sequence owing to the homogeneity of the overlying
dune sands.

4.2. Laboratory analyses

Water content, loss on ignition organic content (LOIorg) and
carbonate content (LOIcarb) were conducted following the standard
procedures described in Dean (1974) and Heiri et al. (2001). To
determine grain size, samples of air-dried sediment were gently
disaggregated in de-ionised water and analysed using a Malvern
Mastersizer 2000. Bulk geochemical analysis of elemental con-
centrations within the samples was determined by Inductively
Coupled PlasmaeAtomic Emission Spectrometry (ICPeAES) at
Royal Holloway, University of London. Samples for bulk (<63 mm
fraction) inorganic carbonate isotope analysis (18Ocarb and 13Ccarb)
were prepared following the procedure described by Lamb et al.
(2000) and all measurements made using a VG Optima mass
spectrometer. Organic carbon isotope (13Corg) values, %N and %C
measurements derived from the bulk organic component of sam-
ples were made using a Carlo Erba 1500 online to a VG TripleTrap
and Optima duel-inlet mass spectrometer, and prepared following
the procedure described by Leng et al. (2005). All stable isotope
analyses were conducted at the NERC Isotope Geosciences Labo-
ratory, Keyworth, Nottingham.

4.3. OSL dating

Optically stimulated luminescence (OSL) dating was performed
on sand-sized quartz grains extracted from six samples (see
Table 1) collected from aeolianmaterial intercalatedwith lacustrine
deposits within the sequence at JA08. Laboratory procedures were
designed to yield sand-sized (180e250 mm) mineral grains of
quartz for optical dating according to standard preparation
methods, including wet sieving, HCl acid digestion, density sepa-
ration and etching in 68% HF acid to dissolve feldspar minerals and
remove the outer 6e8 mm alpha-dosed layer. A prolonged 2 week
acid digestion in saturated fluorosilicic acid was necessary in order
to reduce concentrations of feldspar contaminants.
OSL measurements were conducted using an automated lumi-
nescence reader (Risø TL/OSL-DA-15 system) and are based on a
single-aliquot regeneration (SAR) measurement protocol (Murray
and Wintle, 2000). Equivalent dose estimates were obtained for
3e4 mm diameter aliquots and twelve repeat measurements were
made for each sample. Optical stimulation for single aliquots was
provided by blue light emitting diodes (42 Nichia 470D20 nm;
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36 mW cm�2). The natural and regenerative doses were preheated
at 260 �C for 10 s, and the fixed test doses (which are used to correct
for any sensitivity changes) were preheated at a reduced temper-
ature of 240 �C for 10 s, before optical stimulation. This was based
on a single dose recovery test done on three aliquots of sample
X3345 and which provided a recovered dose within 4% of the
known laboratory dose. The absence of infrared-sensitive minerals
(e.g., feldspars) was checked and confirmed using an infrared
bleach provided by a solid state laser diode (830D10 nm; 1 W cm2)
at 50 �C for 50 s before blue light stimulation. The ultraviolet OSL
emission at ca. 370 nmwas detected over a period of 100 s using an
Electron Tubes Ltd 9235QA photomultiplier tube fitted with a
blueegreen sensitive bialkali photocathode and 7.5 mm of Hoya U-
340 glass filter. Laboratory doses used for constructing dose
response curves were given using a calibrated 90Sr/90Y beta source
housed within the reader.

To calculate dose rates, we combined the results of in situ g-ray
spectroscopymeasurements with elemental analysis by inductively
coupled plasma mass spectroscopy (ICPeMS) using a lithium
metaborate/tetraborate fusion carried out by Actlabs (Canada). The
on-site measurements provided direct estimation of the external
gamma dose rate applicable to individual samples whereas the beta
dose rate was derived from the concentrations of potassium,
thorium and uranium obtained by laboratory based elemental an-
alyses of sub-samples of sediment. The cosmic-ray dose was
calculated according to standard data reported by Prescott and
Hutton (1994), taking into account sample depth and overburden
density, along with the geomagnetic position of the site (latitude,
longitude and altitude). Estimates of radionuclide concentrations
were converted to dose rates according to conversion factors pro-
posed by Adamiec and Aitken (1998), using corrections for grain
size (Mejdahl, 1979) and water content (Zimmerman, 1971). The
past water content of the sediments may, for short times, have
deviated from the modern field values but the present moisture
contents (ranging from 0.5 to 1.5%) may be considered to represent
a good indication of the average water content of the samples
throughout their burial history. To accommodate any significant
attenuation effects caused by past changes in pore water on the
total dose rate received by the quartz mineral grains, a mean water
content of 3 � 3% was applied to all the samples. Multi-grain
palaeodose estimates were determined from the first 2 s of OSL,
using the final 10 s as background noise. Doseeresponse curves
were fitted using a saturating-exponential-plus-linear function and
a systematic laboratory reproducibility uncertainty of two percent
was added (in quadrature) to each OSL measurement error to ac-
count for uncertainties in the calibration of the beta source. Errors
on the age estimates are reported at 1sig. The measured SAR
palaeodose values and the calculated OSL age estimates are shown
in Table 1 and De distributions for samples X3586 and X3588 are
shown in Fig. 3.
Fig. 3. Example of De distributions for samples X3586 and X3588.
5. Results

5.1. Sedimentology and grain size analysis

The sedimentary sequence at Aqabah (Fig. 2) comprises a
stratified 7.35 m sequence of colluvium, aeolian sands and fluvio-
lacustrine silts and sands. The whole sequence is overlain by a
1.15 m colluvial deposit comprised of moderately sorted,
subangulareangular limestone clasts within a sand matrix. The
colluvial deposit generally displays a fining-up sequence, with
clasts having an a-axis length of 5 cm. Grain size analysis indicates
that the main sedimentary sequence between 1.15 m and 7.35 m is
comprised of two principal components that reflect lacustrine and
aeolian depositional processes. The aeolian component comprises
moderately well sorted fine sands with near symmetrical skewness
(�0.02 for all samples), mesokurtic kurtosis (0.97e0.944) and a
unimodal distribution reflecting a single sedimentary component.
The skewness and kurtosis values of the aeolian components
within the sequence are in accordancewith the granulometric sand
type typical of the active sand crests of migrating dunes within the
region (Besler and Ritter, 2009). These sedimentary characteristics
are representative of the larger sand unit (1.15e3.65 m) and of
minor (<20 cm) sand layers intercalated with lacustrine facies
(3.60e7.35 m), indicating that periods of increased regional aridity
and dune mobilization occurred between each phase of lake
formation.

Lacustrine facies are comprised of very fine sand and silt sedi-
ments and are designated as lake phases (LP1e5). OSL age esti-
mates indicate that lake formation at Aqabah occurred during five
phases between ca. 61 ka and 58 ka, however, the relatively narrow
range of ages mean that it is not possible to determine the duration
of each phase of lake formation. Structural, granulometric and
multiproxy characteristics of these units indicate deposition under
different hydrological regimes. LP1 is comprised of an initial silty
marl layer (7.00e6.80 m), followed by interdigitated silts and sands
between 6.80 m and 6.50 m, overlain by silty marl (6.50e6.20 m).
LP2 represents a brief phase of sedimentation that may corre-
spond to a brief overbank flood event and is comprised of calcar-
eous silt-sands, whilst LP3e5 are finely laminated lacustrine silt
and sand deposits. Both the fluvial sand and silt sediments are
poorly- to very poorly-sorted with bimodal grain size distribution
reflecting varying contributions of silt/sand to each sample, and
reflecting more than one sedimentary or transportation process
(e.g. An et al., 2012). Given the proximity of the Rub’ al-Khali to the
west of the site, it is likely that aeolian material would have made
an important contribution to the suspended load of channels
converging at the Aqabah site. Highly laminated sediments
throughout LP4 and LP5 show profuse root and plant impressions
and a high degree of manganese staining between laminae, indic-
ative of sustained lake activity and seasonally fluctuating condi-
tions. Additionally, vertically and horizontally-bedded rhizoliths
(root structures preferentially cemented by gypsum) are also pre-
sent and indicative of increasingly saline conditions.

5.2. Magnetic susceptibility

Other studies (e.g. Parker et al., 2006; Preston et al., 2011) have
shown that closed basin lakes in SE Arabia record increases in
magnetic susceptibility (MS) during arid phases, owing to an
increased mobility of Fe-rich dune sands. The fluvial sedimentary
record at Aqabah, however, is strongly influenced by the minero-
genic influx of material eroded from the ophiolite-rich Hajar
Mountains and as such, higher magnetic susceptibility (clf) values
occur during lake phases. There are substantial increases
throughout LP1-5 (Fig. 4), with peak clf values occurring at the



Fig. 4. Multiproxy record of the Aqabah sequence between 3.75 and 7.20 m including interpreted pluvial phases.
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onset of LP1 (55.4), and further high values during LP3 (53.4) and
LP5 (51.9). Abrupt increases in clf values occur at the onset of fluvial
deposition at the site (6.90 m) and during phases of lacustrine
sedimentation (5.40 m, 4.70 m and 4.25 m), suggesting that post-
depositional authigenesis may be an additional controlling factor
of magnetic values.

5.3. Organic matter content

Nitrogen (Ntotal) content was below the detection range and is
not discussed. Fluctuations in all organic proxies display a close
relationship with facies changes throughout the sequence, with
notable increases in water content, organic content (LOIorg), %C
and d13Corg during phases of lake formation (LP1 and 3e5) and
generally lower values during phases of aeolian deposition. Sub-
stantially higher LOIorg than %C values throughout the sequence
are likely due to the loss of volatile salts, inorganic carbonates and
structural water between 425 and 550 �C (Boyle, 2001), leading to
Table 2
Correlation coefficients (R) for selected sedimentology, geochemical, organic and palaeo

18Ocarb
13Ccarb Mag. Sus. %C 13Corg LOIorg LOIcarb Wate

18Ocarb
13Ccarb 0.13
Mag. sus. 0.40 �0.13
%C 0.04 0.05 0.32
13Corg 0.17 �0.06 �0.13 0.32
LOIorg 0.30 0.03 0.35 0.47 0.18
LOIcarb 0.13 0.02 0.06 0.41 0.06 0.23
Water content 0.34 �0.01 0.26 0.58 0.52 0.62 0.13
Grain size �0.25 �0.04 �0.22 L0.46 �0.39 L0.52 �0.13 �0.2
Mg/Ca 0.20 0.14 0.54 0.46 0.03 0.79 0.11 0.5
Al 0.20 0.24 0.42 0.44 0.01 0.55 0.22 0.2
Fe 0.16 0.28 0.50 0.44 �0.05 0.63 0.23 0.2
Mg 0.14 0.18 0.55 0.52 �0.01 0.74 0.21 0.3
Mn 0.13 0.20 0.55 0.49 �0.03 0.73 0.18 0.4
K 0.12 0.31 0.31 0.23 �0.14 0.52 0.13 0.2
P 0.09 0.51 0.51 0.48 0.05 0.76 0.13 0.4
Ca �0.09 �0.08 �0.16 0.05 �0.06 L0.42 �0.08 L0.5

Bold values are significant at a 99% confidence interval.
over estimations of organic content. It is suggested that the influx
of carbonate material, weathered from the surrounding catch-
ment and deposited at the site during lake formation, has led to
this overestimation. Estimated %C values show a good degree of
correlation (Table 2) with LOIorg (R ¼ 0.47), recording increases
that are coincident with the deposition of lacustrine material.
Peak %C values are achieved within LP3 (0.13%), whilst lower
values correspond with the deposition of aeolian sand, achieving a
minimum at the base of the sequence (0.02%). %C throughout LP5,
LP4 and LP3 abruptly increases at the onset of lake formation,
before declining towards the upper part of each unit. d13Corg
values also display some positive increases during LP1, 3 and 4.
The most substantial positive shift is achieved during LP3
(�20.2&) at a depth of 5.4 m, coincident with peak %C and water
content values. The most negative d13Corg values (�24.2&) occur
within LP5 at 4.22 m, corresponding with increases in LOIorg, %C
and an abundance of fossil plant remains and rhizoliths within the
sedimentological record.
hydrological proxy data from the Aqabah record.

r content Grain size Mg/Ca Al Fe Mg Mn K P

7
3 �0.35
6 �0.30 0.77
9 �0.27 0.89 0.92
9 �0.35 0.95 0.82 0.95
2 �0.33 0.94 0.82 0.96 0.97
3 �0.19 0.77 0.86 0.88 0.82 0.82
4 �0.35 0.91 0.75 0.91 0.94 0.97 0.79
2 0.05 L0.59 �0.21 �0.38 L0.42 L0.45 �0.39 L0.49
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5.4. Inorganic matter content

Carbonate content (LOIcarb) values are somewhat variable
throughout the sequence (Fig. 4). However, notable peaks occur at
4.40e4.25m, achieving a maximumvalue of 29.6% at 3.65m, which
likely indicates an increase in the mobility of deflated carbonate
material following the termination of lacustrine conditions at the
end of LP5. Variations in d18Ocarb throughout the sequence show
some degree of correlation with facies changes. In particular,
d18Ocarb values show a shift to more negative values at the onset of
each lake phase, with values becoming most depleted (�3.35&) at
4.20 m. The greatest shift between positive and negative values
occurs at the onset of LP1 (7.10 m). Significantly, throughout the
whole sequence d18Ocarb values appear to correlate well with
magnetic susceptibility values (R ¼ 0.40) and to a lesser extent,
LOIorg (R ¼ 0.30). During lake phases, the d18Ocarb signal is charac-
terised by an initial depletion followed by fluctuations between
positive and negative values. d13Ccarb values display similar fluc-
tuations throughout the profile including a shift to more negative
values at the onset of lake formation. A distinct feature of the
d13Ccarb record, however, is its narrow range and weak correlation
with other proxies. Additionally, throughout the d13Ccarb signal
there is a lack of distinction between aeolian and lake phases, with
peak (positive) values (�0.42&) occurring during LP1 (4.02 m).

5.5. Bulk geochemistry

There is an excellent correlation between organic elements P
and Mn (R ¼ 0.97), both of which appear highly sensitive to facies
changes within the upper part of the sequence and show a strong
correlation with LOIorg (R ¼ 0.76 and R ¼ 0.73 respectively). Simi-
larly, there is an excellent correlation between inorganic elements
Al, Fe andMg, which also strongly correlatewith variations in LOIorg
and magnetic susceptibility. Ca concentrations are unsurprisingly
high throughout the sequence (Fig. 5), although notably higher
values occur between 6.90 and 5.70 m. Additionally, there is a
Fig. 5. Geochemical stratigraphy of the sequence at Aqabah
significant negative correlation between Ca and LOIorg (R ¼ �0.42),
Mg/Ca ratios (R ¼ �0.59), Mn (R ¼ �0.45) and P (R ¼ �0.49). In-
creases in the salinity of the lake are indicated through associated
increases in the Mg/Ca ratio (i.e. Eugster and Kelts, 1983;
Huntsman-Mapila et al., 2006). At Aqabah, whilst Mg/Ca ratios are
invariant and generally low between the base of the sequence and
5.70 m, there is a good correlation between salinity and facies
changes between 5.70 and 3.65 m (LP3e5). A strong correlation
between Mg and Al (R ¼ 0.82), Fe (R ¼ 0.95) and magnetic sus-
ceptibility (R ¼ 0.55) suggest that Mg concentrations may also be
influenced by the input of Mg-rich waters, however, correlation
between increases in salinity and a shift to more positive d18Ocarb
values, in particular, during LP3 (R ¼ 0.33) and LP4 (R ¼ 0.43),
indicate that salinity changes track well with the isotope signal.
6. Discussion

6.1. Palaeoclimatic interpretation

The palaeoenvironmental record at Aqabah indicates that five
episodes of overbank flooding/lake formation occurred during the
early part of MIS 3 between ca. 61 and 58 ka, following an increase
in regional humidity. During this time, a northward incursion of
monsoon rainfall into SE Arabia would have led to the widespread
activation of alluvial fan and widiyyan systems trending WeNW
from the Hajar Mountains. Of these, two drainage systems associ-
ated with Wadi Iddayah andWadi Baraq, coalesced at the southern
extent of Jebel Faya. The aggradation of fluviatile sediments to the
west of Jebel Aqabah (which translates from Arabic as ‘barrier’) by
the larger Iddayah system, caused ponding of the westward-
trending Wadi Baraq, initiating overbank flood events and lake
formation. The depositional record at Aqabah is consistent with
that of lakes formed within distal alluvial fan and braid plain
environments, however, sedimentary and multiproxy evidence
indicates the progression of two distinct hydrological systems
, including interpreted pluvial phases (units in ppm).
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throughout the sequence. Fig. 6 provides a summary of the palae-
oclimatic interpretations, including correlation of selected proxies.

Sedimentary and granulometric analysis of facies changes
indicate that lake formation at the site began with an influx of
fluvial silts and the accumulation of a marl layer. Prior arid condi-
tions would have facilitated the fluvial weathering and transport of
aeolian and bedrock material from within the catchment. The
mobilisation and influx of minerogenic material is evidenced by
abrupt increases in magnetic susceptibility values at the onset of
LP1, whilst an abrupt negative shift (�1.01 to 2.55&) in d18Ocarb
values indicates a rapid input of freshwater to the site. During LP1,
interdigitated coarse fluvial sands and silts indicate the waxing and
waning of overbank flood events. Silt-sized particles are easily
transported in suspension outside the confines of the channels
during flood events, rapidly prograding within proximal overbank
areas.

Lake level variability is also reflected through abrupt changes in
minerogenic influx (clf) and small positive/negative shifts in
d13Ccarb and d18Ocarb values. Given the interstratified nature of the
sequence, correlation of d18Ocarb and 13Ccarb values to establish
whether the water body at Aqabah was hydrologically open or
closed (e.g. Talbot, 1990; Sinha et al., 2006), is problematic.
Therefore, to decouple the isotopic signals from facies changes,
correlation coefficients were calculated within individual lacus-
trine facies (LP1e5). Facies-dependent correlations between
d18Ocarb and 13Ccarb values are particularly weak throughout LP1
(R ¼ 0.001), indicating that hydrologically open conditions per-
sisted within the lake during this time. This is supported by a
narrow range of d18Ocarb values (2.68e1.94&) and lowMg/Ca ratios,
which alongside the sedimentary record and a lack of accumulated
inorganic elements, indicate a continual flushing of the hydrolog-
ical system. Similar fluctuations between more positive/negative
values are evident within the d13Corg record during LP1, with an
Fig. 6. Correlation of selected proxies from the Aqabah record (3e7.35 m). Lake
abrupt shift from lower (�23.7&) to higher (�20.9&) values that
correspond with a brief decrease in %C.

Following this initial lake phase, an influx of aeolian sand re-
flects the onset of regional aridity at the site. This is punctuated by a
deposit of homogenous silt-sand material (LP2) for which all proxy
values are invariant, and which likely represents a brief overbank
flood event. A lack of proxy data for this phase, however, prevents
further interpretation. Lake phases 3e5 occurred under a different
hydrological regime, with consistently similar variations within
proxy data for each phase. The onset of aggradation-induced
overbank flooding and lake formation within each lake phase is
marked by an abrupt influx of minerogenic material, reflected by
increased magnetic susceptibility values and inorganic elemental
concentrations. During open hydrological conditions (LP1) the bulk
geochemical record remains invariant, however, increases in Al, Fe,
and Mg, reflect an increased weathering of silicate and alumino-
silicate minerals from the ophiolitic bedrock within the catchment
area and fluvial reworking of alluvial fan surfaces to the east of the
Al Faya anticline. This is consistent with the mineral magnetic re-
cord, which displays a strong positive correlationwith Al (R¼ 0.42),
Fe (R ¼ 0.49) and Mg (R ¼ 0.55). The abrupt increase in these
inorganic elements indicates that lake phases from this point were
also of greater intensity than previously experienced at the site.

Lake phases 3e5 are also marked by a depletion of d18Ocarb and
13Ccarb values and an abrupt increase in organic production (LOIorg,
%C, P and Mn). A strong correlation between d18Ocarb and 13Ccarb
values during LP3 (R ¼ 0.45), LP4 (R ¼ 0.61) and LP5 (R ¼ 0.54),
indicate that hydrologically closed conditions persisted during
these lake phases. This is supported by a greater variability in values
from ca. 5.50 m and a period of isotopic enrichment following
depletion/overbanking, indicating a predominance of water loss
through evaporation and a cessation of fluvial input. The instability
of both d18Ocarb and 13Ccarb records throughout LP3e5 also indicates
phases and palaeoclimatic interpretation of the multiproxy record is given.
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that the water body at Aqabah underwent rapid lake level changes
and was not large enough to dampen the effects of short term cli-
matic variation (Lamb et al., 2000). Similarly, more positive d18Ocarb
values throughout LP3 may reflect shorter water residence times
during that period. Such shifts may be the result of seasonal vari-
ations in lake levels. This is supported by highly laminated lacus-
trine sediments throughout LP3e5 which, in the case of LP4 and 5,
contain profuse root and plant impressions and a high degree of
manganese staining between laminae, indicative of seasonally
fluctuating lacustrine conditions.

Similarly, the presence of rhizoliths reflect an increase in lake
salinity following and coincide with increased salinity proxy
values (Mg/Ca). Abrupt increases in Mg/Ca ratios are indicative of
increased evaporation and a lowering of lake levels, whilst peaks
in salinity are also coincident with positive shifts within the
d18Ocarb signal. The general pattern of increase and decline within
both sets of values during LP3e5, indicates a recharging of lake
waters. Despite a whole-sequence correlation between d18Ocarb
values and magnetic susceptibility (R ¼ 4.0), a lack of positive
correlation during LP3 (R ¼ 0.11), LP4 (R ¼ 0.09) and LP5
(R ¼ �0.53) indicates that detrital contamination is not the pri-
mary mechanism controlling the isotope signal during lake pha-
ses. Therefore, the lack of evidence for an increased influx of
fluvio-mineragenic material, suggests that lake water increases
were likely the result of increased localised precipitation or
groundwater recharge.

An abrupt positive shift in d13Corg (�20.2&) at the onset of LP3 is
incongruous with correlative peaks in minerogenic influx and the
depletion of d18Ocarb and d13Ccarb values. The absence of C/N data to
constrain organic material sources makes an accurate interpreta-
tion of the d13Corg signal during LP3 problematic, however, a posi-
tive shift during LP3 may indicate that d13Corg values are primarily
responding to aquatic productivity, leading to an enrichment of 13C
in the lakes total dissolved inorganic carbon (TDIC) reservoir
(Meyers, 1994). This may be supported by d13Corg values, which
throughout the sequence (mean ¼ �22.7&) are indicative of sub-
merged aquatic macrophytes (�24.0 to �13.0&) (Mischke et al.,
2008). It is also likely, however, that during periods of increased
fluvial influx (and watershed erosion), positive shifts in d13Corg
reflect a contribution of terrestrially derived plant debris from
watershed vegetation. This is particularly the case for deltaic and
terminal lakes formed within distal alluvial fan settings and in-
dicates that during this time, an expansion of regional vegetation
occurred. A lack of correlation between Mg/Ca ratio changes and
d13Corg values during LP3, indicate that the in situ variation of
d13Corg due to salinity changes (resulting in a shift to HCO3-based
photosynthesis) (Holmes et al., 1997; Enzel et al., 1999; Leng et al.,
2009), is not a factor.

6.2. Palaeoclimatic implications

The presence of a water body within SE Arabia during the early
stages of MIS 3 has important implications for both our under-
standing of monsoon variability and the archaeological record of
the region. Previously, incursions of the ITCZ and associated
monsoon rainfall belt into Arabia have been viewed as predomi-
nantly characteristic of interglacial periods and substages MIS 5c
and MIS 5a (i.e. Burns et al., 1998, 2001; Fleitmann et al., 2003,
2011; Fleitmann and Matter, 2009), with the period between MIS
4 and MIS 2 typified by arid to hyper-arid conditions. Additionally,
previous evidence for increased humidity during MIS 3 (e.g.
McClure, 1976, 1984; Garrard et al., 1981; Schulz and Whitney,
1986), has recently been called into question (Rosenberg et al.,
2011, 2012) and as such, radiocarbon chronologies for this time
period are viewed with caution.
Within this study, OSL age estimates indicate that monsoon
incursion into SE Arabia during the early stages of MIS 3 (ca. 61e
58 ka) activated drainage networks along the western flanks of
the Hajar Mountains, leading to distal-zone lake formation at
Aqabah. This is supported by a further date of 58.44 � 4.57 ka
obtained from the base of Jebel Emaylah, ca. 2 km east of Jebel
Aqabah, which confirms that a network of ephemeral channels
within the region were also active at this time. Additionally, dates
from both sites help to constrain previous age estimates for other
terrace formations within the region, which demonstrate that wadi
activation occurred between 48 � 5 and 63 � 5 ka (Krbetschek,
2008). Under present day conditions, the episodic flooding of
wadis in the region results in the activation of ephemeral channels
with no sediment aggradation. Whilst the narrow range of age
estimates from Aqabah prevent a determination of lake phase
duration, geomorphological, sedimentological and palae-
ohydrological evidence indicates that pluvial conditions were suf-
ficiently sustained to allow widespread terrace formation within
the region, and the subsequent development of vegetative and
lacustrine processes. Additionally, the estimated ages for increased
humidity at Aqabah are in agreement with a growing number of
records, which indicate a strengthening and latitudinal shift of the
Indian Ocean Monsoon from ca. 58 ka.

In particular, the activation of fluvial systems within the region
corresponds to an intensification of the monsoon recorded in a
number of marine records (e.g. Schulz et al., 1998; Altabet et al.,
2002; Higginson et al., 2004; Des Combes et al., 2005; Ivanochko,
2005; Govil and Naidu, 2010) and a stacked marine record of the
Indian Summer Monsoon (ISM) (Clemens and Prell, 2003;
Leuschner and Sirocko, 2003). Although doubts have been
expressed as to whether such marine records provide a record of
monsoon wind strength as opposed to precipitation (e.g. Burns
et al., 2001; Fleitmann et al., 2011), the terrestrial record at Aqa-
bah provides compelling evidence for an early MIS 3 incursion of
monsoon rainfall into the Arabian interior. Furthermore, the cor-
relation of lake phases at Aqabah with marine records from the
Arabian Sea and Indian Ocean, indicate that the sensitivity of
monsoon regions to Northern Hemispheric climate change during
the early stages of MIS 3 (Altabet et al., 2002; Burns, 2003) may also
be detectable within terrestrial sedimentary archives.

In terrestrial records, there is some degree of correlation be-
tween the Aqabah record and OSL dates from central Saudi Arabia
(McLaren et al., 2008), which indicate increased rainfall at
53.9 � 4.2 and 54.0 � 5.4 ka. However, whilst the evidence from
Saudi Arabia may be somewhat regionally defined, the record at
Aqabah suggests that monsoon rainfall may have affected a sig-
nificant expanse of the Arabian interior. The deposition of lacus-
trine sediments at Aqabah was triggered by the aggradation of
alluvial fans whose catchments are situated between 16 and 30 km
to the east, along the western flanks of the Hajar Mountains. This
fan system is part of a vast bajada of fans and drainage systems that
flank the Oman Mountains, from the Northern Emirates down to
the Wahiba Sands in Oman. Once monsoon rainfall had breached
the watershed divide of these mountains, drainage networks along
their western flanks would have channeled a substantial volume of
freshwater WeNW towards the Gulf. Indeed, the corresponding
deposition of fluvio-lacustrine deposits near Remah, Abu Dhabi at
54.1 � 3.1 and 53.4 � 3.8 ka (Farrant et al., 2012) indicate that the
activation of drainage networks was ubiquitous along the western
flanks of the Hajar Mountains during the early stages of MIS 3. It is
reasonable to assume, therefore, that lake formation within other
distal fan environments may have been recurrent during this time.

Two explanations for the absence of other early MIS 3 fluvio-
lacustrine deposits within SE Arabia are conceivable. Firstly, there
is a conspicuous lack of detailed palaeoclimatic reconstruction
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based upon fluvial/alluvial fan archives along the western flanks of
the Hajar/Oman Mountains. Secondly, any evidence of fluvial
aggradation during MIS 3 would require specific sediment depo-
sitional conditions conducive to archive preservation. The generally
arid to hyper-arid conditions of the later stages of MIS 3 and MIS 2
(Glennie and Singhvi, 2002; Fleitmann et al., 2003; Fleitmann and
Matter, 2009; Preusser, 2009; Atkinson et al., 2011), means that
sediments accumulated during an early MIS 3 humid phase, would
have been subject to considerable deflation and reworking
following sustained aridity. This notion is supported by a paucity of
preserved MIS 4 sediments within Arabia (Stokes and Bray, 2005).
In this respect, the natural barrier of Jebel Aqabah facilitated sedi-
ment aggradation during the early stages of MIS 3 and sediment
preservation during the proceeding arid phases. A shortage of
similar early MIS 3 fluvial deposits within SE Arabia is, therefore,
indicative of the poor sediment preservation potential of Arabia
during phases of increased aridity.

Climatic amelioration during MIS 3 also has important impli-
cations for the archaeological record of the region. In particular, the
occupation of sites such as Jebel Faya, United Arab Emirates, during
the early stages of MIS 3 (Armitage et al., 2011), would have been
strongly influenced by the activation of drainage systems at this
time. The close proximity of a lake at Aqabah to the Jebel Faya
rockshelter site (approximately 9.5 km) would have provided an
important source of freshwater for both human communities and
faunal populations. Although a precise chronology for Assemblage
B at Jebel Faya is at present absent, it is reasonable to assume that
occupation of the site during MIS 3 would have been coincident
with lake formation at Aqabah. Additionally, the presence of
freshwater at this time may have facilitated the autochthonous
development of early human communities. This is supported by a
lack of technological affinities between Jebel Faya’s assemblages A
and B and any other known lithic industry. The activation of
drainage systems and the development of lakes within the Arabian
interior during MIS 3 would, therefore, have been instrumental in
the development of local traditions confined to eastern Arabia. In
this respect, the question arises as to whether a later wave of
expansion from Africa into Arabia may have occurred. If such an
expansion took place, a technological package reminiscent of the
African late MSA/early LSA would be expected (Brandt et al., 2012),
however, of the knownMIS 3 archaeological sites in Arabia, none fit
this description.

7. Conclusions

The formation of a water body at Aqabah occurred during the
early stages of MIS 3 (ca. 61e58 ka), when the northward incursion
of the ITCZ and associated monsoon rainfall activated a dense
network of channels associated with an alluvial fan system along
the western flanks of the Hajar Mountains. The competitive
aggradation of fan sediments and the coalescing of channels, led to
overbank flooding near the base of Jebel Aqabah and eventual lake
development. This occurred during four distinct lacustrine phases
and a brief overbank flood event, which were punctuated by
increased aridity and temporary lake desiccation. Initially, the lake
at Aqabah was a complex open hydrological system in which the
dominant control over lake levels at the site was the episodic influx
of freshwater by stream channel flow. During subsequent lake
phases, sedimentological, palaeohydrological and magnetic sus-
ceptibility evidence indicates that an intensification of rainfall
within the region occurred, leading to the formation of
precipitation-fed, hydrologically closed water bodies. Although
lacustrine sedimentation appears to have remained constant
throughout each lake phase, the multiproxy record suggests that
lake water levels and vegetative processes fluctuated. Additionally,
the location of the sitewithin themedialedistal zone of a vast relict
bajada of alluvial fan deposits along the western Hajar, suggests
that lake formation and stream channel flow may have been
spatially extensive during brief periods of increased precipitation.

OSL age estimates for lake formation at Aqabah are in good
accordance with both marine and terrestrial records from Arabia,
which confirm the occurrence of an intensification of the monsoon
following the onset of MIS 3 at ca. 58 ka. Whilst lake formation
within the region may have been relatively short-lived, the
sequence at Aqabah confirms that the activation of extensive
drainage systems within the region may have facilitated the
expansion of Arabia’s indigenous inhabitants, following an initial
dispersal during MIS 5.
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