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The current work presents a new single-reference method for capturing at the same time the static and
dynamic electron correlation. The starting point is a determinant wave function formed with natural orbitals
obtained from a new interacting-pair model. The latter leads to a natural orbital functional (NOF) capable of
recovering the complete intrapair, but only the static interpair correlation. Using the solution of the NOF,
two new energy functionals are defined for both dynamic (Edyn) and static (Esta) correlation. Edyn is derived
from a modified second-order Møller-Plesset perturbation theory (MP2), while Esta is obtained from the
static component of the new NOF. Double counting is avoided by introducing the amount of static and
dynamic correlation in each orbital as a function of its occupation. As a result, the total energy is

represented by the sum ~EHF þ Edyn þ Esta, where ~EHF is the Hartree-Fock energy obtained with natural
orbitals. The new procedure called NOF-MP2 scales formally as OðM5Þ (where M is the number of basis
functions), and is applied successfully to the homolytic dissociation of a selected set of diatomic molecules,
paradigmatic cases of near-degeneracy effects. The size consistency has been numerically demonstrated for
singlets. The values obtained are in good agreement with the experimental data.
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In electronic structure theory, accurate solutions require a
balanced treatment of both static (nondynamic) and dynamic
correlation. Static correlation generally implies a limited
number of nearby delocalized orbitals with significant frac-
tional occupations.Conversely, dynamic correlation involves
a large number of orbitals and configurations, each with a
small weight.
Nowadays, it is necessary to resort to multireference

methods for correctly handling both types of correlation;
however, these techniques are often expensive and demand
prior knowledge of the system. On the other hand, single-
reference correlation methods are well-established for
dynamic correlation, but are unsatisfactory for systems with
static correlation. The aim of this work is to propose a single-
reference method capable of achieving both dynamic and
static correlation even for those systems with significant
multiconfigurational character.
In our approach, a natural orbital functional (NOF) [1] is

firstly used for capturing all static correlation effects. Then,
the total energy is approximated as ~EHF þ Edyn þ Esta, where
~EHF is the Hartree-Fock energy obtained with corresponding
natural orbitals (NOs). The dynamic energy correction (Edyn)
is derived from a properly modified second-order Møller-
Plesset perturbation theory (MP2) [2], while the nondynamic
correction (Esta) is obtained from the pure static component
of the new NOF. Let us start with the NOF.
In NOF theory, the spectral decomposition of the one-

particle reduced density matrix (Γ ¼ P
i nijϕiihϕij) is used

to approximate the electronic energy in terms of the NOs
and their occupation numbers (ONs), namely,

E ¼
X
i

niHii þ
X
ijkl

D½ni; nj; nk; nl�hkljiji: ð1Þ

Here, Hii denotes the diagonal elements of the core-
Hamiltonian, hkljiji are the matrix elements of the two-
particle interaction, and D½ni; nj; nk; nl� represents the
reconstructed two-particle reduced density matrix (2-RDM)
from the ONs.
It is noteworthy that the resulting approximate func-

tional E½fni;ϕig� can solely be implicitly dependent on
Γ [3] since the Gilbert’s theorem [4] on the existence of
the explicit functional E½Γ� is valid only for the exact
ground-state energy. In this vein, NOs are the orbitals that
diagonalize the one matrix corresponding to an approxi-
mate energy that still depends on the 2-RDM [3].
Consequently, the energy is not invariant with respect to
a unitary transformation of the orbitals, and it is more
appropriate to speak of a NOF rather than a functional
E½Γ�. A detailed account of the state of the art of the NOF
theory can be found elsewhere [5,6].
The construction of a N-representable functional given

by (1), i.e., derived from an antisymmetric N-particle
wave function [7], is obviously related to the N represent-
ability problem of the 2-RDM. The use of the (2,2)-
positivity N-representability conditions [8] for generating
a reconstruction functional was proposed in Ref. [9]. This
particular reconstruction is based on the introduction of
two auxiliary matrices Δ and Π expressed in terms of the
ONs to reconstruct the cumulant part of the 2-RDM [10].
In a spin-restricted formulation, the energy functional for
singlet states reads as
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E ¼ 2
X
p

npHpp þ
X
qp

ΠqpLpq

þ
X
qp

ðnqnp − ΔqpÞð2J pq −KpqÞ; ð2Þ

where J pq, Kpq, and Lpq are the direct, exchange, and
exchange-time-inversion integrals [11]. Appropriate
forms of matrices Δ and Π lead to different implementa-
tions known in the literature as the ith Piris natural orbital
functional (PNOFi, i ¼ 1–6) [5].
The conservation of the total spin allows us to derive

the diagonal elements Δpp ¼ n2p and Πpp ¼ np [12].
The N-representability D and Q matrix conditions of the
2-RDM impose the following inequalities on the off
diagonal elements of Δ [9]:

Δqp ≤ nqnp; Δqp ≤ hqhp; ð3Þ

while to fulfill the G matrix condition, the elements of the
Π matrix must satisfy the constraint [13]

Π2
qp ≤ ðnqhp þ ΔqpÞðhqnp þ ΔqpÞ; ð4Þ

where hp denotes the hole 1 − np. Notice that for singlets
the total hole for a given spatial orbital p is 2hp.
Let us divide the orbital space Ω into N=2 mutually

disjoint subspaces Ωg, so each orbital belongs only to one
subspace. Consider each subspace contains one orbital g
below the Fermi level (N=2) andNg orbitals above it, which
is reflected in additional sum rules for the ONs,X

p∈Ωg

np ¼ 1; g ¼ 1; 2;…; N=2: ð5Þ

Taking into account the spin, each subspace contains solely
an electron pair, and the normalization condition for Γ
(2
P

pnp ¼ N) is automatically fulfilled. It is important to
note that orbitals satisfying the pairing conditions (5) are
not required to remain fixed throughout the orbital opti-
mization process [14].
The simplest way to comply with all constraints leads to

an independent pair model (PNOF5) [15,16],

Δqp ¼ n2pδqp þ nqnpð1 − δqpÞδqΩg
δpΩg

;

Πqp ¼ npδqp þ Πg
qpð1 − δqpÞδqΩg

δpΩg
;

Πg
qp ¼

(
− ffiffiffiffiffiffiffiffiffiffinqnp
p ; p ¼ g or q ¼ g

þ ffiffiffiffiffiffiffiffiffiffinqnp
p ; p; q > N=2

;

δqΩg
¼

(
1; q ∈ Ωg

0; q∉Ωg
: ð6Þ

Interestingly, an antisymmetrized product of strongly
orthogonal geminals (APSG)with the expansion coefficients

explicitly expressed by the ONs also leads to PNOF5
[16,17]. This demonstrates that the functional is strictly N
representable. In addition, PNOF5 is size extensive and size
consistent, inherent properties to singlet-type APSG wave
functions.
To go beyond the independent-pair approximation, let us

maintain Δqp ¼ 0 and consider nonzero the Π elements
between orbitals belonging to different subspaces. From
Eq. (4), note that provided theΔqp vanishes, jΠqpj ≤ ΦqΦp

with Φq ¼
ffiffiffiffiffiffiffiffiffiffi
nqhq

p
. Assuming the equality, one can gen-

eralize the sign convention (6), namely, ΠΦ
qp ¼ ΦqΦp if

q;p>N=2, and ΠΦ
qp¼−ΦqΦp, otherwise. Thus, the energy

(2) becomes

E ¼
XN=2

g¼1

Eg þ
XN=2

f≠g
Efg;

Eg ¼
X
p∈Ωg

npð2Hpp þ J ppÞ þ
X

q;p∈Ωg;q≠p
Πg

qpLpq;

Efg ¼
X
p∈Ωf

X
q∈Ωg

½nqnpð2J pq −KpqÞ þ ΠΦ
qpLpq�: ð7Þ

This new approach will henceforth refer to as PNOF7.
The first term of the Eq. (7) is the sum of the pair energies
described accurately by the two-electron functionalEg. In the
second term, Efg correlates the motion of the electrons in
different pairs with parallel and opposite spins. It is clear that
the main weakness of the approach (7) is the absence of the
interpair dynamic electron correlation since ΠΦ

qp has signifi-
cant values onlywhen theONsdiffer substantially from1and
0. Consequently, PNOF7 is expected to be able to recover the
complete intrapair, but only the static interpair correlation.
The solution in NOF theory is established by optimizing

the energy functional with respect to the ONs and to the
NOs separately, for which the iterative diagonalization
procedure proposed by Piris and Ugalde [14] has been
employed. The performance of the PNOF7 has been tested
by the dissociation of a dozen diatomic molecules. The
selected systems comprise different types of bonding, which
span a wide range of values for binding energies and bond
lengths. However, in all cases, the correct dissociation limit
implies a high degree of degeneracy effects. For simplicity,
we consider Ng equal to a fixed number that corresponds to
the maximum value allowed by the basis set used.
Representative potential energy curves (PECs) of these

molecules are depicted in Fig. 1 (see Supplemental Material
[18] for absolute energies). PNOF7 produces qualitatively
correct PECs with right dissociation limits for all cases,
even in the case of the highest degeneracy (N2). In Table I,
selected electronic properties, including equilibrium bond
lengths (Re), dissociation energies (De), and harmonic
vibrational frequencies (ωe) can be found. In this work,
the experimental Re and ωe are taken from the National
Institute of Standards and Technology (NIST) database [19],
whereas the experimental De result from a combination of
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Refs. [19] and [20]. The correlation-consistent valence triple-
ζ basis set (cc-pVTZ) [21] was used throughout, except for
the anionic species (OH− and CN−) where the augmented
basis set (aug-cc-pVTZ) was used.
Table I shows that the results are in good agreement

with the experiment for the smaller diatomics, for which
the electron correlation effect is almost entirely intrapair.
When the number of pairs increases, the theoretical values
deteriorate especially for the dissociation energies. This is
related to a better description of the asymptotic region with
respect to the equilibrium where the dynamic correlation
prevails. It is therefore mandatory to add the interpair
dynamic electron correlation to improve these results.
The second-order Møller-Plesset [2] perturbation theory

(MP2) is the simplest and cheapest way of properly
incorporating dynamic electron correlation effects. The
Hartree-Fock (HF) wave function is taken as the starting
point in MP2, so let us consider a Slater determinant
formed by the NOs as the zeroth-order wave function, and
define the zeroth-order Hamiltonian Ĥð0Þby the expansion

P
iεijϕiihϕij. Here, εi is the ith diagonal element of the

Fock matrix (F ) in the NO representation. The first-order
energy correction leads to an energy ( ~Ehf) that differs from
the true HF energy since NOs are used instead of the
canonical HF orbitals. Besides, the Fock matrix is no longer
diagonal; therefore, single excitations in addition to dou-
bles contribute to the MP2 energy correction, namely,

Eð2Þ ¼ 2
XN=2

g¼1

XM
p>N=2

jFpgj2
εg − εp

þ
XN=2

g;f¼1

XM
p;q>N=2

hgfjpqi½2hpqjgfi − hpqjfgi�
εg þ εf − εp − εq

; ð8Þ

where M is the number of basis functions.
In general, MP2 lacks nondynamic correlation, which is

well recovered by PNOF7, but we cannot simply add these
contributions since double counting occurs. With this in
mind, new dynamic (Edyn) and static (Esta) energy func-
tionals have to be defined from the MP2 and PNOF7,
respectively, so that the total energy of the system will be
given by

E ¼ ~Ehf þ Ecorr ¼ ~Ehf þ Esta þ Edyn: ð9Þ
Henceforth, the energy obtained with the Eq. (9) is called

the NOF-MP2 energy. From Eq. (7), it is evident that we
must differentiate between intra- and interpair contributions
for both functionals. In accordance, one has

Ecorr
intra ¼

XN=2

g¼1

ðEsta
g þ Edyn

g Þ

Ecorr
inter ¼

XN=2

f≠g
ðEsta

fg þ Edyn
fg Þ; ð10Þ

hence, Ecorr ¼ Ecorr
intra þ Ecorr

inter as well. To avoid double
counting, we are going to consider the amount of static
electron correlation in each orbital as a function of its
occupancy,

Λp ¼ 1 − j1 − 2npj: ð11Þ
Note that Λp goes from zero for empty or fully occupied
orbitals to one if the orbital is half occupied. Using this
function, let us define the static and dynamic gth intrapair
electron correlation energies as

Esta
g ¼

X
q≠p

ffiffiffiffiffiffiffiffiffiffiffiffi
ΛqΛp

q
Πg

qpLpq

Edyn
g ¼ 2Cg

XM
p>N=2

Cp
jFpgj2
ϵg − ϵp

þ C2
g

XM
p;q>N=2

CpCq
hggjpqihpqjggi
2ϵg − ϵp − ϵq

; ð12Þ

FIG. 1. Potential energy curves (cc-pVTZ).

TABLE I. Comparison of Re (Å),De (kcal/mol), and ωe (cm−1)
calculated at the PNOF7/cc-pVTZ level of theory with the
experimental values.

Molecule Re Rexpt
e De Dexpt

e ωe ωexpt
e

H2 0.743 0.743 108.6 109.5 4404 4401
LiH 1.604 1.595 56.1 58.0 1404 1406
Li2 2.667 2.673 23.3 24.4 330 351
BH 1.232 1.232 75.7 81.5 2370 2367
OH−a 0.966 0.964 87.0 � � � 3010 3770
HF 0.915 0.917 106.7 141.1 4139 4138
LiF 1.576 1.564 95.4 139.0 668 911
N2 1.097 1.098 188.9 228.3 2290 2359
CN−a 1.186 1.177 212.0 240.7 1999 2035
CO 1.120 1.128 178.1 259.3 2316 2170
NOþ 1.056 1.063 179.9 � � � 2412 2377
F2 1.579 1.412 2.6 39.2 422 917
aaug-cc-pVTZ was used.
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where q; p ∈ Ωg, and Cp ¼ 1 − Λ2
p. The PECs for the

archetypal two-electron singlet, H2, are depicted in Fig. 2.
It is remarkable the excellent agreement between the results
obtained with the new intrapair energy functionals given
by Eq. (12) and those of PNOF7, which in this case is
practically exact [22].
Taking into account the square root that already appears

in the definition of the Φ magnitudes, we can similarly
introduce the following functionals for the fgth interpair
static and dynamic correlation energies:

Esta
fg ¼

X
p∈Ωf

X
q∈Ωg

4ΦpΦqΠΦ
qpLpq

Edyn
fg ¼ 2

XM
p>N=2

δpΩf
CΦ
p
jFpgj2
ϵg − ϵp

þ
XM

p;q>N=2

δpΩf
CΦ
p δqΩg

CΦ
q

×
hgfjpqi½2hpqjgfi − hpqjfgi�

ϵg þ ϵf − ϵp − ϵq
: ð13Þ

In Eq. (13), 2Φp plays the same role of
ffiffiffiffiffiffi
Λp

p
in Eq. (12);

hence, CΦ
p ¼ 1�4Φ2

p ¼ 1 − 4nphp. Again, fully occupied
and empty orbitals contribute nothing to static correlation;
this time interpair, whereas orbitals with half occupancies
yield a maximal contribution. The opposite occurs for
dynamic correlation. It is worth noting that CΦ is not
considered if the orbital is below N=2.
Table II collects the electronic properties previously

analyzed for the systems in which the interpair correlation
becomes important. The data reveal an outstanding
improvement in the dissociation energies, as well as a
nice agreement of Re and we with the experimental marks.
It is worth mentioning the case of F2 and the recovered
correct order in the dissociation energies of the N2 and CO
(see also Fig. 1).
The included Beryllium dimer requires special attention.

PNOF7 predicts a metastable minimum with a negativeDe,
whereas the NOF-MP2 method recovers sufficient dynamic
correlation to be able of predicting a stable Be2 molecule.

The obtained equilibrium distance is still underestimated,
but the dissociation energy approaches the experimental
value. For weaker bonds, e.g., He2, the NOF-MP2 method
does not predict bound due to a better description of the
dissociated atoms with respect to the equilibrium region. In
these cases, neglecting static correlation and using HFMP2
leads to a binding PEC. The alternative is to include higher-
order perturbative corrections.
The size consistency of the NOF-MP2 method, i.e., the

ability of the method to reproduce the additivity of
the energy for a system composed of independent sub-
systems, has been numerically addressed too. It has been
checked that total energies of spin-compensated dimers
(He2, Be2, and HeNe) at an internuclear separation of
100 Å differ from the double value of the total energies
of the corresponding atoms lesser than 10−5 hartrees
(< 0.01 kcal=mol).
Preliminary calculations on systems with more than two

atoms confirm that the results are promising. The absolute
energies obtained with the NOF-MP2 method improve
over the PNOF7 values by recovering an important part
of the dynamic correlation and getting closer to the values
obtained by accurate wave-function-based methods (see
Supplemental Material [18]).
In summary, a new size-consistent method for singlet

states has been proposed that scales formally asOðM5Þ. The
resulting working formulas allow for static and dynamic
correlation to be achieved in one shot, as is the case in the
standard single-reference perturbation theory. Note that the
NOF-MP2 method is not limited to PNOF7 NOs, it can also
be used with NOs obtained from an approximation able of
recovering nondynamic electron correlation. In addition, the
number of orbitals involved in the optimization can be easily
reduced by establishing a cutoff in the value of the ONs,
since the dynamic correlation for which the orbitals with
small ONs are responsible will be properly recovered by
Edyn. With efficient approaches, based on recent develop-
ments of NOF and MP2 theories, the NOF-MP2 method

FIG. 2. Potential energy curves for H2.

TABLE II. Comparison of Re (Å), De (kcal=mol), and ωe

(cm−1) calculated at the NOF-MP2/cc-pVTZ level of theory with
the experimental values.

Molecule Re Rexpt
e De Dexpt

e ωe ωexpt
e

Be2
a 2.303 2.460 2.6 2.7 543 � � �

OH−a 0.967 0.964 121.6 � � � 3820 3770
HF 0.924 0.917 139.4 141.1 4151 4138
LiF 1.614 1.564 140.7 139.0 955 911
N2 1.084 1.098 224.2 228.3 2764 2359
CN−a 1.180 1.177 238.6 240.7 1961 2035
CO 1.129 1.128 255.1 259.3 2092 2170
NOþ 1.060 1.063 261.1 � � � 2403 2377
F2 1.397 1.412 34.5 39.2 949 917
aaug-cc-pVTZ was used.
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could become a valuable tool for treating large systems with
hundreds of atoms.
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