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Abstract 

Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in 

DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of 

empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer 

spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. 

The multi-modality is caused by the formation of the two lowest modes where k-mers under them are 

referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be 

attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively 

distributed in certain genomic features of CpG Island (CGI), promoter, 5’ UTR, and exon. We 

correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, 

performed further intrinsic rare k-mer analyses within the correlated features, and modelled the 

elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter 

features. Our correlation results show that rare k-mers are highly associated with several annotated 

features of CGI, promoter, 5’UTR, and open chromatin regions. Our intrinsic results show that rare 
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k-mers have several unique topological, compositional, and clustering properties in CGI and promoter 

features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI 

and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, 

among eight of the benchmarked datasets.  
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1.0 Introduction 

The human genome contains the complete information on the extremely complex biological system of 

humans. At the most basic level, this information is encoded in DNA sequences of Adenine, Cytosine, 

Guanine, and Thymine biomolecules (abbreviated as A, C, G, and T letters respectively). DNA 

sequences which have a biological significance (or motif) such as regulatory, genic, or structural 

elements are known as sequence motifs. Identifying sequence motifs within three billion letters of the 

human genome is not an easy task due to the complexities and flexibilities of biological motifs in term 

of their organizations, sizes, and interaction mechanisms (Michelson and Bulyk, 2006; Pennisi, 2012).  

Previous studies have shown that empirical analysis on DNA k-mers can be an effective mean 

in identifying sequence motifs by studying their occurrence, location, and organization in certain 

genomic contexts. Many aspects of empirical k-mer properties have been associated with diverse 

sequence motifs such as dinucleotide compositions in genomes to define their signatures (Gentles and 

Karlin, 2001), using DNA hexamers to predict promoter (Chan and Kibler, 2005), conserved and/or 

frequent DNA words in promoter regions to identify regulatory motifs (Das and Dai, 2007), k-mer 

preferences for thousands of DNA binding proteins to build sequence motif profiles (Badis et al., 

2009), abundance and rarity of k-mer words to index functional genomic vocabularies (Castellini et 

al., 2012), and enriched k-mers in yeast promoters are utilized to identify promoters (Hariharan et al., 

2013). The findings from such studies are used to characterize the associated motifs or implemented 

as prediction tools to predict them such as detection of: promoter regions (Chan and Kibler, 2005; 

Down and Hubbard, 2002; Li and Lin, 2006; Lin and Li, 2011; Lin et al., 2014); recombination spots 



 

 

(Chen et al., 2013; Liu et al., 2012); nucleosome positioning (Guo et al., 2014; Segal and Widom, 

2009); and translation initiation site (Chen et al., 2014a). Other uses include sequence alignment 

(Kent, 2002), probe design (Fofanov et al., 2004), repeat annotation (Kurtz et al., 2008), genome 

assembly (Compeau et al., 2011), and drug design (Chou, 2015). 

Our interest is to investigate biological motifs for rare k-mers due to their unique sequence 

properties in the human genome. We summarized their properties from the following study which is 

the one that coined the term rare k-mers. Chor et al. (2009) did extensive empirical analyses on over a 

hundred multi-species genomes (of Archea, Bacteria, and Eukaryota), only few species under the 

Tetrapod clad exhibit multi-modal spectra (which include all mammals), while the rest exhibit 

unimodal spectra (see Section 3.1). Only certain ranges of k-values give distinct multi-modal k-mer 

spectra. For the human genome, the multi-modality is apparent for k-values in between 7 to 11-mers 

and we extracted the rare k-mers from under the lowest two modes of such spectra (see Section 2.1). 

The most outstanding property of the multi-modal spectra is k-mers with more CGs accumulate in the 

leftmost side of the spectra (see Figure 4 in their paper), in order words k-mers with more CGs tend to 

have lower frequency. Even though the rare k-mers under the first and the second modes have very 

low frequencies, collectively there are many variants of them in the narrow spectrum which inflate the 

lower bands, even higher than the third mode of the average frequency. The low frequency of these 

rare k-mers might be attributed to the well-known phenomenon of CG dinucleotide suppression in 

vertebrate genomes (Cooper and Gerber-Huber, 1985). However, there are several unicellular species 

which have low CG frequency but exhibit unimodal spectra and thus, the CpG suppression is not the 

only factor that determines the multi-modality. From their plot of G+C content and P(CpG) of the 

extensive genomes, the multi-modality can be associated with G+C content in between 35-45% and 

P(CpG) < 0.4. Other results implicate that rare k-mers are surprisingly more common in exon, 5’ 

UTR, and proximal promoters (due to their unimodal spectra) in contrast to genome, intron, distal 

promoter, and 3’UTR regions (due to their multi-modal spectra). Despite these unique rare k-mer 

properties, not many extensive works have been done to elucidate their biological properties, motifs, 

and functions. Upon searching the google scholar for the “rare k-mers” and DNA (or genome) 



 

 

keywords, less than 20 papers were found which relate to sequence alignment or genome assembly, 

genome organization, immunology, and nucleosome totalling 10, 4, 3, and 1 papers respectively (refer 

to Appendix A). 

In this current work, we begin by re-evaluating the basic properties of the rare k-mers. Then, 

we correlated rare k-mers with hundreds of annotated biological motifs with the help of several 

bioinformatic tools (i.e. EpiGRAPH and UCSC browsers) where rare k-mers were found to be highly 

correlated with CGI, promoter, 5’ UTR, and exon motifs. Then we performed further empirical 

analyses on the rare k-mers within the correlated motifs to elucidate any of their unique sequence 

properties, and exploited the findings into a prediction method, namely RWC (Rare-word Clustering) 

method, to predict two of the motifs i.e. CGI and promoter regions. 

2.0 Materials and Methods 

We have compiled quite an extensive work for this paper. The methodologies are organized into four 

sub-sections of 2.1 to 2.4 to match the result sub-sections of 3.1 to 3.4 respectively.  

2.1 Selection, description, and extraction of multi-modal spectra and rare k-mer datasets 

The methods to plot the k-mer spectra and to extract the rare k-mers are given in Appendix B.1 which 

are quite simple but lengthy. For the basic sequence analyses in Section 3.1, here we elaborate the 

details on the selection of representative k-mers for the multi-modal spectra, description of the 

selected multi-modal k-mer spectra, and briefly describe the tools used for the plotting and extraction. 

The multi-modality of a human k-mer spectrum is not always looked very distinctively. When we 

plotted several k-mer distributions of k in between 7-to-25-mers, the multi-modality starts to appear at 

7-mer and starts to fade from 11-mer which is the starting k where nullomers start to appear (see 

Sheet3 of Appendix C). As k-value gets larger, k-mer variants become quadrupled (4k+1 / 4k) thus 

become more specific and lowering their frequencies into one forth (see Sheet1 of Appendix C). For 

higher k-values, most k-mers are nullomers and hapaxes, i.e. k-mers with zero and one frequency 

respectively (Castellini et al., 2012). Consequently, the overall k-mer multi-modal spectrum is turning 

into an exponential decay graph. Rare k-mers are always exists in the leftmost part of any k-mer 



 

 

spectra but they become irrelevant in longer k-mer context (e.g. 13-mer onwards) since most of the 

longer k-mers are nullomers and hapaxes which are unfavourable for motif discovery study (Chan and 

Kibler, 2005) and the unique properties of rare k-mers inferred from the multi-modal spectrum are 

also diminished. We selected 8-, 9-, and 10-mer spectra to extract the rare k-mer datasets because 

these k-mer spectra give the most unique multi-modal spectra (see the list of rare 8-, 9-, and 10-mer 

datasets in Appendix C).  

Chor et al. (2009) used 11-mer as the representative k-mer frequency distribution of the 

human genome because it is the starting k where nullomers start to appear. The length of k=8-to-10 

are also in agreement with common lengths of regulatory motifs in between 5-to-15 bases (Das and 

Dai, 2007; Fickett and Hatzigeorgiou, 1997; Hariharan et al., 2013; Werner, 1999). From a study by 

Csűrös et al. (2007), we can see that the distribution of rare k-mers (CpG dominated k-mers) are 

concentrating in the lower tail while the distribution of frequent k-mers and repeat are at the opposite 

spectra side. Thus, there would be no significant changes to the statistical distribution of rare k-mers 

even after the repeats are removed. From our repeated runs of experiments in this work (the results are 

not shown due to the repetitiveness), the differences in results when using any of these three datasets 

are minimal because rare k-mers are overlapping with rare (k+1)-mers in genomic regions from where 

they were extracted and have almost the same distribution over the genomic regions as elaborated in 

Sheet2 of Appendix C.  

The genome sequences for several organisms used to plot Figure 2 were downloaded from the 

NCBI RefSeq genome database (Pruitt et al., 2007). We wrote several Perl scripts to do sequence 

processing which are: to read the genome sequences and plot them into k-mer spectra, to extract the 

rare k-mer datasets, and to count the basic properties of the rare k-mers in certain genomic contexts. 

There are many automated tools exists on the web to model diverse k-mer DNA functional properties 

using various methods of sequence composition, vector feature, and pseudo component such as 

variations of PseKNC (Chen et al., 2015; Chen et al., 2014b; Chen et al., 2014c), Pse-in-One (Liu et 

al., 2015c) and repDNA (Liu et al., 2015a).  



 

 

2.2 Comparative analyses using EpiGRAPH and UCSC browsers 

For the correlation analyses in Section 3.2, we utilized several web-based genome analysis platforms 

of EpiGRAPH (Bock et al., 2005) and UCSC browsers (Rhead et al., 2010) respectively. We 

performed genome analyses using the EpiGRAPH with two objectives, i.e. to find possible 

correlations of the rare 8-mers with the EpiGRAPH built-in annotation of 896 human genomic 

attributes and to test if certain types of filtering done on the rare 8-mer datasets affect their correlation 

with the genomic attributes (see Appendix B.2 for details on the methods). We uploaded all of the rare 

8-mer subsets and whole 8-mer dataset into the EpiGRAPH website and correlated each of them, one 

by one, against all of the built-in attributes, and collated their result in Table 3. The UCSC browsers 

were used to conveniently download and extract selected biological motifs, to compare the co-

occurrence of the rare 8-mers with the motifs visually, and to perform Pearson pairwise correlation of 

the rare 8-mers with the motifs (see Appendix B.2 for details on the methods). The rare 8-mers and 

the selected motif datasets were uploaded into custom tracks of the UCSC genome browser and they 

were visually and computationally analysed to produce the results in Figure 3 and Table 4 

respectively. 

2.3 Dataset preparations for intrinsic analyses 

In Section 3.3, we have done various empirical analyses on several sequence properties of the rare 

8-mer dataset. Here we only describe the materials i.e. the required sequences. The methods will be 

explained in the description of corresponding figures and tables in Section 3.3. The empirical analyses 

required specific sub-class sequences of genes (i.e. pseudo, non-coding, coding, reviewed, and 

validated), of coding genes (i.e. intron, CDS, 5’ UTR, and 3’ UTR), of promoters (i.e. core, proximal, 

distal, CGI+, and CGI- promoters), and of CGIs (i.e. relax, strict, promoter+, and promoter- CGIs). 

The NCBI Reference Sequence (or RefSeq) is one of the best resources for obtaining various types of 

high-quality sequence and annotation datasets due to its extensive curation process (Pruitt et al., 

2007). Most of the required datasets are not readily available from the NCBI-RefSeq. We generated 

the required sequences using our own developed Perl scripts which read the relevant data in the 

RefSeq annotation files of “seq_gene.md” and “seq_cpg_islands.md” and extract the sequences of the 



 

 

annotated features from corresponding chromosome files of the human genome. Another human 

polymerase II promoter dataset was downloaded from the Eukaryotic Promoter Database (EPD) 

website at the following address (http://www.epd.isb-sib.ch/). Refer to Appendix B.3 for details on 

the dataset extraction procedures and Table B.3 for the basic statistics of the datasets. Most of the 

time, we only show the results of intrinsic analyses based on the rare 8-mer dataset. The selection of 

the rare 8-to-10-mer datasets and the similarities of their results were already explained in Section 2.1. 

2.4 Rare-Word Clustering method and performance evaluation  

Rare-word clustering (RWC) feature of the rare 8-mers is inferred as a strong representative signal for 

CGI and promoter features (see the introduction in Section 3.4). This RWC feature is modelled into a 

classifier, namely the RWC method, to classify the CGI and promoter features. We improvise the 

three conventional sequence parameters of CGI (i.e. CGI length, CG suppression ratio, and G+C%) 

introduced by Gardiner-Garden and Frommer (1987) and one non-conventional parameter of CGI (i.e. 

p-value of CG neighbouring distance) by Hackenberg et al. (2006) into three RWC search parameters 

(or criteria) which are minimum rare-word occurrence count (min_rwo_count), minimum rare-word 

cluster size (min_rwc_size), and maximum rare-word neighboring distance (max_rwn_dist). The first 

criterion is used to filter spurious feature (of CGIs or promoters) while the second and the third 

criteria are used as direct measurements of the RWC motif. By combining signals from both 

conventional and non-conventional methods, we hoped that they can compensate each other to yield 

better result. The RWC method predicts the CGI or promoter features by searching the human 

genome for DNA regions that satisfy these three RWC criteria. The RWC method was implemented 

in a Perl script (see Appendix D for the script) and is described as follows (see Figure 1 for the 

pseudocode): 

1. Input the paths to a RKM dataset and chromosome files and input values for the RWC parameters 

of max_rwn_dist, min_rwc_size, and min_rwo_count. Read all RW positions in the input 

chromosomes into an array for fast searching later;  



 

 

2. In line 1, start at the first RW position, set it as a new RWC cluster start. In line 2-4, try to expend 

the RWC cluster by setting the next encountered RW as the RWC cluster end, repeat the process 

until the next RW fails the max_rwn_dist criteria; 

3. In line 7-9, when the RWC cluster stop growing, check for the other two RWC criteria of 

min_rwc_size and min_rwo_count. If success, accept the current RWC cluster (marked by the 

current RWC cluster start and end) as a predicted CGI (or promoter) feature and set the next RW 

searching after the current RWC cluster end. If fail (line 10-12), set the next RW searching after 

the current RWC cluster start. 

Parameters: 

max_rwn_dist = maximum distance to the next RW position 

min_rwo_count = minimum RW count for a RW cluster 

min_rwc_size = minimum size for a RW cluster  

 

Inputs: 

Paths to the RKM dataset and chromosome files 

Values for min_rwo_count, min_rwo_count, and min_rwc_size parameters 

 

Pseudo-code for the RWC classifier: 

1   Foreach next encountered RW in a selected chromosome 

2     Set it as the RWC cluster start 

3     while next_rw_pos < max_rwn_dist 

4       Expand the RWC cluster end  

5     End 

6 

7     If the current RWC size > min_rwc_size && curr_rw_count > min_rwo_count    

8       Accept the RWC cluster as a predicted CGI or promoter 

9       Set the next RW searching after the current RWC cluster end 

10    Else 

11      Set the next RW searching after the current RWC cluster start 

12    End 

13  End 

 

Output: 

RWC cluster locations in the selected chromosomes  

Figure 1: Pseudo-code for the RWC method. 

Optimization is a process of searching for model that gives the best fitting to the data (see 

Appendix B.4.1). Manual parameter tuning is very tedious due to the RWC parameter search space is 

quite large (3 dimensions, each has range between 5 to 1000 values). We utilized the Particle Swarm 

Optimization (PSO) algorithm introduced by Kennedy and Eberhart (1995) which was compiled into 

a Perl module by Jaquiery (2011), to optimize the parameter values of the RWC method. PSO is a 

meta-heuristic method which makes no (or few) assumptions about the problem being optimized and 

it can search very large search space but does not guarantee an optimal solution to be found. It is well 

suited for our optimization problems with a large search spaces and there are unclear dependencies 



 

 

between the parameters. We applied several adjustments to increase the PSO parallelization to cover 

the large search space which are small neighbourhood of 10%, higher exploitation using c0=0.9, 

reinitialized zero speed particles, and quite large swarm of 20-30 particles. To avoid overfitting, we 

used several generalization strategies which are: 5-fold cross validation to decide on which rare 

k-mer dataset gives the best model; training (i.e. optimizing the RWC parameters) on chromosomes 1, 

12, and 21; and testing on the whole human genome (see Appendix B.4.1). These strategies are done 

to ensure performance consistency, strategically reduce computational time, and to increase accuracy 

respectively. For the validation test, three resampling tests are usually used to extrapolate the success 

rate of a predictor which are independent dataset, sub-sampling (or k-fold cross-validation), and 

Jackknife (Chou and Zhang, 1995). Among the three, the Jackknife is deemed as the most objective 

and the least arbitrary as it always produces a unique result for a given dataset. The Jackknife test is 

too computational expensive for our problem due to the large search space, large validation datasets, 

and heavy computational requirement imposed by the RWC method and PSO optimization. We 

utilized the 5-fold cross validation test to optimize the model of the RWC method only as done by 

many others (Guo et al., 2014; Lin and Li, 2011; Lin et al., 2014; Liu et al., 2012). 

Several evaluations were performed to assess the performance of the RWC method in 

predicting CGIs and promoters. Each evaluation is done by comparing an optimized RWC prediction 

dataset against a validation (gold standard) dataset using a specific protocol (see Appendices B.4.2 

and B.4.3 for the details on the evaluation protocols and validation datasets). For CGI evaluation, we 

followed 4 protocols by Hackenberg et al. (2006 & 2010), each protocol utilizes a different validation 

dataset of the Weber hypo-methylated promoter (HMP), Illingworth unmethylated region (UMR), Alu 

repeat, and phylogenetic conserved (PhastCons) element (Illingworth et al., 2008; Jurka et al., 2005; 

Siepel et al., 2005; Weber et al., 2007). For the Weber dataset, we extracted 14,182 HMPs consists of 

11,260 HMPs in two cell lines and 2,922 HMPs in at least one cell line. We also extracted 20,371 

UMRs, ~1.2 million Alu repeats, and ~2.3 million PhastCon elements from their corresponding 

validation datasets (their basic properties are summarized in Table B.5 in Appendix B.4.3). The 

Hackenberg’s approach uses a minimum one base overlap criterion to determine if the predicted and 



 

 

validated regions are intersected or not. For the promoter evaluation, we adapted two protocols by 

Abeel et al. (2009), each utilizes two same validation datasets of the Carninci Tag Cluster (CTC) and 

RefSeq Gene Start (RGS) datasets (Carninci et al., 2006; Pruitt et al., 2007). We extracted ~181,000 

CTCs and ~20,000 RGSs from their respective datasets (see Appendix B.4.3) and we use +/-1000 bp 

detection regions around the CTCs and RGSs to represent the promoters and called them as Carninci 

and RefSeq Transcription Start Regions (TSRs). For the performance scores, we only focus on the 

sensitivity (SN), positive predictive value (PPV), F-score (harmonic mean between SN and PPV), and 

correlation co-efficient (CC) value. Technically, certain performance scores can be increased at the 

expense of other scores by tweaking the parameters of a prediction program. Bajic et al. (2004) 

suggested that the balance between SN and PPV scores (i.e. the F-measure) is the most unbiased 

setting for a prediction program. In our opinion, the F-measure is selected due to it is not dependent 

on the TN criterion which is usually high in most of the CGI and promoter evaluation results. 

Benchmarking was done by comparing the evaluation results of the RWC method against 7 other 

evaluation results from 5 other similar programs (which use CGI related signals for prediction). We 

selected 5 recent CGI prediction programs which are CpGcluster (Hackenberg et al., 2006), CpGMI 

(Su et al., 2010), CpGProD (Ponger and Mouchiroud, 2002), NCBI CGI (Maglott et al., 2007), and 

UCSC CGI (Rhead et al., 2010) as described in Appendix B.4.4. Based on our experience, there are 

many factors affecting the evaluation scores (see Appendix B.4.5). It is quite confusing to directly 

compare our benchmark results with other published results which used different evaluation settings 

that produced asymmetrical results. Thus, we re-evaluate other prediction datasets using the same 

evaluation setting (see Section 3.4) and compare their evaluation results with our prediction results. 

3.0 Results and Discussions 

3.1 Re-evaluating several basic properties of multi-modal spectrum and the rare k-mers  

In Section 1.0, we have summarized several unique features of the rare k-mers from an earlier study 

by Chor et al. (2009). Here, we plotted 10-mer frequency distributions of a few selected organisms in 

logarithmic scale to review the distribution of 10-mers in those genomes. Figure 2 reconfirms results 

from the earlier study where organisms from the Tetrapod clade exhibit multi-modal k-mer spectra 



 

 

(only human, chimpanzee, mouse, cow, dog, and chicken genomes are plotted in Figure 2) while other 

organisms (only Takifugu and Zebra fish are plotted) exhibit unimodal spectra. The multi-modal 

spectra have similar k-mer distributions which form two modes at the lower spectra and form the third 

mode near the genome average frequency of 10-mers (see the calculation in the description of Figure 

2). Another apparent attribute is the heavy tail component of the spectra which is still visible at higher 

logarithmic scale. The heavy tail is not entirely caused by the repeat elements, but also frequent words 

in large genomes, particularly for short k-mers (Castellini et al., 2012; Csűrös et al., 2007).  

 

Figure 2: The 10-mer spectra of several organisms including mammals, a bird, and two fish.  

The average 10-mer frequency in the human genome is equal to the total bases of the human genome divided by 

the total 10-mer variant (~3 billion bases / 4^10) which is ≈3000 occurrences for one 10-mer variant. 

Several attempts have been done to model the statistical background for the multi-modal 

spectra using various distributions and approaches such as Bernoulli, copy/insert model, Pareto log 

normal (PLN), and Markov chain (Chor et al., 2009; Csűrös et al., 2007; Reinert et al., 2000). The 

Markov chain can model the multi-modal spectra of the human genome generally well although have 

inherent limitations to fully model the heavy tail and heterogeneity in the genome. Even at the first 

(low) order, the models can fit the multi-modal spectra well and thus dinucleotide frequencies are 

deemed sufficient to define such models (Chor et al., 2009).  



 

 

To assess the impact of the sixteen dinucleotides in the 8-mer subsets, we tabulated each of 

the dinucleotide relative abundance within the R8MD1, R8MD2, and O8MD3 subsets and all 8-mer 

dataset. Table 1 shows the distribution of dinucleotide abundances in the all 8-mer dataset almost 

reflect the genomic signature of the human genome as reported by Burge et al. (1992) and Gentles and 

Karlin (2001) where CA-TG and CG are the highest and the lowest occurred dinucleotides 

respectively. Our calculated values are CC-GG and CG which is more accurate due to back then the 

human genome was less complete than now. The R8MD1 dataset is constrained by the over-

represented of CG, AC-GT, and GA-TC dinucleotides while the R8MD2 dataset is constrained by the 

lesser over-represented of CG. Lastly, the O8MD3 dataset has very little 8-mers containing CG. The 

rest of the dinucleotides more or less are within the normal ranges which do not affect the dataset 

biasness.  

Table 1: List of relative dinucleotide abundances in several 8-mer subsets and the whole 8-mer dataset.  

The measures of dinucleotide relative abundance are categorized by 8-mer subsets of R8MD1, R8MD2, 

O8MD3, and all 8-mer dataset. The measure is given by the following formula ρ*XY = f*XY/f*Xf*Y = 2(fXY + 

f(XY)’)/(fX +fX’)(fY + fY’) where the ρ, *, and f denote measure of dinucleotide bias, concatenation with its 

complement, and fraction of nucleotide or dinucleotide (refer to Burge et al. (1992) for more details). Based on 

empirical studies, Gentles and Karlin (2001) use ρ*XY<=0.78 and ρ*XY>=1.23 to indicate under and over 

representations of dinucleotides. However we use stricter criteria <<0.78 (underlined) and >>1.23 (bold) to 

highlight the under and over represented dinucleotides in this table. The raw frequency data is kept in Sheet4 of 

Appendix C. 

8-mers vs. nt CG GC TA AT CC-GG TT-AA TG-CA AG-CT AC-GT GA-TC 

R8MD1 2.3788 1.0314 1.1058 0.9676 0.4095 1.0613 0.3234 0.3625 1.5170 1.4997 

R8MD2 1.5573 0.9481 0.9434 0.9716 0.8506 1.1309 0.7720 0.7745 1.1274 1.1105 

O8MD3 0.0580 1.0142 0.7425 0.8772 1.2805 1.1138 1.2373 1.1903 0.8252 0.9839 

All 8-mers 0.2358 1.0199 0.7519 0.8849 1.2459 1.1211 1.2014 1.1574 0.8340 0.9821 

The study by Chor et al. (2009) also showed that k-mers containing more CGs appear further 

to the left of the human 8-mer spectrum. We tabulated the CG counts in the first (abbreviated as 

Dist_1), the second (Dist_2), and the third (Dist_3) modes of the human 8-mer spectrum (see Table 

2). This data clearly shows that the inclusion of CG(s) correlate with lower k-mer frequencies where 

8-mers containing 2-CG, 1-CG, and 0-CG are dominating (made up more than 90% of) the Dist_1, 

Dist_2, and Dist_3 subsets respectively, which reaffirms the finding in the study.  



 

 

Table 2: Distribution of 8-mers categorized by CG counts and modal groups.  

Each mode of the human 8-mer spectrum is extracted based on particular frequency bands i.e. i) <2000; ii) 

2000-18000; iii) >18000, and iv) all 8-mers. The extracted subsets are labelled as Dist_1, Dist_2, Dist_3, and 

Dist_all respectively. 

CG Occurrence VS 

8-mer freq. bands 

Dist_1 

(<2000) 

Dist_2 

(2k-18k) 

Dist_3 

(>18000) 

All  

distributions 

0 CG 0 396 40149 40545 

1 CG 102 20501 865 21468 

2 CG 2146 1168 52 3366 

3 CG 104 50 2 156 

4 CG 0 1 0 1 

TOTAL 2352 22116 41068 65536 

3.2 Correlations of rare k-mers to annotated motifs using Bioinformatics tools 

In this experiment, we utilized the EpiGRAPH, an online bioinformatic tool, to correlate the rare 

8-mer dataset with a wide range of genomic attributes and to test if particular rare 8-mer subsets have 

different degrees of correlation with the attributes. We partitioned the primary 8-mer dataset into nine 

different subsets using several discriminator types (and values) i.e. unimodal 8-mer datasets (of 

Dist_1 and Dist_2 modes), datasets of rare 8-mers with specific CG counts (of 1, 2, and 3 CGs), and 

datasets of rare 8-mers with specific frequency bands (of 0-500, 501-1000, 1001-1500, and 1501-2000 

bands). All of the datasets were uploaded as the inputs to the EpiGRAPH, they were run one by one 

through the EpiGRAPH pipeline, and their performance summary table results were collated into 

Table 3. To explain the correlation of a particular rare 8-mer subset to a correlated attribute group, we 

looked-up the ranked attribute table associated with the rare 8-mer subset for individual attributes 

which have high significant p-values (refer to Appendix E on how to look up for the top individual 

attributes). Those significant individual attributes come with an attribute group label which can be 

used to associate it as a biological function to the correlated attribute group of a particular rare 8-mer 

subset.  

Most of the rare 8-mer subsets have high correlations to the attribute groups of DNA 

sequence (expected due to CG enrichment in them), regulatory regions and epi-genome and chromatin 

structure groups. Among the top ranking item attributes (based on the p-values from corresponding 

ranked attribute tables) for the rare 8-mer subsets are: CG, CC, AG, and CA dinucleotides (from the 

sequence attribute group); bona-fide CGI (from the regulatory attribute group); and open chromatin 



 

 

regions of Polymerase II overlapped and by several histone modifications of H3K4me2, H3K4me3, 

H3K9me1, H4K20me1, and H2A_Z (from the epi-genome and chromatin structure attribute group). 

All of the aforementioned histone modifications are related to active transcription as reported by Su et 

al. (2010). However, rare 8-mers have imperfect correlations to the aforementioned regions (see 

Appendices F.1 and F.2). In addition, we did three follow-up experiments to analyse rare k-mer 

epigenetic properties (see Appendix F.3). Although rare k-mers are lack of methylated CGs which are 

similar to CGI regions, their total methylated CGs are almost double than CGIs which shown lesser 

correlations of rare k-mers with epigenetic attribute than CGI. Based on the aforementioned highly 

correlated attribute groups and corresponding top ranked item attributes, in general, rare k-mers are 

likely to be functional motifs related to active transcription site and regulatory regions (promoter). 

Table 3: Mean correlation coefficients between rare 8-mer subsets and attribute groups of EpiGRAPH.  

Mean of correlation coefficients (CC) of several clustered rare k-mer datasets with the 9 attribute groups of the 

EpiGRAPH. CC takes a value between -1 to +1 where +1, 0, -1 represent perfect prediction, random, and total 

disagreement respectively. The average of CC of the 10-fold cross validations is taken as the MCC. The MCC 

indicates how well a genomic attribute group discriminate between positive and negative inputs using ML 

methods and 10-fold cross validations (Bock et al., 2009). MCC > 0.3 (italic & bold) can be considered as 

relevant and MCC > 0.6 (bold) indicates a strong correlation.  

Clustering methods vs. 

Genomic Attribute Groups 

Modal filtering 

on all 8-mers 

dataset 

CG count filtering on 8-

mer Dist_1 subset 

Frequency band filtering 

on 8-mer Dist_1 subset 

Dist_1 Dist_2 1-CG 2-CGs 3-CGs 0-0.5k 0.5-1k 1-1.5k 1.5-2k 

DNA Structure 0.29 0.28 0.24 0.17 0.54 0.26 0.26 0.30 0.27 

Repetitive DNA 0.11 0.05 0.10 0.12 0.09 0.09 0.07 0.07 0.02 

Chromosome Organization 0.05 0.13 -0.02 -0.01 0.02 0.10 0.05 0.10 0.08 

Evolutionary History 0.03 0.05 0.01 0.00 0.24 0.01 0.06 0.06 0.02 

Population Variation 0.09 0.10 0.08 0.08 0.01 0.06 0.08 0.09 0.05 

Genes 0.13 0.11 0.01 0.01 0.16 0.09 0.11 0.07 0.01 

Regulatory Regions 0.31 0.29 0.11 0.10 0.50 0.31 0.33 0.31 0.27 

Transcriptome 0.10 0.09 0.01 -0.05 0.27 0.09 0.08 0.11 0.05 

Epigenome and  

Chromatin structure 
0.72 0.72 0.80 0.83 0.64 0.78 0.75 0.68 0.65 

Next, we utilized the UCSC browsers to visually and computationally analyze the spatial 

distribution of rare 8-mers in annotated genomic features of the human chromosome 21 (refer to 

Appendix B.2 for details on the applied steps). Figure 3 shows the rare 8-mers mostly occur at higher 

density within the strict UCSC-CGI and RefSeq promoter regions and occur at significantly lower 



 

 

density in the rest of other visible regions. This visual observation reaffirms the previous finding 

where the rare 8-mers have high associations with strict CGI and promoter regions.  

 

Figure 3: Distribution of the rare 8-mers in a gene rich section of the human chromosome 21. 

The rare 8-mer frequency track is shown in parallel to RefSeq promoter, RefSeq gene, and UCSC-CGI tracks 

using the UCSC genome browser. The RefSeq gene track was been utilized to extract +/- 2000 base regions 

extending from the RefSeq gene start (RGS) locations and named it as the RefSeq promoter track. 

However, the associations of the high density rare 8-mer regions with the strict CGI and 

promoter regions does not occur every time (refer to Figure 3). To get a more accurate measure for the 

associations, we utilized a correlation tool in the UCSC table browser (refer to Appendix B.2 for 

details on the applied steps) to calculate the standard Pearson pairwise correlation coefficient (i.e. the 

r-score) between the rare 8-mer, strict CGI, and promoter datasets. The r-score represents how well 

parallel pairwise items in two datasets intersected together. Table 4 shows the top 3 r-scores of 

0.4981, 0.2940, and 0.2268 (bolded) between paired datasets of R8MD1 <=> strict-CGI, strict-CGI 

<=> promoter, and R8MD1 <=> promoter respectively. This result also indicates that R8MD1 has 

higher specificities to the strict-CGI and promoter, when compared to the R8MD2. Therefore, we 

focus our experiments on the R8MD1 dataset for the rest of this study. We also correlated the R8MD1 

dataset to other built-in UCSC tracks but we only found moderate correlations (slightly >0.1) between 

the former to several histone modification and DNaseI hyper sensitive site tracks (results not shown). 



 

 

Table 4: Shows Pearson correlation coefficients between pairwise datasets of several genic features in the 

chromosome 21 of the human genome hg18.  

The listed coefficients are computed using the Pearson correlation function in the UCSC table browser. The top 

three scores are bolded. A score from 0 to 1 indicates a positive correlation between pairwise dataset where 1 

represents the highest correlation score. 

R8MD2 0.1921         

Strict CGI 0.4981 0.1678        

Genes 0.1137 -0.0272 0.0553       

Promoters 0.2268 0.0766 0.2940 0.1225     

5‘ UTR 0.1393 0.0459 0.1744 0.0907 0.1858    

CDS 0.1569 0.0671 0.1097 0.1658 0.0844 0.1331   

Introns 0.0790 -0.0413 0.0238 0.9767 0.1015 0.0250 0.0390  

3’ UTR 0.0575 0.0171 0.0307 0.1388 0.0416 0.0546 0.0798 0.0050 

 rxy-score R8MD1 R8MD2 s-CGI Genes Prmtrs. 5’UTR CDS Introns 

3.3 Intrinsic analyses on the correlated motifs of the rare 8-mers 

Empirical analysis provides an effective mean to find unique sequence patterns within a certain 

genomic context (or feature) which can lead to the discovery of novel sequence motifs. Based on the 

high correlations of the rare 8-mers with gene, promoter, and strict CGI features in the previous 

section, we performed more detailed intrinsic analyses on the subclasses of these features. A recent 

study by Hackenberg et al. (2012) has shown that the word clustering (given by enrichment ratio) can 

be used to indicate associations of k-mer words to biological functions (i.e. the associated features). 

Calculation for the enrichment ratio, as defined by the paper, is provided in the description of Table 5. 

The results show that the rare 8-mers are significantly enriched (r >> 2) in several genomic features of 

strict CGIs, 5’ UTRs, relaxed CGIs, promoters, and CDS. Apart from the enrichment ratio, we also 

need to consider the sequence coverage (see Column 2 in Table 5) because our next target is to 

implement this clustering property in a general prediction method which should cover as much items 

in the feature dataset. Considering both of the enrichment score and the feature coverage, only the 

CGI and promoter features (see the bold scores) are suitable candidates. Although the rare 8-mers 

have high enrichment ratios in the 5’ UTR and CDS features, but they only have a moderate sequence 

coverage which is less than 50%. This could mean that some of the 5’ UTR and CDS features might 

overlap with promoter regions or there might be different subclasses of the aforementioned features 

due to the high density of the rare 8-mers in subsets of them. 



 

 

Table 5: Shows enrichment ratios of the rare 8-mers in selected genomic features.  

When associating the rare 8-mer dataset to a biological sequence dataset, every sequence in the dataset was 

processed one by one. Each sequence is analysed using 1-nt step of an 8-mer sliding window, to search for any 

rare 8-mer occurrences in the sequence. For Column 2, one sequence is counted if it contains at least one rare 8-

mer word within it. Column 3 gives the total occurrence of rare 8-mer words in a particular dataset. For Column 

5, we calculate the enrichment ratio of each dataset by dividing the density of the rare 8-mer words inside a 

dataset over its density outside the dataset. The rare 8-mer density inside a dataset is given by the total rare 8-

mer frequency inside a dataset divided by the dataset size. The rare 8-mer density outside a dataset is given by 

the total rare 8-mer frequency in the human genome (2643351 rare-words) excluding the total rare 8-mer 

frequency inside the dataset, divided by the human genome size (2861327216 nt. w/o Ns) minus the dataset size. 

Bold scores represent significantly enriched ratios and italic scores represent significantly enriched ratios, but 

limited feature coverage (Column 2). 

Genomic Feature Datasets 

Count of sequences 

containing rare 8-mers 

(fraction to total seq.) 

Total rare 

8-mer 

frequency 

Size of 

feature 

dataset (bp) 

Enrich. 

Ratio 

RefSeq human ncRNA genes v37 1072/1275 (0.841) 44761 37026286 1.31 

RefSeq human pseudo genes v37 927/1598 (0.580) 15396 11604949 1.44 

RefSeq human mRNA genes v37 16220/16811 (0.965) 1215004 1043613703 1.48 

 - subset of 3’ UTRs only 6370/18869 (0.338) 32556 22684295 1.56 

 - subset of 5’ UTRs only 12266/26898 (0.456) 85100 4720645 20.13 

 - subset of intronic regions only 80995/170415 (0.475) 866589 986231212 0.93 

 - subset of CDS regions only 47812/176797 (0.270) 224207 29977551 8.75 

 - subset of promoter regions only 15861/16811 (0.943) 516857 67260811 10.10 

RefSeq human strict CGIs v37 23750/25218 (0.942) 622813 27442917 31.83 

RefSeq human relaxed CGIs v37 151500/315801 (0.480) 1165792 123748620 17.45 

EPD human Pol II promoters v107 8271/8513 (0.972) 284828 34060513 10.02 

Table 6 shows rare 8-mer enrichments in more specific subclasses of promoter and CGI 

features, i.e.: CpG+ and CpG- promoter regions (i.e. CpG-rich and CpG-poor promoter regions); 

several sub-regions of the +/- 2000-base promoter regions (also known as core, proximal, and distal 

promoters); and promoter+ and promoter- CGI regions (i.e. full-length CGI regions with and without 

overlapping to any promoter regions). This follow up investigation is important to further clarify the 

rare 8-mer associations in subclasses of them as mammalian promoters are commonly divided into 

CpG-rich and CpG-poor promoters (Saxonov et al., 2006). If we observe the top three (bold) scores in 

Table 6, the CGI+ core promoter regions have the highest score, followed by the promoter+ strict 

CGIs, and then the CGI+ proximal promoters. Concluding, this result shows that the rare 8-mer 

density is a very strong signal to predict strict CGIs as well as promoters. 

 

 



 

 

Table 6: Shows enrichment ratios of the rare 8-mers in sub-regions of CGI and promoter regions.  

Refer to the description in Table 5 for more details on the scores. Bold scores represent significantly enriched 

ratios. Underline percentages in Column 2 represent high sequence coverage. 

Genomic Feature Datasets 

Count of sequences 

containing rare 8-mers 

(fraction to the total 

sequences) 

Total rare 

8-mer 

frequency 

Size of 

feature 

dataset (bp) 

Enrich. 

ratio 

RS human CGI+ promoter regions v37 13368/13513 (0.989) 537349 54077516 13.25 

- core regions +/- 0-0.1 kbp from RGSs 11271/13513 (0.834) 80776 2716716 33.17 

- prox. regions +/- 0.1-0.5 kbp from RGSs 12714/13513 (0.941) 222185 10839832 24.13 

- distal regions +/- 0.5-2 kbp from RGSs 12848/13513 (0.951) 232913 40575032 6.72 

RS human CGI- promoter regions v37 6337/7847 (0.808) 59569 31403849 2.08 

- core regions +/- 0-0.1 kbp from RGSs 2135/7847 (0.272) 9386 1577649 6.46 

- prox. regions +/- 0.1-0.5 kbp from RGSs 3727/7847 (0.475) 19533 6294898 3.38 

- distal regions +/- 0.5-2 kbp from RGSs 5399/7847 (0.688) 30650 23562698 1.41 

RefSeq human promoter+ strict CGIs v37 13097/13573 (0.965) 400011 16072443 31.57 

RefSeq human promoter- strict CGIs v37 10653/11645 (0.915) 222802 11370474 23.07 

The previous results in Table 6 shows the rare 8-mers have gradual enrichments in distal, then 

proximal, and lastly the core promoters. Here, we analysed the rate of rare 8-mer enrichments 

throughout smaller bins covering the whole promoter regions. Figure 4 shows that the rare 8-mer 

frequencies have a slightly sharp increase which peaked at the gene start bin (regions of+/-100 bp 

from the RGSs), followed by a gradual fall (this graph gives the general occurrences of rare 8-mers in 

more than 20,000 promoters). The peak looked almost symmetry with a bit skewed towards the 

upstream (right) promoter bins which could explain the rare 8-mer enrichments in subsets of the 5’ 

UTR and CDS in Table 5. Nevertheless, the rare 8-mer density peaks at the core promoters. Accurate 

promoter prediction at the resolution of core promoter regions have become a new goal for recent 

promoter prediction studies and the dominance of the CGI signal have limit their performances (Zeng 

et al., 2009). Using the rare 8-mer high density signal (which is smaller, ~200-base) instead of the 

CGI signal (in average is ~1000-base) might be more effective for the purpose.  

We also performed the same experiment on the CGI+ and CGI- promoter subsets. Both of 

them produced a similar result to Figure 4 but with a different magnitude of rare 8-mer frequencies 

(result not shown). The ratio of the total rare 8-mer frequencies in the CGI+ to the CGI- promoter 

subsets is 9:1 although their sequence count ratio is only 2:1 (the CGI+ and CGI- datasets constitute 

of 12,714 and 7,561 promoters respectively). The disparity distribution of the rare 8-mer frequencies 



 

 

in both subsets reaffirms the result in Table 6 where the CGI+ promoters have significantly enriched 

rare 8-mers when compared to the CGI- counterparts. 

 

Figure 4: Shows rare 8-mer frequencies in binned-promoter regions.  

Promoter regions extending +/- 2000 bases extending from the RGSs with the status of validated and reviewed 

were extracted (refer to Appendix B.3 for the extraction procedure). Each promoter region was binned into 

segments of 200 bases. The total of rare 8-mer frequency in each bin was plotted. The total R8MD1 frequency 

in all bins is 505,609. 

Next, we searched the full promoter dataset (regions extending +/- 2000-bases from the RGSs 

with the RefSeq status of reviewed and validated) for certain unique topological patterns of the rare 

8-mer Dist_1 (R8MD1) and Dist_2 (R8MD2) datasets to elucidate any novel sequence motifs. The 

core and proximal promoter regions are packed with regulatory sites which are necessary for the 

transcription and regulation of the associated genes (Birney et al., 2007; Werner, 1999). We 

discovered three unique topological configurations of the rare 8-mers in these promoters. In the first 

configuration (see Table 7 for some of the result), we found 301 R8MD1 variants (Column 1) which 

occur at a same relative position from the associated RGSs (Column 2, there are 356 of such 

positions) in at least five different promoters which are represented by their associated GeneIDs 

(Column 3, there are 645 unique GeneIDs of these promoters). For the R8MD2 dataset (result not 

shown), there are 4181 R8MD2 variants which occur at a same relative position (there are 26632 of 

such positions) within at least five different promoters (there are 14119 unique GeneIDs of these 

promoters). 



 

 

Table 7: Examples of a R8MD1 variant occurring at a same relative position in several promoters.  

Column 1 lists the R8MD1 variants that met the first configuration criteria, Column 2 lists the shared relative 

positions of the R8MD1 variants, and Column 3 lists the GeneIDs of the associated promoters. In the second 

column, we used relative positions from the RGS locations instead of the exact chromosomal position  

R8MD1 

variant 

Relative pos. 

from the RGS 

List of GeneIDs (represents promoters) containing 

R8MD1 at the same relative position. 

CGCGCGGA +15 11116, 4771, 8645, 7544, 2324, 84245, 4929 

CGCGCGGA +71 5426, 80727, 114569, 55568, 6833 

GACGTCGA -712 441324, 728430, 441326, 728753, 441327, 441314, 

441328, 441315, 645651 

CCGCGACG +520 728082, 728042, 643311, 728062, 728096, 728049, 

728075, 728090, 653282, 728072, 57804, 255313, 728036 

ATGCGCGC +7 79029, 79187, 54859, 286554, 25829 

In the second configuration (see Table 8 for some of the result), we found 107 R8MD1 

variants (Column 1) which are repeated more than five times (Column 3, list of the relative positions 

of the variant repeats) within the same promoters (Column 2, there are 63 unique GeneIDs for these 

promoters). For the R8MD2 dataset (result not shown), there are 1701 R8MD2 variants which are 

repeated more than five times within the same promoters (there are 940 unique GeneIDs for these 

promoters). 

Table 8: Examples of a R8MD1 variant repeating several times within a promoter.  

Column 1 lists the R8MD1 variants that met the second configuration criteria, Column 2 lists the GeneIDs of 

the associated promoters, and Column 3 lists the positions of the R8MD1 variant repeats. In the third column, 

we used relative positions from the RGS locations instead of the exact chromosomal position.  

R8MD1 

Variant 

List of 

GeneIDs 

List of the relative positions of the R8MD1 

repeats from the RGS 

AGTCCGCG 54963 -138, -107, -76, -45, -14 

CGGGTCGA 729121 -1738, -1648, -1558, -1238, -1033, -

738, -648, -558, -468 

CGACCGAC 4161 -1626, -1622, -1618, -1614, -1610, -1593 

CGTACCGA 100463500 -1723, -1705, -1687, -1669, -1651, -1633 

TAGACGCG 54102 +478, +568, +598, +658, +688, +718 

In the third configuration (see Table 9 for some of the result), we found 43 R8MD1 variants 

(Column 1) which are repeated more than three times with a same interval (Column 3, list of the 

relative positions of the variant repeats) within the same promoters (Column 2, there are 25 unique 

GeneIDs of these promoters). For the R8MD2 dataset (result not shown), there are 771 R8MD2 

variants which are being repeated more than three times with a same interval within the same 

promoters (there are 259 unique GeneIDs of these promoters). 



 

 

Table 9: Examples of a R8MD1 variant repeating several times with a same interval within the same 

promoters.  

Column 1 lists the R8MD1 variants that met the third configuration criteria, Column 2 lists the GeneIDs of the 

associated promoters, Column 3 lists the R8MD1 variant repeat positions (in the bracket is the shared R8MD1 

variant repeat interval that met the criteria). In the third column, we used relative positions from the RGS 

locations instead of the exact chromosomal position.  

R8MD1 

variant 

List of 

GeneIDs 

List of the relative positions of the R8MD1 

repeats from the RGS [shared interval] 

CGGGTCGA 729121 -1738, -1648, -1558, -1238, -1033, -738, -648, -

558, -468 [90] 

ACGCGTCT 4585 -319, -301, -205, -187, -169 [18] 

CACGCGTC 4585 -320, -302, -206, -188, -170 [18] 

CGTCGGGA 729121 -1897, -1782, -1692, -1512, -1397, -1282, -1192, 

-872, -782, -692, -602, -512 [90] 

CGCGACAG 100499194 +37, +113, +187, +261, +335 [74] 

Although the numbers of promoters (represented by the total unique GeneIDs) associated with 

the three topological configurations of R8MD1 (i.e. 645, 63, and 25) and of R8MD2 (i.e. 14119, 940, 

and 259) are relatively small in comparison to the total of 19621 promoters, such unique R8MD1 and 

R8MD2 configurations are unlikely to occur by chance due to the following reasons: 1) Only 

promoters with the RefSeq status of reviewed and validated were used; 2) A motif analysis study done 

by Zeng et al. (2008) on 1871 promoters from the EPD dataset discovered that only small percentages 

of the well-known TATA-, Inr-, and DPE-motifs (i.e. 6%, 9%, and 0.4% respectively) occur within 

those promoters; 3) Contiguous short repeat intervals and short oligonucleotides of the R8MD1 

variants do not fit the repeat element criteria; 4) Location of a promoter motif is very crucial for its 

functioning (Werner, 1999). Exact location and shared interval repeats within promoter regions are 

not random events; 5) In most instances, the rare 8-mer variants occur within the core and proximal 

promoter regions which are populated with regulatory elements and are considered to be deficient of 

repeats and junk elements; and 6) Several small, medium, and tandem-sized repeats, within promoter 

and genic regions, were reported to have association with regulatory functions such as enhancer and 

suppressor (Cherrington and Mocarski, 1989; Eskdale and Gallagher, 1995; Tarlow et al., 1993). 

Thus, we deduce that the rare 8-mer configurations are indeed novel sequence motifs with (yet) 

unknown functions, not just a by-product of the well-known CG dinucleotide suppression in 

mammalian genomes (refer to Appendix G for the full lists of the three unique configurations).  



 

 

3.4 Rare-word Clustering method for prediction of CGI and promoter regions 

Previously, we have correlated the rare 8-mer (of Dist_1) dataset with CGI and promoter features (see 

Section 3.2) and elucidated that the rare 8-mers are highly enriched and clustered in them (see Section 

3.3). In relation to that, a study by Hackenberg et al. (2012) also concluded that highly clustered 8-

mer words (many rare 8-mers are included the top 200 clustered words of their result) are 

significantly associated with human exons and TFBS. Here, we demonstrate that rare 8-mer clustering 

feature, which is incorporated into the RWC method, is also competent in predicting the CGI and 

promoter. The RWC method searches the human genome for DNA regions with high densities of the 

rare 8-mers using a heuristic clustering approach to identify the CGI and promoter (see Section 2.4 for 

the RWC pseudo code). In evaluating the CGI and promoter prediction datasets, there are various 

issues of the prediction datasets, and corresponding validation datasets and evaluation protocols. We 

only mentioned issues which are important to this section. Readers can refer to Appendix B.4 for 

more details. For this section, first we discuss the validation of RWC results. Then, we review CGI 

prediction in general and discuss our CGI evaluation results and finally followed by similar approach 

(of the CGI) for the promoter. 

 Validation tests were done based on four main validation datasets and on chromosome 1 only 

to determine the best RWC model for each of the validation datasets (which represent the evaluation 

protocols). One of the RWC method settings is the use of a certain rare k-mer dataset. Rare k-mer 

datasets of k=6-to-13-mers were inputted one by one into the RWC method, other parameters were 

optimized using the PSO algorithm, and the optimizations were generalized using the 5-fold cross 

validation test (see Section 2.4). Figure 5 gives the results of the aforementioned procedures for the 

validation datasets of Carninci TSR, Weber HMP, RefSeq TSR, and Illingworth UMR. Their F-score 

ranges are 42-48%, 51-56%, 59-64%, and 67-72% respectively. In general, higher k-value for the rare 

k-mer dataset translates into higher F-scores for the RWC method. There is a need to run the test on 

higher k-values than 13 but we are handicapped at memory limitation and computational time to 

complete the procedures. Thus, we stay with the rare 13-mers as the best model for the RWC method. 



 

 

 

Figure 5: Histograms of average F-scores for various rare k-mer datasets inputted into the RWC method 

and evaluated using 5-fold cross validation test. 

Analysis of CGI regions has become a hot topic in the post genomic era (Chae et al., 2013; 

Karlin, 2005; Takai and Jones, 2002; Zhao and Han, 2009). CGI plays many important roles in cells, 

such as gene silencing, alternative promoter, tissue specific control, and regulatory dense regions 

(Carninci et al., 2006; Deaton and Bird, 2011; Illingworth and Bird, 2009). CGI also has very distinct 

topological properties where it coincides with open chromatin regions and a majority of promoters 

(Hackenberg et al., 2006; Ioshikhes and Zhang, 2000; Larsen et al., 1992; Ponger and Mouchiroud, 

2002). In terms of sequence characteristics, CGs inside much the smaller regions of CGIs occur at the 

expected frequency and are mostly un-methylated (which comprise of 20% of all CGs), whereas CGs 

inside the much larger regions of the human genome occur at only one fifth of the expected frequency 

and are mostly methylated (which is about 80% of all CGs). CGIs can be identified computationally 

by searching the human genome for DNA regions with a high density of CGs which is significantly 

differs from bulk DNA regions. Several algorithms have been developed to predict CGIs where they 

can be categorized into two types: 1) Algorithms dependent on the three CGI parameters, i.e. CGI 

length, CG observed/expected ratio, and G+C percentage, such as an algorithm by (Gardiner-Garden 

and Frommer, 1987), an algorithm by (Takai and Jones, 2002), and CpGProD by (Ponger and 

Mouchiroud, 2002); and 2) Algorithms which are not relying on the three conventional parameters 



 

 

such as CpGcluster by (Hackenberg et al., 2006), CG Cluster by (Glass et al., 2007), and CpG_MI by 

(Su et al., 2010). Our RWC method also belongs to the second category. CGIs can also be identified 

using wet-lab experiments by searching for un-methylated sites. There are certain advantages and 

limits associated with either computational or experimental method, as mentioned in the following 

papers (Hackenberg et al., 2010; Han and Zhao, 2009; Illingworth et al., 2008; Illingworth and Bird, 

2009). 

Predicted CGI datasets were generated using all of the aforementioned prediction algorithms 

and were evaluated together with the RWC method for benchmarking (see Column 2 in Table 10). For 

the evaluations of the CGI prediction datasets, 4 validation datasets were used (see Appendix B.4.2), 

i.e. two experiment CGI datasets (by Illingworth and Weber) were used for the evaluations of their 

accuracy and two empirical CGI markers (of Alu repeat and PhastCons) were used for the evaluations 

of their quality (see Row 1 in Table 10). Experiment datasets are generally considered as more 

accurate than prediction datasets (in term of their quality and support of biological evidences) and are 

usually used as validation datasets to evaluate the accuracy of the latter. The Alu repeat is one of the 

repeat elements which are abundant in the human genome which resemble relaxed CGI regions and 

are considered as a major problem for conventional CGI detection methods (Takai and Jones, 2002), 

whereas the PhastCons elements are assumed to be functional genomic elements due to their highly 

conserved property (Siepel et al., 2005). Less overlapping with Alu repeats and greater overlapping 

with PhastCon elements indicate better qualities for computationally predicted CGIs (Hackenberg et 

al., 2010). Table 10 shows the performance scores and coverage percentages of the four evaluation 

results for eight prediction datasets. The RWC method is ranked at the third place when it was 

evaluated using the Illingworth validation dataset, at the first place for the Weber evaluation, at the 

second place for the lowest Alu coverage (the UCSC CGI dataset was excluded because repeats were 

pre-removed), and at the second place for the highest PhastCons coverage. Consistently, the RWC 

method ranked among the top three in term of accuracy and quality of the predicted CGIs among the 

benchmarked datasets. This indicates that the rare 8-mer density feature is a competent signal for 



 

 

predicting CGIs. Detailed CGI evaluation results and basic statistics of all the datasets are provided in 

Appendix H. 

Table 10: Evaluation and benchmark of predicted CGIs by the RWC method.  

Predicted CGI regions from several algorithms were evaluated against validation datasets of Weber hypo-

methylated promoters, Illingworth un-methylated regions, Alu repeats, and PhastCons elements using a search 

criterion of at least 1-base overlap. The SN, PPV, and F-measure scores stand for Sensitivity, Positive Predictive 

Value, and Harmonic Mean (between Sensitivity and PPV) respectively (refer to Appendix B.4.1 for more 

details on the scores). The method with higher scores (or percentages) is considered to have better performances 

except for Alu coverage where a lower percentage is considered as better.  

  
Validation Dataset 

(Protocol): 

  
Illingworth UMR 

hg18 (overlap) 

  

  
Weber HMP hg17 

(1000bp dist)  

  

Alu hg18 

(coverage) 

PhastCons 

hg18 
(cvrg.)   

# Prediction Vs. Score SN PPV F SN PPV F Percent Percent 

1 RWC method 0.6292 0.7091 0.6668 0.5725 0.5267 0.5486 1.62 16.62 

2 CG-cluster (relaxed) 0.9341 0.1483 0.2559 0.7966 0.0546 0.1022 29.99 10.91 

3 CG-cluster (strict) 0.7176 0.6702 0.6931 0.6283 0.3917 0.4826 0.94 15.60 

4 CpGProD 0.8661 0.2068 0.3339 0.7774 0.1530 0.2556 21.96 9.42 

5 CpG_MI 0.8431 0.3809 0.5247 0.7431 0.2831 0.4100 8.08 11.86 

6 NCBI-CGI (relaxed) 0.8980 0.0576 0.1083 0.8188 0.0407 0.0776 40.62 7.82 

7 NCBI-CGI (strict) 0.7250 0.6527 0.6870 0.6918 0.3847 0.4944 5.20 15.13 

8 UCSC-CGI 0.7852 0.5321 0.6344 0.7213 0.3867 0.5035 - 19.48 

Promoter is an integrated and an upstream part of a gene which regulate its expression. Before 

we can predict a promoter, we need a computer model to define what constitutes of promoters. 

Promoter modelling is a very difficult task due to the diversity and complexity of eukaryotic promoter 

elements, their organization (the promoter modules), and to what extent both of them constitute a 

functional promoter (Werner, 1999). There is probably unique promoter models as many as the gene 

number (Antequera, 2003). Many sequence features have been used to identify the location of 

promoters in DNA. The basic principle is promoter sequences have different properties than other 

DNA sequence such as: overlapping with CGI regions; contains any known core promoter elements; 

have higher density of any known TFBS, conserved motif, and over-represented motif; adjoining to 

mRNA transcripts; have a different compositional bias than non-promoter; and have sequence with 

structural dependency related to transcription (Bajic et al., 2004). Despite many features have been 

used, CGI is still the most dominant signal for predicting promoter regions of mammalian genomes 

(Abeel et al., 2009; Glass et al., 2007; Hannenhalli and Levy, 2001; Ioshikhes and Zhang, 2000). Due 

to the dependent of most promoter prediction programs on the CGI signal, their predictive 



 

 

performances since the past decade are limited up to 60% detection only (Abeel et al., 2009; Bajic et 

al., 2004; Zeng et al., 2009). 

Next we demonstrate that the rare 8-mer clustering feature is also capable to predict promoter 

due to its high correlation with CGI (see Section 3.2) where CGI is the best signal for predicting 

promoters. We used the same predicted CGI datasets in Table 10 to represent identified promoter 

datasets by CGI signals and they were evaluated together with the predicted promoter by the RWC 

method for benchmarking (see Column 2 in Table 11). Two bin-based and two distance based 

protocols by Abeel et al. (2009) were used for the promoter evaluations. Each protocol specifically 

defines how to classify predicted datasets into a correct or false promoter category based on two 

validation datasets of Carninci and RefSeq TSRs (see Appendix B.4.2 for more details). We used 

detection boundary of +/- 1000 bases extending from the validated TSRs (i.e. the accuracy level of 

proximal promoter) to have higher SN and PPV for comparisons. Table 11 shows the performances of 

the RWC method in comparison to seven other programs (that use CGI related signals) in predicting 

TSRs and promoters. The result shows that in terms of F-score, the predictive performances of the 

RWC method ranked at the first places for the evaluations using Carninci TSR and at the third place 

for the evaluations using RefSeq TSR. The high performances of the RWC method show that the rare 

8-mers is a competent signal, comparable to the renowned CGI signal, in predicting promoter. 

Detailed promoter evaluation results and basic statistics of all the datasets are provided in Appendix 

H. We only utilized the RKM signals in our promoter prediction endeavours (which are signals rich 

features), we obtained similar results with the other programs. Although the accuracy is not very high, 

it is the state of the art of current promoter prediction programs. 

 

 

 

 



 

 

Table 11: Evaluation and benchmark of predicted promoters by the RWC method.  

Predicted promoters from several methods were evaluated against validation datasets of Carninci and RefSeq 

TSRs using detection boundary of +/- 1000 bases from the validated TSRs. The SN, PPV, and F-measure scores 

stand for Sensitivity, Positive Predictive Value, and Harmonic Mean (between Sensitivity and PPV) respectively 

(refer to Appendix B.4.1 for more details on the scores). The method with higher scores is considered to have 

better performances.  

  Validation Dataset 

(Protocol): 

Carninci TSRs 

(bin-based) 

RefSeq TSRs 

(bin-based) 

Carninci TSRs 

(distance-based) 

RefSeq TSRs 

(distance-based)   

# Predictions Vs. Scores SN PPV F SN PPV F SN PPV F SN PPV F 

1 RWC method 0.1738 0.4608 0.2524 0.4129 0.5249 0.4622 0.3618 0.6410 0.4625 0.5372 0.6710 0.5967 

2 CG-cluster (relaxed) 0.2443 0.1813 0.2082 0.6107 0.1473 0.2373 0.4560 0.2950 0.3583 0.7057 0.2712 0.3918 

3 CG-cluster (strict) 0.1156 0.6861 0.1979 0.4118 0.5577 0.4738 0.2976 0.7425 0.4249 0.5221 0.7316 0.6093 

4 CpGProD 0.1386 0.2511 0.1786 0.4487 0.2506 0.3216 0.3627 0.3165 0.3381 0.6323 0.3336 0.4368 

5 CpG_MI 0.1076 0.3746 0.1672 0.3243 0.3020 0.3128 0.2822 0.5077 0.3627 0.5261 0.4494 0.4847 

6 NCBI-CGI (relaxed) 0.2203 0.1011 0.1386 0.4854 0.0773 0.1334 0.4919 0.1503 0.2302 0.7083 0.1103 0.1909 

7 NCBI-CGI (strict) 0.1198 0.6124 0.2003 0.4052 0.5746 0.4752 0.3200 0.6949 0.4382 0.5376 0.7277 0.6183 

8 UCSC-CGI 0.1214 0.5962 0.2017 0.4344 0.4900 0.4605 0.3253 0.6796 0.4399 0.4248 0.6475 0.5130 

4.0 Conclusions 

Intrigued by the unique sequence properties of the rare k-mers, we examined the possibilities of rare 

k-mer functionalities and their applications in the human genome. Rare k-mers are indeed the least 

occurring DNA words in the human genome but they are highly correlated with several genomic 

features of CGIs, promoters, 5’UTR, and open chromatin regions of certain histone modification 

codes. These high correlations imply that the rare k-mers are functional but due to its short length of 8 

to 10-mers and its average frequencies are in between 60-1000 (although very rare), these make the 

rare k-mers looked ubiquitous and less functional in the human genome. This dilemma is quite similar 

to the CGIs (which is the highest feature correlated with the rare k-mers) which are very prominent in 

terms of sequence and correlation to biological functions, but little is understood about its molecular 

mechanisms. Because there is no clear definition for the CGI about its structure, we are unable to 

come out with any positional statistics of rare k-mers inside them. Nevertheless, we have found three 

significant positional statistics of rare k-mers inside promoter regions (with the RefSeq status of 

reviewed and validated) which are: 1) several rare 8-mers have the same relative positions from the 

RGS locations; 2) same rare 8-mers are repeated more than five times within the same promoters, and 

3) same rare 8-mer repeats have the same intervals in the same promoters. Moreover, several studies 

have identified that some rare 8-mers are important words and functional in the human genome (Bao 



 

 

et al., 2012; Hackenberg et al., 2012; Stacey et al., 2003). Then, we extend our works by utilizing the 

RW clustering property (which was elucidated from the enrichment analyses of rare 8-mers in CGIs 

and promoters) in the RWC method to further the use of rare k-mers in biology. When we evaluated 

the predicted CGIs and promoters by the RWC method for 4 CGI and 4 promoter evaluations 

respectively and benchmarked both of the predicted RWC datasets with seven other datasets, the 

RWC method consistently achieved the top 3 F-scores for all of the evaluations. These results prove 

that rare k-mers is as good as the widely used CGI feature in most of CGI and promoter prediction 

programs. Another advantage is the RWC method predicts CGIs and promoters based on functional 

rare 8-mer words, not just by pure integer arithmetic which gives clues about novel CGI and promoter 

regulations. Since practical predictors are now commonly required to have a user-friendly and 

publicly available online version for more usability in the field of computational biology (Chou, 2011; 

Liu et al., 2013; Liu et al., 2015b; Liu et al., 2014; Zhang et al., 2011), we shall make efforts to 

provide a web-server for the RWC method in the near future. 
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