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Strongly correlated materials are now under intense development, and Natural Orbital Functional
(NOF) methods seem to be able to capture the physics of these systems. We present a benchmark
based on the Hubbard model for a class of commonly used NOF approximations (also known as
reduced density matrix functional approximations). Our findings highlight the importance of im-
posing ensemble N -representability conditions in order to obtain consistent results in systems with
either weak or strong electronic correlation, such as the Hubbard system with a varying two-particle
interaction parameter. Based on the accuracy of the results obtained by using PNOF7, which re-
trieves a large amount of the total strong nondynamic correlation, Hubbard model points out that
N -representability gives solid foundations for NOFs development.

I. INTRODUCTION

The theoretical foundations of first-order reduced
density-matrix functional theory (1RDMFT) were es-
tablished long time ago [1–4]. Nevertheless, practical
approximations which can compete with wavefunction-
based methods have appeared in the last few years [5–17].
1RDMFT approximations in which the one-electron re-
duced density matrix (1RDM) plays the central role are
given in terms of natural orbitals (NOs) and correspond-
ing occupation numbers (ONs). Hence the functionals
tested in this work will be referred to as Natural Orbital
Functional approximations (NOFAs), because the corre-
sponding 1RDM is used in its diagonal representation.

The theorem on the existence of the functional [1, 2, 4]
of the 1RDM does not provide the means for its con-
struction. Exact properties of the hole function [18, 19]
have been used to develop NOFAs mantaining the gen-
eral form of the Hartree-Fock exchange term. These ap-
proximations include Coulomb and exchange type inte-
grals, so they are denoted as JK-only NOFAs. Alterna-
tively, Piris has proposed [11] to employ the known en-
semble N -representability conditions of the two-electron
reduced density matrix (2RDM) [20] and progressively
enforce them to generate improved functionals. The lat-
ter includes exchange and time-inversion integrals [21],
so they must be referred to as JKL-only NOFAs.

Recently the interest related to the Hubbard model has
grown in electronic structure theory [22–26]. This system
can be viewed as the simplest possible model of corre-
lated fermions, since the compromise between kinetic en-
ergy, included via particles hopping, and Coulomb repul-
sion is included in the Hamiltonian. Thus, the Hubbard
model exhibits magnetic ordering, metal-insulator transi-
tion, superconductivity, and Tomonaga-Luttinger liquid
in 1D, among others, so it allows to study many proper-
ties in strongly correlated materials. In other words, this
minimal model captures the basic nature of electron cor-
relation, and offers full tunability in order to explore dif-
ferent correlation regimes. As such, the Hubbard model

is an ideal candidate for calibration and benchmarking of
approximate electronic structure methods.

Strongly correlated systems are challenging for theo-
retical methods, since the independent electron picture
fails to describe them. Variational wavefunction ap-
proaches such as Gutzwiller [27, 28] and Baeriswyl [29–
31] have proven to be able to describe fermionic lattice
models, and together with DMRG or Quantum Monte-
Carlo methods, they are commonly employed to study
the fundamental properties of strongly correlated lattice
systems. An attempt to use another approach based on
RDMFT is done here, in fact, appart from the good
performance shown by variational 2RDM calculations
[32, 33], NOFAs seem also to be suitable to give an ac-
curate description of such systems [34, 35]. Therefore,
the objective of the present paper is to use the Hub-
bard model as a stringent validation tool for commonly
used NOFAs. In particular, the one-dimensional Hub-
bard model with and without external potential is stud-
ied, focusing on energies, double occupancy, and natural
ONs. The latter are an indicator of electron correlation
[25], so together with the energy results they show how
accurate the Hubbard model is being described. The pa-
per is organized as follows. In Sec. II A we describe the
main features of NOF theory and we present the approx-
imations employed in this work. Then we give a brief
description of the Hubbard model, and we describe the
properties that will be studied throughout the paper. Re-
sults obtained by using a set of popular NOFAs are shown
in Sec. III, together with the exact results obtained from
FCI calculations.

II. THEORY

A. Natural Orbital Functional Theory

The Hamiltonian of a many-electron system is the sum
of one- and two-particle operators, hence the energy is
determined exactly by the 1 and 2 RDM, denoted here-
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after by Γ and D, respectively. The exact functional can
be used with an approximate 2RDM built from 1RDM
to obtain an energy functional E [Γ]. The major advan-
tage of this formulation with respect to the density func-
tional theory (DFT) is that the kinetic energy does not
require the construction of a functional. The unknown
functional only needs to incorporate electron correlation.
This is however a formidable task since the functional N -
representability [36] which refers to the conditions that
guarantee the one-to-one correspondence between E [Ψ]
and E [Γ], is a problem related to the N -representability
of the 2RDM [20].

In NOF theory [37], the spectral decomposition of the
1RDM (Γ =

∑
ifi |φi〉 〈φi|) is used to approximate E [Γ]

in terms of the NOs {φi} and their ONs {fi}, namely,

E =
∑
i

fiHii +
∑
ijkl

D[fi, fj , fk, fl] < kl|ij > (1)

Here, Hii is the one-particle part of the Hamiltonian
involving the kinetic energy and the external potential
operators, whereas < kl|ij > are the matrix elements
of the two-particle interaction. D[fi, fj , fk, fl] represents
the reconstructed 2RDM from the ONs. We neglect any
explicit dependence of D on the NOs themselves because
the energy functional (1) has already a strong dependence
on the NOs via the one- and two-particle integrals.

It is noteworthy that the resulting approximate func-
tional E [{fi, φi}] can solely be implicitly dependent on
Γ [3] since the Gilbert’s theorem [1] on the existence of
the explicit functional E [Γ] is valid only for the exact
ground-state energy. In this vein, NOs are the orbitals
that diagonalize the one-matrix corresponding to an ap-
proximate energy that still depends on the 2RDM. A de-
tailed account of the state of the art of the NOF theory
can be found elsewhere [38, 39].

We consider Sz eigenstates, so only RDM blocks that
conserve the number of each spin type are non-vanishing.
Specifically, the 1RDM has two nonzero blocks Γαα and
Γββ , whereas the 2RDM has three independent nonzero
blocks: Dαα, Dαβ , and Dββ . The parallel-spin com-
ponents of the 2RDM must be antisymmetric, but Dαβ

presents no special symmetry [37].
We address only singlet states in this work, so the par-

allel spin blocks of the RDMs are equal. A spin-restricted
formalism is adopted, accordingly the NOs have identi-
cal spatial parts and equal ONs fi = fαi = fβi , with
0 ≤ fi ≤ 1 and 2

∑
i fi = N . The latter represents

the necessary and sufficient conditions for ensemble N -
representability of the 1RDM [40].

The Hartree-Fock (HF) like approximation for the
2RDM is defined as

Dσσ
ij,kl =

fifj
2

(δikδjl − δilδjk)

Dαβ
ij,kl =

fifj
2
δikδjl

(2)

Some approximations to the 2RDM are produced by
replacing only the σσ-elements of the HF like approxi-

mation, namely,

Dσσ
ij,kl =

fifj
2
δikδjl −

F(fi, fj)

2
δilδjk (3)

Table I: F(fi, fj) functions used for 2RDM reconstruction in
Eq. (3)

Approximation F(fi, fj)

MBB (fifj)
1/2 [5, 6]

Power (fifj)
0.53 [13]

CA fifj + [fi(1− fi)fj(1− fj)]1/2 [8]

CGA
1

2

{
fifj + [fi(2− fi)fj(2− fj)]1/2

}
[9]

The F(fi, fj) functions are collected in Table I. These
approximations lead to JK-only NOFAs since the elec-
tronic energy involves only the Coulomb (Jij = 〈ij|ij〉)
and exchange integrals (Kij = 〈ij|ji〉). Note that Eq.
(3) violates the antisymmetric requirement unless F =
fifj , consequently none of these functionals affords a N -
representable 2RDM. Extensive N -representability vio-
lations for these NOFAs have been reported [41, 42].

The use of the (2,2)-positivity N -representability con-
ditions, also known as P, Q, and G conditions, for gen-
erating a N -representable 2RDM was proposed by Piris
[11]. This particular reconstruction is based on the in-
troduction of two auxiliary matrices 4 and Π expressed
in terms of the ONs to reconstruct the cumulant part of
2RDM [43], namely,

Dσσ
ij,kl =

fifj −4ij
2

(δikδjl − δilδjk)

Dαβ
ij,kl =

fifj −4ij
2

δikδjl +
Πik

2
δijδkl

(4)

Both auxiliary matrices are constrained to certain
bounds due to the enforced positivity conditions, sym-
metric properties and sum rules satisfied by the 2RDM.
The conservation of the total spin allows to derive the di-
agonal elements ∆ii = f2

i and Πii = fi [44]. Appropriate
approximations for off-diagonal elements lead to differ-
ent implementations of the NOF known in the literature
as PNOFi (i=1-7). The performance of these functionals
is comparable to those of best wavefunction-based meth-
ods and has been recently reviewed in Ref. [45]. In the
present study, the latest functional of this series is used.

PNOF7 [17] corresponds to an interacting electron-pair
model. Let us divide the spatial orbital space Ω into N/2
mutually disjoint subspaces Ωg, so each orbital belongs
only to one subspace. Consider each subspace contains
one orbital g below the Fermi level (N/2), andNg orbitals
above it, which is reflected in additional sum rules for the
ONs: ∑

i∈Ωg

fi = 1; g = 1, 2, . . . , N/2 (5)

Taking into account the spin, each subspace contains
solely an electron pair, hence the normalization condition
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for the 1RDM is automatically fulfilled. It is important
to note that orbitals satisfying the pairing conditions (5)
are not required to remain fixed throughout the orbital
optimization process [46]. Given the functional form of
the auxiliary matrices 4 and Π [17], the energy (1) of
the PNOF7 can be conveniently written as

E =
N/2∑
g=1

Eg +
N/2∑
p 6=q

Epq

Eg =
∑
i∈Ωg

fi (2Hii + Jii) +
∑

i,j∈Ωg,i6=j
Πintra
ij Lij

Epq =
∑
i∈Ωp

∑
j∈Ωq

[
fifj (2Jij −Kij) + Πinter

ij Lij
] (6)

where

Πintra
ij =

{
−
√
fifj , i or j ≤ N/2

+
√
fifj , i, j > N/2

Πinter
ij =

{
−
√
fi (1− fi) fj (1− fj) , i or j ≤ N/2

+
√
fi (1− fi) fj (1− fj) , i, j > N/2

(7)
From Eq. (6), we can observe that the energy for sin-

glet states contains not only J and K integrals, but also
the exchange and time-inversion integral Lij = 〈ii|jj〉
[21], so PNOF7 is a JKL-only approximation. The first
term of the Eq.(6) is the sum of the pair energies de-
scribed accurately by the two-electron functional Eg. In
the second term, Epq correlates the motion of the elec-
trons in different pairs with parallel and opposite spins.
It is clear that the main weaknesses of the approach (6)
is the absence of the inter-pair dynamic electron correla-
tion since Πinter

ij has significant values only when the ONs
differ substantially from 1 and 0. Consequently, PNOF7
is expected to be able to recover the complete intra-pair,
but only the nondynamic inter-pair correlation.

On the other hand, when the Πinter
ij elements are

neglected, Eq. (6) yields the independent pair model
PNOF5 [14, 15]. Interestingly, an antisymmetrized prod-
uct of strongly orthogonal geminals wavefunction with
the expansion coefficients explicitly expressed by the ONs
also leads to PNOF5 [15], therefore it is strictly N -
representable. Indeed, 1RDM functional theory can also
be connected to the geminal functional theory [47, 48].

Minimization of the energy functional Eq. (1) is per-
formed under the orthonormality requirement for the
NOs, and the particle number fixed to N , by using the
Lagrange multipliers λ and µ respectively. Occupancies
are expressed by the free variable γ with fi = cos2γi
to assure 1RDM ensemble N -representability conditions
[40]. Thus, we can define an auxiliary functional

L [N, {γi} , φi (x)] = E [{γi} , φi (x)]

−µ
(∑

i cos
2γi −N

)
−
∑
ik λik (〈φk|φi〉 − δki)

(8)

An iterative diagonalization procedure [46] has been em-
ployed to make L stationary with respect to variations in

the ONs and the NOs separately, which is based on the
hermiticity of the matrix of the Lagrange multipliers λ
at the extremum. Basically the 1RDM and λ−λ†, where
† denotes the conjugate transpose, can be brought simul-
taneously to a diagonal form at the solution, hence the
set of NOs is given by those orbitals that make λ Her-
mitian. Occupation optimization is done by Sequential
Quadratic Programming (SQP) for all JK-only NOFAs.
Since both PNOF5 [14] and PNOF7 [17] are electron-
pairing approaches the particle number is automatically
fixed to N , so a Conjugate Gradient (CG) algorithm is
used to solve the unconstrained occupation optimization
in the case of these NOFAs, which yields substantial sav-
ings of computational time.

B. Hubbard model

The Hubbard Hamiltonian is possibly the simplest pro-
totype for modeling strongly correlated systems. This
model has been largely used to benchmark electronic
structure methods [22–26], but also to describe the elec-
tronic properties of many materials, e.g. metal-insulator
transitions, charge- and spin-density waves in superlat-
tices, etc. In one dimension and standard notation the
Hubbard model Hamiltonian reads

H = −t
∑

〈µ,υ〉,σ(c†µ,σcυ,σ + c†υ,σcµ,σ)

+U
∑
µ nµ,αnµ,β +

∑
µ,σ nµ,σvµ,σ

(9)

where greek indexes µ and υ denote sites, 〈µ, υ〉 indi-
cates only near-neighbors hopping, t > 0 is the hopping
parameter, σ = α, β, nµ,σ = c†µ,σcµ,σ where c†µ,σ (cµ,σ)
corresponds to fermionic creation(annihilation) operator,
vµ,σ is the on-site energy and U is the site interaction
parameter. Hereafter, we will refer to as homogeneous
Hubbard whenever vµ,σ = 0; ∀ {µ, σ}, whereas inhomo-
geneous Hubbard is used whenever non-zero external po-
tential is present. Thus, for the Hubbard dimer it will be
set vSA,σ = −vSB ,σ in Sec. III C, so that it gives rise to
a nonzero potential ∆v. An even more interesting exter-
nal potential will be used to study inhomogeneous sys-
tems for the 10 sites model, namely the one-dimensional
Aubry-André model [49] including electron-electron re-
pulsion

H = −t
∑

〈µ,υ〉,σ(c†µ,σcυ,σ + c†υ,σcµ,σ)

+U
∑
µ nµ,αnµ,β +

∑
µ,σ nµ,σV cos (2παµ+ δ) ,

(10)

where V is the modulation amplitude of the on-site
potential, α determines the periodicity, and δ fixes the
modulation phase. This model, which is intimately re-
lated with the Harper model, has been used to explore
topological properties in 1D systems, among others.

The electron-electron repulsion is extremely local in
the Hubbard model, and can be tunned by the parameter
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U . Although additional complexities can be included by
setting variable parameters Uµ and tµ [22], let us fix t and
vary only the particle-particle interaction U in order to
cover different correlation regimes, thus U/t will be used
as a dimensionless measure for the relative contribution
of both terms. In the limit U/t → 0 the system can be
described by mean-field theories, hence the Hartree-Fock
approximation recovers the exact wavefunction for the
symmetric Hubbard dimer if U = 0, however, as long as
U/t gets larger the system is nevermore weak correlated
and methods including electron correlation are needed to
give an accurate description of the model.

A general solution for the Hubbard model requires a
numerical treatment. We will restrict to half-filling cases
throughout this paper, so there is in average one particle
per site in the model, such that corresponding distribu-
tion among the sites depends on the correlation regime
and the number of sites of the Hubbard model. Over-
all, if the hopping parameter is larger than the on-site
interaction the electrons tend to occupy doubly the sites,
while at the U/t� 1 limit, also known as the strong cor-
relation limit, electrons try to keep away one from each
other by half-filling the sites, which corresponds to the
Mott-Hubbard regime [13, 24]. This transition is quanti-
fied by the natural orbital occupancies of the system, fi,
which actually are an indicator of correlation [25]. Our
analysis will focus on the latter, but also on E/t values
and on the double occupancy of the sites dE/dU , which
is defined as

dE

dU
=
∑
µ

〈Ψ|nµ,αnµ,β |Ψ〉. (11)

III. RESULTS AND DISCUSSIONS

The Hubbard model is here exploited in order to clar-
ify the performance of commonly used NOFAs in many
correlation regimes (specially in the strong correlation
regime). The present paper focuses on ground state E/t
values, double occupancy (Eq. 11), and natural occu-
pancies in comparison with the exact result; which are
obtained from FCI calculations for a range of U/t val-
ues in order to cover all correlation regimes in each case.
To this purpose we have used a modified version of the
code developed by Knowles and Handy [50, 51]. 1RDM
and 2RDM have been calculated from the FCI expansion
coefficients using a homemade code DMN developed by
E. Matito and F. Feixas [52]. The results here presented
for all NOFAs have been computed using DoNOF code
developed by M. Piris and co-workers. Note that dou-
ble occupancy of sites has been numerically evaluated by
using the five-point formula

dE

dU
≈ E(U − 2h)− 8E(U − h) + 8E(U + h)− E(U + 2h)

12h
(12)

where the step size is set to h = 0.001 (the error within
this approximation is of the order of h4).

A. Exact results for homogeneous Hubbard model

In this section we discuss several properties of the ho-
mogeneous 2 sites, 4 sites square, and 6 sites hexagone
Hubbard systems, which have been previously employed
to study many electronic structure methods [22–26, 53,
54]. Energy values for the homogeneous 10 sites, 12 sites,
and 14 sites are also included. Exact FCI E/t values for
a range of U/t values corresponding to these systems are
shown in Fig. 1.

There is a similar trend for the three curves corre-
sponding to the graph in the left, all of them show neg-
ative E/t values at the zero correlation point (U = 0)
and converge asymptotically to E/t = 0 at the strong-
correlation limit (U/t → ∞). As expected the absolute
energies are larger as the number of sites is increased.
Interestingly, relative differencies are smaller in the case
of 10, 12, and 14 sites systems, and the asymptotic limit
is located at larger U/t values when more sites are added
to the model.

In order to get a more reliable indicative of the en-
ergy, the derivative with respect to parameter U/t is also
studied for the 2, 4, and 6 sites systems (Fig. 2), since
physical interpretations can be obtained due to their con-
ceptual simplicity. In fact, this is a measure of double oc-
cupancy of the sites according to Eq. (11). According to
Fig. 2 the double occupancy is maximum in the weak cor-
relation region, since the exact ground-state wave func-
tion is recovered by an independent particle model when
there are no two-particle interactions. The population
of the sites spreads out as the correlation increases, so
for large U values the double occupancy tends to zero
due to particle-particle repulsion. Neither the energy nor
dE/dU show significant differences when the number of
sites varies in the Hubbard model, but the study of the
ONs displays another situation.

The half-filled 2 sites Hubbard model is the simplest
case that we have studied. It is known that when there
is no correlation (U = 0) the exact wave function for the
ground-state may be written as a single Slater determi-
nant |Ψ〉 = |σ2

g〉 built using a σg orbital; labeled attend-
ing to D∞h symmetry of the system. The σg orbital is
defined as

σg =
1√
2

(SA + SB). (13)

and is also known as the bonding orbital in quantum
chemistry. Note that sites are labeled by SX where X is
replaced by a letter in alphabetic order.

Nevertheless, when correlation increases the single
Slater determinant picture does not longer hold and the
wave function may be written as |Ψ〉 = Cg|σ2

g〉+ Cu|σ2
u〉

where the expansion coefficients Cg and Cu are deter-
mined variationally, and the second Slater determinant
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Figure 1: Exact FCI E/t values for many U/t values for half-filled homogeneous 2, 4, 6, 10, 12, and 14 sites Hubbard systems.
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Figure 2: Derivative of the energy with respect to parameter
U/t for the homogeneous 2 sites, 4 sites square, and 6 sites
hexagone Hubbard models.

is built using the σu orbital

σu =
1√
2

(SA − SB). (14)

This orbital is also known as the antibonding orbital in
quantum chemistry. The σg and σu orbitals form a basis
which is adapted to the symmetry of D∞h point group.
These orbitals are also the NOs for the system since the
1RDM obtained from the wavefunction is already diag-
onal in this basis for the homogeneous 2 sites Hubbard
model. Corresponding ONs are shown in the top of Fig.
3. Note that coefficients Cg and Cu are equalized in the
strong-correlation limit (U/t → ∞), so the occupancies
of the NOs become equal to one (spins summed). In other
words, the 1RDM is diagonal and equal to the identity
matrix (this limit resembles the H2 molecule in the dis-
sociation limit for a minimal basis).

For the 4 sites square Hubbard model the orbitals
adapted to the D4h symmetry also correspond to the
NOs, these are the non-degenerate

a1g =
1

2
(SA + SB + SC + SD) (15)
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Figure 3: Natural orbital occupancies (spins summed) in
terms of U/t values for the homogeneous 2 sites, 4 sites square,
and 6 sites hexagone Hubbard models. Solid lines are used
for non-degenerate results, whereas dashed lines correspond
to degenerate results.

the 2-fold degenerate eg orbitals

eg(1) =
1

2
(SA − SB − SC + SD) (16)

eg(2) =
1

2
(SA + SB − SC − SD) (17)

and the non-degenerate

b1g =
1

2
(SA − SB + SC − SD) (18)

According to the natural occupancies shown in the
middle of Fig. 3, both eg orbitals are half-occupied inde-
pendently of the interaction strength U , whereas orbitals
a1g and b1g play the role of the σg and σu orbitals in the 2
sites model. Regarding the orbitals adapted to the sym-
metry of the system in the case of the 6 sites hexagone
Hubbard model, which also correspond to the exact NOs,
these orbitals read as

a1g =
1√
6

(SA + SB + SC + SD + SE + SF ) (19)
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the 2-fold degenerate e2g orbitals

e2g(1) =
1√
12

(SA + 2SB + SC − SD − 2SE − SF ) (20)

e2g(2) =
1√
4

(SA − SC − SD + SF ) (21)

the 2-fold degenerate e1u orbitals

e1u(1) =
1√
4

(SA − SC + SD − SF ) (22)

e1u(2) =
1√
12

(SA − 2SB + SC + SD − 2SE + SF ) (23)

and the non-degenerate

b1u =
1√
6

(SA − SB + SC − SD + SE − SF ) (24)

The plot in the bottom of Fig. 3 shows the exact NO
occupancies. The behavior is similar to the one obtained
for the 2 sites model; at the weak correlation limit the
double occupancy of NOs is maximum, while all orbitals
become half-occupied in the limit U/t→∞.

B. NOF results for homogeneous Hubbard model

In this section, the Hubbard model is used as a strin-
gent validation tool for commonly used NOFAs, which
have been described in section IIA. Note that a spin-
restricted formalism has been employed for all calcula-
tions in order to hold

〈
S2
〉

= 0 and 〈Sz〉 = 0. Here, we
will use the adapted to symmetry basis set described in
the previous section for each model, which is conceptu-
ally similar to a molecular-like basis set. Interestingly,
the latter correspond to the NOs for the homogeneous
2 sites and 4 sites square systems, independently of the
interaction strength U/t and the NOFA.

Fig. 4 shows the differences obtained for E/t values
with respect to FCI (∆ [E/t] = ENOFA/t − EFCI/t )
for a wide range of U/t values. As we observe from the
left-top of Fig. 4 only MBB, PNOF5 and PNOF7 func-
tionals reproduce the exact FCI energy for the Hubbard
dimer (the result for MBB has been previously obtained
[26]). Apart from MBB, PNOF5 and PNOF7; CA and
CGA functionals show a good asymptotic behavior in the
U/t → ∞ limit. Conversely, neither restricted Hartree-
Fock (RHF) nor the Power functional recover the ex-
act energy or attain a good asymptotic behavior, though
RHF shows a good performance at the weak correlation
limit. (Results corresponding to some other NOFAs like
the Goedecker and Umrigar [7], Marques and Lathiotakis
[12], and Gritsenko, Pernal and Baerends [10] have not
been included due to showing catastrophic performance

even for the 2 sites case.) MBB and Power approxima-
tions are known to violate the N−representability P-, Q-,
and G-conditions [20]; as some of us have recently shown
[42], even for the two-electron case. E/t values corre-
sponding to the Power functional differ from the ones
reported by Kamil et al. (see Fig. 1 in reference [26]).
The difference between Kamil’s et al. energies and ours
is due to the fact that we stick to a spin restricted for-
malism for our optimizations of the orbitals, so the σg
and σu basis is not altered. Therefore, the orbitals for
α and β electrons were the same. Of course, the usage
of an unrestricted formalism improves the E/t values, as
Kamil et al. shown, but the price that we have to pay
using an unrestricted formalism is that 〈S2〉 6= 0 since
a mixture between the singlet and triplet solutions may
arise (also known as the lost of the exact nonmagnetic
character). In order to conserve 〈S2〉 = 0, we have to use
a restricted formalism and expect that the accuracy of
the NOFA produces the correct asymptotic behavior in
the U/t → ∞ limit (which is not the case of the Power
functional as illustrated in the left-top of Fig. 4).

The robustness of well-behaved functionals has been
tested beyond the dimer using a system with more de-
grees of freedom such as the half-filled 4 sites square Hub-
bard model. A similar problem, the H4 molecule, has
been recently studied in a NOFT context [55]. Contrary
to what happened for the 2 sites homogeneous Hubbard
model (where intra-pair nondynamic correlation effects
were dominant), there is correlation between pairs in the
4 sites square Hubbard model. Therefore, a good func-
tional for the 4 sites square homogeneous Hubbard model
should have a good description of nondynamic intra-pair
correlation effects but also a reasonable description of
inter-pair correlation. Similar to the results obtained for
the 2 sites Hubbard model, ENOFA/t − EFCI/t values
displayed in the left-middle of Fig. 4 obtained with RHF
and Power present bad asymptotic curves, so they do not
correspond to a solution of the problem. Conversely, all
other NOFAs show proper behavior for small and large
U/t values. PNOF7 is in outstanding agreement with
FCI for all correlation regimes, whereas CGA differs from
the exact curve in the interval 0 < U/t < 10. PNOF5,
MBB, and CA yield qualitatively correct curves, but their
corresponding energies are not as accurate as the ones ob-
tained with CGA and PNOF7. It must be emphasized
the importance of inter-pair correlation in order to de-
scribe properly this system, because the only difference
between PNOF5 and PNOF7 is exclusively due to the
addition of a term to account for inter-pair electron cor-
relation.

The half-filled 6 sites hexagone Hubbard model
presents an added complexity with respect to the 2 and
4 sites systems. This model has been previously used as
a benchmarking, e.g. for testing new approaches based
on coupled cluster methods like CCD0 in order to re-
trieve nondynamic correlation effects [23]. PNOF7 pro-
vides the most accurate total energies as illustrated in
the left-bottom of Fig. 4, followed closely by CGA. Both
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Figure 4: Differences in E/t values with respect to exact FCI obtained for the 1D homogeneous Hubbard model by using many
NOFAs.

functionals yield energies slightly below the FCI energy
beyond a certain U/t value, so even PNOF7, which is
built imposing the analytic necessary N -representability
conditions of the 2RDM [20, 41], is not stricly N -
representable in constrast to PNOF5. CA, MBB, and
PNOF5 show a correct behavior in the weak and strong
correlation limits, however they yield poor results in the
intermediate region.

Within the limitations imposed by the exact diagonal-
ization calculation, results for larger systems have been
obtained, namely, the 10, 12, and 14 sites homogeneous
Hubbard. Thus, results obtained for PNOF7, PNOF5,
CGA, and MBB approximations are shown in the right
hand plots of Fig. 4, whereas other NOFAs have been
omitted due to present bad performance for tiny sys-
tems. Contrary to the errors shown for smaller systems,
CGA yields larger errors going from 10 to 14 sites, as
MBB, and both of them show energies below the exact
one throughout all energy curve so the variational prin-
ciple is strongly violated. PNOF approximations do not
breakdown for large systems, and in spite of providing
an error larger than CGA in absolute terms near the
U/t ≈ 50, they approach closely from above to the exact
result for any correlation regime.

Let us focus now on the results obtained for the
double occupancy in the case of the 2, 4, and 6 sites
models. Since PNOF7 and CGA yield best energies,
dENOFA/dU − dEFCI/dU differences obtained employ-
ing these approximations are plotted in Fig. III B. Re-
sults obtained by using RHF and PNOF5 are also in-
cluded for comparison. Note that RHF gives a constant
value for each model independently of the site interac-
tion strength U . PNOF7 is the only functional able to
go parallel to the exact dE/dU according to Fig. III B,
whereas CGA shows large errors and discontinuities for
the 2 and 4 sites systems at small U/t values, which is
the region where it goes noticeably below the exact ener-
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Figure 5: Differences in dE/dU values with respect to exact
FCI obtained for many NOFAs.

gies and, as it is shown below, CGA gives wrong pinned
natural ONs. The independent pair model PNOF5 fails
significantly for systems beyond two particles, specially
in the 4-sites case due to the missing inter-pair correla-
tion. This functional shows a behavior similar to RHF
for small U values, what can be associated with the result
obtained for the natural ONs (see below).

NO occupancies obtained for FCI, CGA, PNOF5, and
PNOF7 in the 4 sites square and 6 sites hexagone Hub-
bard systems are plotted in Fig. 6. Results correspond-
ing to the Hubbard dimer have been omitted since MBB,
CGA, PNOF5 and PNOF7 reproduce the exact occupan-
cies. Regarding the result obtained for the 4 sites model,
only PNOF7 is able to provide precise ONs for any inter-
action strength, in contrast to the rest of NOFAs, which
show good asymptotic behavior in the U/t → ∞ limit
but tend to stick to fa1g = 2.0 (spins summed) occu-
pancies in the weak correlation region related to the bad
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tained for FCI, CGA, PNOF5, and PNOF7, in the 4-sites
square and 6-sites hexagone Hubbard systems. Solid lines
are used for non-degenerate occupancies, whereas dotted and
dashed-dotted lines correspond to degenerate occupancies.

performance obtained for dE/dU in the same correlation
region. CGA exhibit the largest occupancies pinned to
2.0 in the a1g orbital but the changes of b1g occupancy,
so it shows a wrong break of the unitary occupation of
the two-fold degenerate eg orbitals that remain fixed in
the exact solution. Pinned natural ONs are intimately
related with the wrong description of the double occu-
pancy. According to Eq. (11), a bad description of the
latter is due to an incorrect 2RDM needed to evaluate
〈Ψ|nµ,↑nµ,↓|Ψ〉 in the sites basis, so the double occupancy
of the sites computed from first derivative of the energy
also reflects the pitfalls in the 2RDM built from pinned
to 2.0 ONs.

The situation is completely different for the 6 sites
model, for which NOs corresponding to the ground state
for both PNOF5 and PNOF7 depend on each approxi-
mation, whereas the NOs are still those adapted to the
symmetry for the JK-only NOFAs. Thus, PNOF NOs
present 3-fold degeneracy and thereby are not related to
D6h point group symmetry, conversely, there is a double
degeneracy of the occupations associated with the e2g

and e1u orbitals for the rest of approximations. Similar
to the results obtained for the 4 sites Hubbard model,
CGA exhibits pinned occupancies at the weak correla-
tion regime and thereby is not able to give an accurate
description of the model. All of the NOFAs shown tend
to unitary ONs in the strong correlation limit.

The 3-fold degeneracy can be explained considering
that PNOFi {i = 5, 7} functionals lead generally to lo-
calization of the molecular orbitals in the NO represen-
tation. Nevertheless, there is an equivalent canonical rep-
resentation that can afford delocalized molecular orbitals
adapted to the symmetry of the system upon diagonal-
ization of the matrix of Lagrange multipliers (λ in Eq.
8) obtained from optimized NOs [56]. Thus, the NOs
obtained by using the JKL-only approximations, which
are plotted on the right side of Fig. 7, transform into the

Figure 7: Orbitals obtained by PNOF5 and PNOF7 for the
6-sites hexagone Hubbard model. Natural orbitals are shown
on the right side, while symmetry adapted orbitals (obtained
from diagonalization of matrix λ) are plotted in the left side.

symmetry-adapted orbitals shown on the left side of Fig.
7, so PNOFi {i = 5, 7} functionals are able to retrieve the
orbitals adapted to the symmetry of the system in the
canonical orbital representation [56]. The 3-fold degen-
eracy is only a matter of the nature of PNOFi {i = 5, 7}
functionals but does not introduce any artifacts in the
description of properties.

C. Inhomogeneous Hubbard model

MBB, PNOF5 and PNOF7 reproduce the exact results
for the energy, double occupancy of sites, and NO oc-
cupancies in the homogeneous 2 sites Hubbard model.
Nevertheless, the MBB functional does not really re-
cover the exact expression of Löwdin-Shull [39, 57–59] for
any 2-electron system (appart from some phases [58]),
but PNOFi (i = 5 and 7) functionals do. In order to
prove the deviation of MBB functional and that PNOFi
(i = 5 and 7) actually recover the exact 2-electron func-
tional, we include two additional tests for these approx-
imations. Results obtained by using the CGA approxi-
mation are also included to test whether the accuracy of
the method still holds. The tests proposed use a inho-
mogeneous 2 sites Hubbard model, so a non-zero on-site
energy is set such that it gives rise to a potential differ-
ence ∆v = vSB

− vSA
= 2v. Since the system is nev-

ermore symmetric the orbitals adapted to the symmetry
are no longer the NOs, so the latter may arise from opti-
mization of the energy functional E [{fi} , φi (x)] for each
NOFA. This model is being used also as benchmarking
[24], e.g. for the widely use Bethe ansatz local density
approximation (BALDA) developed by Capelle, K. and
collaborators [60–64] (which fails recovering the exact re-
sults). Then, we have compared the exact results with
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and PNOF approximations) energies for the inhomogeneous
2 sites Hubbard model for fixed values of U (U = 0, 1, 5 and
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Figure 9: Exact |∆n| vs ∆v and approximated values (ob-
tained with MBB, CGA and PNOF approximations) for the
inhomogeneous 2 sites Hubbard model for fixed values of U
(U = 0, 1, 5 and 10) and fixed t = 0.5.

the results obtained by using these NOFAs for the total
energy and for the difference between site occupancies
(i.e. |∆n| = |nSB

− nSA
| where nSX

is the occupancy of
site X).

In Fig. 8 we have plotted for a fixed value of t = 0.5
and four values of U the exact energies and the energies
obtained with MBB, CGA, PNOF5 and PNOF7. In gen-
eral, the ∆v = 0 limit recovers the homogeneous 2 sites
Hubbard model where all functionals produce exact en-
ergies for any U as we observe in Fig. 8. For U = 0 the
exact energy is given by E = −

√
(2t)2 + (∆v)2 where the

RHF energy is exact since there are no electron-electron
interactions for any ∆v, hence MBB, CGA, PNOF5 and
PNOF7 reproduce the exact Hartree-Fock energy. Nev-
ertheless, once the on-site interaction is turned on, MBB
and CGA do not longer produce exact results for the 2
sites inhomogeneous Hubbard model and only PNOF5
and PNOF7 yield exact energies.

Despite the energy obtained with MBB and CGA func-
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Figure 10: Exact and approximate energies for the 10 sites
Hubbard model including an Aubry-André on-site potential,
for many U/t values.

tionals for U = 1 (top right plot in Fig. 8) seems to be
still exact, a property such as the |∆n| reveals that MBB
and CGA results are no longer exact (see Fig. 9). In
Fig. 9 we have plotted |∆n| for t = 0.5 and the same
four values of U that we used in Fig 8. We observe
from the |∆n| test that MBB and CGA only yield ex-
act results in the non-interaction limit (U = 0), even
in the weak correlation region (U = 1) MBB and CGA
|∆n| values differ from the exact ones. A remarkable
result is that PNOF5 and PNOF7 have proven to re-
trieve the exact functional of Löwdin-Shull. Thus, en-
ergies and properties, like for example |∆n| vs ∆v or
the charge-transfer to Mott-insulator transitions (which
happens around ∆v ≈ U), obtained with PNOF5 and
PNOF7 in any correlation regime for the 2 sites inhomo-
geneous Hubbard model will be exact.

The on-site potential can be more interestingly modu-
lated if a system with more sites is employed. Hence, we
have used an oscillatory potential such as the introduced
in the Aubry-André model [49] to carry out calculations
on the 10 sites inhomogeneous Hubbard model. Note
that the Hamiltonian of the system is now given by Eq.
(10) with α = 1/10, V = 2.0 and δ = −2π/10. Accord-
ing to the results given in Fig. III C, and similar to the
results obtained for the inhomogeneous Hubbard dimer,
CGA and MBB approximations fail dramatically when
studying inhomogeneous systems except in the weak cor-
relation limit. PNOF5 and PNOF7 approximations not
only show good asymptotic behavior, but they lie close
to the exact curve for any correlation regime. There-
fore, systems with spatial inhomogeneities are also well-
described by PNOF approximations.

IV. CONCLUSION

The resurgence of interest in reduced density-matrix
functionals has brought a new class of theoretical meth-
ods that appeared recently in the literature [5–18]. These
approximations are given in terms of natural orbitals
(NOs) and occupation numbers (ONs), so they should
be referred to as Natural Orbital Functional approxima-
tions (NOFAs). It must be distinguish between NOFAs
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developed with simple assumptions about the hole func-
tion, e.g. MBB, Power, CA, or CGA approximations;
and NOFAs that are built imposing necessary known N -
representability conditions of the 2RDM, such as PNOF5
or PNOF7. In this paper the robustness of a set of NO-
FAs is put into test by using the homogeneous Hubbard
model with 2, 4, 6, 10, 12, and 14 sites, and the inhomo-
geneous model which includes nonzero on-site potential
for the Hubbard model with 2 and 10 sites. A simple
comparison between the exact FCI calculations and ap-
proximated results for varying interaction strengths U/t
is carried out.

Both PNOF5 and PNOF7 reproduce the exact Löwdin-
Shull functional for the 2 sites system, while the other
NOFAs fail for one or another test. Consistently for all
test cases studied in the homogeneous Hubbard model
PNOF7 results are in outstanding agreement with FCI.
Among JK-only NOFAs only CGA is able to provide
energies close to the exact ones, but fails significantly
for ONs of the NOs, and yield a discontinuous curve
for the double occupancy of the sites. The enhanced
accuracy of CGA is in fact due to the inclusion of a
proper particle-hole symmetry which is not the case for
some other JK-only NOFAs. Nevertheless, CGA violates
many fundamental properties such as N -representability
conditions or antisymmetry of the 2RDM [42]. Thus,
CGA fails dramatically for the inhomogeneous Hubbard
model, i.e when the on-site potential varies. PNOF7
presents particle-hole symmetry at the same time that
the fundamental properties of the 2RDM are conserved,
and thereby the inhomogeneous Hubbard is also well de-
scribed.

In view of the results obtained for the Hubbard model
with varying interaction strength, PNOF7 can describe
not only weakly correlated systems, but also problems
where strong correlation effects arise. This opens a
new avenue where PNOF7 becomes a tool for study-
ing many interesting applications which include con-

fined fermions, disorder and critical behavior in opti-
cal lattices, effects of spatial inhomogeneity in strongly
correlated systems, various critical phenomena in 1-D
chains, among others. Where up to now, appart from
the well-established variational wavefunction methods of
Gutzwiller and Baeriswyl, different perturbative expan-
sions, or Quantum Monte-Carlo methods, the widely
used BALDA approximation has lead, despite the pitfalls
obtained with it even in the simple 2 sites nonsymmetric
Hubbard model [24].

To conclude, the present study proves the importance
of developing functionals that satisfy at least with the
analytic necessary N -representability conditions of the
2RDM in order to obtain consistent results in systems
with either weak or strong electronic correlation. Besides,
concerning the improvement of PNOF7 over the indepen-
dent pair model PNOF5, it shows that a well-balanced
inter-pair correlation is crucial to account properly for
electron correlation effects. Our calculations shines light
on the insight, successes, and limits of current NOFT ap-
proaches, and may be useful for the development of new
natural orbital functional approximations.
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