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[1] We use a suite of global climate model simulations for the 20th century to assess the
contribution of solar forcing to the past trends in the global mean temperature. In
particular, we examine how robust different published methodologies are at detecting and
attributing solar-related climate change in the presence of intrinsic climate variability and
multiple forcings. We demonstrate that naive application of linear analytical methods
such as regression gives nonrobust results. We also demonstrate that the methodologies
used by Scafetta and West (2005, 2006a, 2006b, 2007, 2008) are not robust to these same
factors and that their error bars are significantly larger than reported. Our analysis
shows that the most likely contribution from solar forcing a global warming is 7 ± 1% for
the 20th century and is negligible for warming since 1980.
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1. Introduction

[2] The Intergovernmental Panel on Climate Change
(IPCC) report of 2007 assessed that the change in solar
radiative forcing (henceforth referred to as ‘‘solar forcing’’)
over the interval 1750–2005 was likely to be in the range
0.12–0.30Wm�2, compared to the total net anthropogenic
forcing 1.7Wm�2 (0.6–2.4Wm�2 [Solomon et al., 2007]).
However, detection and attribution of climate change related
to long-term solar variability remains a contentious subject,
with vastly different estimates appearing in the literature for
the 20th century and for more recent decades [e.g., Lean
and Rind, 2008; Bard and Delaygue, 2007; Lockwood and
Fröhlich, 2007; Lean, 2006; Scafetta and West, 2005,
2006a, 2006b, 2007, 2008; Douglass and Clader, 2002;
Benestad, 2002; Stott et al., 2001].
[3] In particular, Scafetta and West [2006a, henceforth

‘‘SW06a’’] claim that between 25 and 35% of the increase
in the global mean temperature hTi since 1980 can be
attributed changes in the solar activity. Note that the 25%
and 35% attribution in SW06a was not the range including
uncertainties, but their ‘‘best’’ estimates using either
ACRIM or PMOD composites of total solar irradiance
observations. The actual range including uncertainties
would have been much wider. These estimates strongly
contrast with independent work indicating that there is no
significant trend in the solar activity since 1952, implying
that there is no basis for any solar-induced trend since that
time [Benestad, 2005; Richardson et al., 2002; Lean, 2006;
Lockwood and Fröhlich, 2007].
[4] More recently, Scafetta and West [2007, 2008] pre-

sented new calculations from which they concluded that

solar forcing may have contributed with as much as 50% or
69% of the observed global temperature increase since
1900. Their research uses a so-called ‘‘phenomenological’’
method based on a fitting procedure to spectral data. Such
a large role for solar activity in the warming since 1900
would imply that attribution studies for that period might
need to be revisited, but doesn’t necessarily imply that
the effects of greenhouse gas changes in the future would
be affected since uncertainties in the total forcings (includ-
ing aerosol effects) preclude using the 20th century as a
strong constraint on overall climate sensitivity [Annan and
Hargreaves, 2006].
[5] Here we try to shed more light on the role of solar

forcing by investigating the solar signal in a set of global
climate model (GCM) simulations, and then comparing
these with corresponding analysis based on the observed
temperature record. A suite of 20th century simulations has
been performed with GISS ModelE GCM, driven with a full
range of estimated forcings over this period as well as with
each individual forcing separately [Schmidt et al., 2006;
Hansen et al., 2007]. This is a perfect test bed for the
various methods, since the ‘‘true’’ amount of solar contri-
bution in each experiment is already known and the amount
of interannual ‘‘weather noise’’ and confounding effects
(internal variability and response to other forcings) are close
to observed.
[6] The error bars on the attribution of the solar compo-

nent between 1750 and 2005 inferred from IPCC are around
7 to 18% of the total forcing, though since that also includes
a negative aerosol component, it might be clearer to say 4 to
11% of the forcings contributing to the warming (including
well-mixed greenhouse gases, ozone and black carbon). A
full detection and attribution analysis can take into account
possible underestimates of the solar forcing and potentially
a difference in sensitivity for different forcings (the ‘‘effi-
cacy’’ [IDAG, 2005]). The inferred error bars in the IPCC
report do not span the results claims by Scafetta and West,
and so there may be systematic issues with the different
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approaches that have not been sufficiently addressed. In
order to help resolve this question, we repeat the analyses of
Scafetta and West (hereafter SW) and compare them with a
suite of independent analyses, both over the observational
data and model-generated analogs to test their robustness.
The paper is divided into 2 parts, of which the first explores
the danger of applying linear statistical methods to data
from a complicated and chaotic system. The second part
repeats the analyses of SW to explore whether similar
problems can affect their results.

2. Data

[7] We focus on the forcings and responses of the climate
over the 20th century. The solar forcing in these analyses is
characterized by the total solar irradiance (henceforth
denoted by ‘‘S’’) and its spectral changes. We use the S
reconstruction from Lean [2000] initially for compatibility
to what was used in model experiments performed in 2004.
More recent estimates of solar forcing have a smaller long-
term trend [Foukal et al., 2006; Wang et al., 2005], so the
use of the older forcing would tend to increase the attribu-
tion to solar in our analyses. The impact of different
estimates is addressed in later sensitivity tests. The observed
global mean temperature was taken from NASA GISTEMP
product [Hansen et al., 2001, and updates], though the
results are insensitive to the choice of a different tempera-
ture data set (i.e., HadCRUT3v [Brohan et al., 2006]). Other
forcings including well-mixed greenhouse gases, aerosols,
volcanoes, land use and tropospheric and stratospheric
ozone for the 20th century are outlined by Hansen et al.
[2006].
[8] Ensemble simulations, each of 5 members, were

performed with GISS ER for experiments with different
sets of forcings: All natural and greenhouse gas concen-
trations (‘‘all’’), solar forcing only (‘‘solar’’), and green-
house gases only (‘‘GHG’’). The equilibrium climate
sensitivity of GISS ModelE is 2.7�C for a doubled atmo-
spheric concentration of CO2, whereas the transient re-
sponse at the time of CO2 doubling in a 1% increasing
CO2 experiment is 1.6�C [Solomon et al., 2007, Table 8.2].
Data sources and details about the data are listed in Tables 1
and 2.

3. Part 1: Multiple Linear Regressions

3.1. Methods

[9] We first analyze the annual and global mean temper-
ature (henceforth referred to as ‘‘hTi’’) together with various
estimates of changes in the external forcings. Here the
notation hxi for an arbitrary variable x (in this case temper-
ature) means the spatial mean of the variable x (such as the

global mean), whereas x will be used to represent the
temporal mean (over the entire time interval). Furthermore,
x̂ is used to represent the estimated value of x.
[10] The analysis involves several independent assess-

ments, including trend analysis, lagged correlation functions
(LCFs), and various regression exercises.
[11] The regression analysis [Lean and Rind, 2008; Camp

and Tung, 2007; Ingram, 2006] should in this context be
regarded as a naive approach that is prone to yielding biased
results, and we caution against using such techniques
without a critical interpretation. Here we use the regression
to demonstrate how spurious results may arise from colin-
earity and ‘‘noise’’ by examining the variability in the
coefficients, which has a direct relevance to the analysis
in part 2. The regression coefficients represent the weights
of a combination of the forcings that gives the closest
description of hTi (smallest errors), and thus provide the
best estimate of the magnitude of the response to the
different forcings in both experiments and observation. In
other words, the regression analysis in this case merely
provides a crude ‘‘yard stick’’ for the temperature response
to various forcings that enable a simple comparison between
model and observations.
[12] First, an ordinary linear regression (OLR) analysis is

employed to estimate the linear sensitivity of hTi to S and
the CO2 concentrations (r in ppm), ignoring all other
factors:

hT̂i ¼ a0 þ
0:7

4
a1S þ 5:35a2 � ln rð Þ þ h: ð1Þ

[13] The values of S were scaled by 0.7/4 to get the
equivalent forcing to account for the Earth’s geometry and
albedo (taken to be 0.3), and a scaling constant of 5.35 W/m2

was used for the logarithmic relationship with CO2 in order
to get equivalent units for the GHG forcings [Myhre et al.,
1998]. The last term in equation (1), h, describes variability
not related to solar forcing or GHGs (here referred to as
‘‘noise’’).
[14] The coefficients a1 and a2 can be associated with the

transient climate sensitivity and are expected to have similar
values.
[15] There are also a number of other forcings that may

influence the climate that were not included above. Thus to
explore whether neglected forcings could affect the results
[Lean and Rind, 2008] and to expand the analysis to include
longer time series, we compared hTiwith a full set of known
forcings used in the GISS model experiments [Hansen et
al., 2005]. The effects of these forcings on the temperature
were to a first-order described in equation (2):

hT̂i ¼ b0 þ b1FS þ b2FGHG þ b3FO3 þ b4FH2O þ b5Fland

þ b6Fsnow þ b7FAer þ b8FBC þ b9FRefl þ b10FAIE þ h; ð2Þ

Table 1. Data Sources

CO2 http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
Lean [2000] ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/

solar_variability/lean2000_irradiance.txt
Lean et al. [1995] ftp://ftp.ncdc.noaa.gov/pub/data/paleo/

contributions_by_author/lean1995/irradiance_data.txt
Obs. hTi http://data.giss.nasa.gov/gistemp/graphs/Fig.A2.txt
PMOD http://www.pmodwrc.ch/dat/composite_d19.asc
GISS forcings http://data.giss.nasa.gov/modelforce/RadF.txt

Table 2. Identifiers for the GCM Experiments With GISS ModelE

‘‘All forcings’’ E3Af8a, E3Af8b, E3Af8c, E3Af8d, E3Af8e
Well-mixed ‘‘GHG’’ E3GHGa, E3GHGb, E3GHGc, E3GHGd, E3GHGe
‘‘Solar’’ E3SOa, E3SOb, E3SOc, E3SOd, E3SOe
‘‘CTL’’ E3oM20
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where FS is the solar forcing at the top of the atmosphere
(FS = 0.7/4 � S), FGHG describes radiative forcing due to
well-mixed GHG concentrations, FO3 describes forcing due
to stratospheric ozone, FH2O represents stratospheric
moisture, FRefl reflective tropospheric aerosols, Fland land-
scape changes (land use), Fsnow snow albedo (black carbon
effect), FAer represents stratospheric aerosols (volcanoes),
FBC is black carbon, FAIE is aerosol indirect effect (e.g.,
through cloud drop modification), and h is a noise term.
These forcings are discussed further by Hansen et al.
[2005], and were the same as those used as boundary
conditions in the ‘‘all’’ simulations. This set of forcings
hence provided an opportunity to compare response of the
observed hTi with simulations where the response is
determined from the formulation of the physical processes
thought to be involved.
[16] The coefficients in equation (2) were estimated

through a stepwise multiple regression to avoid overfitting,
and the values of these are expected to reflect the climate
sensitivity of the model. Weak signals may not be detected
as the response may be swamped by internal variations, but
values that are physically unreasonable will identify these
cases.
[17] The stepwise screening used the Akaike information

criterion (AIC [Wilks, 1995, pp. 300–302]) to determine
which forcings to include, and a Durbin-Watson test was
applied to check the regression analysis to indicate the
potential presence of autocorrelation in the residuals.
[18] We do find nonzero autocorrelation in the residuals,

suggesting that the regression was not optimal and that the
significance levels and error bars derived by the regression
analysis are too conservative. However, the objective of the
regression in this case is to provide a means of comparing
the relative magnitude of the response to the different
forcings. We also want to explore how the coefficients for
the terms in equation (2) are affected by unrelated forcings,
to check how robust the regression analysis was with
respect to colinearity and the presence of internal chaotic
variations, and thus whether the regression analysis could
give misleading results due to unrelated signals or errors. If
the coefficients from the regression are spuriously inflated,
then unrelated forcings project onto the solutions, and that
has direct relevance for the studies discussed in part 2.

3.2. Results

3.2.1. Lag Correlation Analysis
[19] Figure 1 shows the LCF between the annual mean

value for hTi and Lean [2000] S, for the actual observations
(a) as well as the ‘‘all’’ (b), ‘‘GHG’’ (c) and ‘‘solar’’ (d)
ensemble means. The LCF for S and hTi for the observed
temperature suggested a response to solar forcing that is
strongest when hTi leads S by zero to one year. SW06a, on
the other hand, assumed 1.3 years, 2.5 years, and 4.3 years
lags for the 11-year, 22-year, and longer timescales respec-
tively, based on Wigley [1988], and combined these in a
single equation describing the temperature response.
[20] The corresponding LCF for ‘‘all’’ also indicates that

the hTi leads S by approximately one year, albeit with
similar but marginally lower correlation for zero lag. The
lag correlation peaks when hTi lags S by one year in the
case of the ‘‘solar’’ experiment, but the structure for
‘‘GHG’’ appears to phase shifted with hTi leading S by

2 years or lagging by 	8 years. As expected, the phase
relationship is not preserved when S was not included as a
boundary condition in the numerical experiments.
[21] It is interesting, however, to note the time lag

structures (i.e., the number of years between each lag
correlation peak) in the LCFs with an apparent periodicity
of 	9–10 years, rather than 	11 years, and that the
variations in hTi appear to take place before similar fluctua-
tions in S. These characteristics appear to be due to intrinsic
variations rather than a common 11-year cycle (Figure 1c),
since the solar cycle length has predominantly been longer
than 10 years over the period 1880–2000 [Benestad, 2005,
Figure 2]. These features may therefore suggest that the
lagged correlation picks up a ringing effect arising from two
slightly different frequencies. Such spurious phenomena
may also result in inflated regression coefficients. Never-
theless, the results from the lag correlation analysis suggest
that the solar signal is weak but present in both the
observations and the GCM ‘‘all’’ results.
3.2.2. Solar Forcing and CO2

[22] Figure 2 shows the time evolution of hTi of the ‘‘all’’
ensemble mean (blue thick line) and the corresponding
observations (red thick line). It is evident that the time
evolution for the two shows a high degree of coherence.
[23] We apply a regression analysis to compare the

relative strength of the linear response to the solar and
GHG forcings in the experiments and the observations, in
order to provide further model evaluation and compare the
influence of the different forcings. Due to the lagged
response identified by the LCFs, the regression was applied
to the forcings and hTi with no lag and with hTi lagging the
forcing by one year.
[24] The analysis with only S and CO2 concentrations as

inputs in equation (1) (1958–2000), yielded the coefficients
â1 = 0.48 ± 26 K/[Wm�2] for the observations and â1 =
0.49 ± 0.22 K/[Wm�2] for ‘‘all’’ (Table 3). Likewise, the
corresponding coefficients for ln(CO2) term are: â2 = 0.49 ±
0.06 K/[Wm�2] for the observations and â2 = 0.43 ±
0.05 K/[Wm�2] for ‘‘all’’ respectively. The results for zero
lag were similar (Table 3), and suggest â1 
 â2, hence that
the climate sensitivity is similar for both solar and GHG
forcing. Thus the transient climate sensitivity estimated for
this model suggests that:

DhTi
DFTOA


 0:45 K= Wm�2
� �

: ð3Þ

[25] Furthermore, the similarity in results for the obser-
vations and ‘‘all’’ indicates that the GCM simulation of the
response to these forcings is realistic. The regression pro-
vides a statistical model for hTi based on the historical
forcings that was capable of reproducing the past temper-
ature trends, both for the observations as well as for the
simulations (Figure 1; red and blue open symbols for
observations and ‘‘all’’ respectively).
[26] The regression was repeated for the GCM experi-

ments ‘‘solar’’ and ‘‘GHG’’. The results for ‘‘all’’ give larger
values for a1 than for both the ‘‘solar’’ and ‘‘GHG’’
simulations (Table 3). For the latter, the coefficient should
be zero but the estimated value was�0.11 ± 0.06 K/[Wm�2]
with the value of zero barely within the two-sigma estimate
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of the coefficient. This may suggest a nonlinear response to
the combined natural and GHG forcings, however, a
similar analysis for the residual (‘‘res’’ = ‘‘all’’ �
‘‘GHG’’) gave negative values for â2. The negative value
may have been a result of increased aerosol loading asso-
ciated with higher GHG forcing in the ‘‘all’’ simulations
(Figure 3).
[27] The results from such naive regression analyses may

also be misleading due to convoluted nonlinear response
associated with feedback processes, nonoptimal regression,
and colinearity [Lean and Rind, 2008]. To test how robust
the method was with respect to a number of arbitrary
choices, we repeated the regression analysis with only one
input variable by excluding the ln(r) term in equation (1)
(univariate regression). This time the values for a1 for the
observations and ‘‘GHG,’’ were substantially higher than â1

for the multiple regression (Table 3).
[28] Furthermore, there was less similarity between the

univariate â1 for the observations and ‘‘all’’ than in the

multiple regression, and the difference between corresponding
coefficients in the two regression exercises is because the two
forcings are not orthogonal. These results indicated that the
analysis only gave a consistent picture if all important forcings
were accounted for, which is also true for the analysis
presented in part 2 of this paper.
3.2.3. Full Set of Known Forcings
[29] The best fit derived from the stepwise multiple

regression (equation (2)) is shown as solid circular symbols
in Figure 2, and trends from actual observations were
compared with the ‘‘all’’ experiment ensemble mean. The
‘‘all’’ results provide a similar trend estimate as the obser-
vations, but the ‘‘solar’’ results indicate that little warming
over the 1960–2000 period can be attributed to changes in
the sun (Figure 2, gray curve). Table 4 shows the results for
the multiple regression analysis based on the ten GISS
forcings over the interval 1880–2002. The analysis was
also applied to the ensemble means of ‘‘GHG’’ and ‘‘solar’’
to provide a reference, as we have a priori knowledge about

Figure 1. LCFs for temperature and S. (a) Observed, (b) ‘‘all,’’ (c) ‘‘GHG,’’ (d) ‘‘solar’’.
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the role of the forcings in these experiments. The analysis for
a 1-year lag gave small values for b1 with both the ‘‘solar’’
simulations (0.08 ± 0.05 K/[Wm�2]; not shown) and obser-
vations (0 K/[Wm�2]; excluded by the stepwise screening),
but a higher value with ‘‘all’’ (0.40 ± 0.16 K/[Wm�2]). The
latter value suggests a climate sensitivity that is of similar
magnitude to that derived from the regression analysis based
on just solar forcing and CO2 (equation (3)). However, the
GCM seems to be somewhat more sensitive to changes in
FS than the observations and less sensitive to FGHG.
[30] The results for the ensemble means are not directly

comparable to the observations, since the historical meas-
urements are the equivalent a single realization, i.e., an
arbitrary component of internal chaotic variations super-
imposed on the forced response. Thus whereas the ensemble
means will emphasize the common signal due to the forcing,
the regression results with the observed data should really
be compared with the range derived from the different
ensemble members. For the ‘‘all’’ experiment, the regres-

sion coefficients associated with FS and FGHG are b̂1 =
0.36–0.61 (±	0.19) K/[Wm�2] and b̂2 = 0.26–0.70
(±	0.19) K/[Wm�2] respectively. The results for the obser-
vations, on the other hand, give b̂1 = 0 K/[Wm�2] and b̂2 =
0.91 ± 0.19 K/[Wm�2]. In this case, the b2 estimate for the
observations implies unrealistically high climate sensitivity,
due to the exclusion of FS in the stepwise screening. It is
possible that errors in FS may have wrongly caused solar
forcing to fail the screening test.

[31] The value for b2 of the ‘‘GHG’’ runs (0.26 ± 0.03 K/
[Wm�2]; not shown) is lower than those obtained for the
‘‘all’’ ensemble mean (0.57 ± 0.17 K/[Wm�2]) and individ-
ual members (0.26–0.70 K/[Wm�2]), but the estimates for
b2 are associated with small error bars. The solar terms, on
the other hand, are associated with relatively large error
estimates, implying a larger sensitivity to the internal
variability.

Figure 2. Observed hTi and ‘‘all’’ (thick curves), together with predictions based on equation (1) (open
circles) and linear multiple regression models in equation (2) using all known forcings as input (solid
circles).

Table 3. Regression Coefficients Obtained Through Regression

Analyses (Units in K/[Wm�2])a

Univariate Solar
Coefficient â1

Multiple Solar
Coefficient â1 GHG Coefficient â2

Lag 0
Obs 0.69 ± 0.40 (0.09) 0.44 ± 0.25 (0.09) 0.51 ± 0.06 (0.00)
All 0.21 ± 0.02 (0.00) 0.39 ± 0.22 (0.08) 0.48 ± 0.05 (0.00)
Solar 0.05 ± 0.00 (0.00) 0.15 ± 0.05 (0.01) �0.01 ± 0.01 (0.50)
Res �0.10 ± 0.02 (0.00) 0.50 ± 0.24 (0.04) �0.31 ± 0.06 (0.00)
GHG 0.31 ± 0.03 (0.00) �0.11 ± 0.06 (0.07) 0.79 ± 0.01 (0.00)

Lag 1 year
Obs 0.72 ± 0.39 (0.07) 0.48 ± 0.26 (0.07) 0.49 ± 0.06 (0.00)
All 0.21 ± 0.02 (0.00) 0.49 ± 0.22 (0.03) 0.43 ± 0.05 (0.00)
Solar 0.05 ± 0.00 (0.00) 0.07 ± 0.06 (0.25) �0.01 ± 0.01 (0.71)
Res �0.10 ± 0.02 (0.00) 0.66 ± 0.23 (0.01) �0.36 ± 0.06 (0.00)
GHG 0.31 ± 0.03 (0.00) �0.16 ± 0.06 (0.01) 0.79 ± 0.01 (0.00)

aThe rows presents the results for the ensemble means for the ‘‘all,’’
‘‘solar,’’ ‘‘residual,’’ and ‘‘GHG,’’ respectively. The numbers in the
parentheses are the p values (assuming independent data) associated with
the regression results.
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Figure 3
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[32] The estimates for many of the weak forcings give
high values that are difficult to explain in terms of physics
(b3–b10 in Table 4). Thus the results suggest that it is
difficult to detect any response to these in hTi. These results
also highlight the danger of attributing signal to forcings
with similar characteristics, which is also the shortcomings
of the studies discussed in part 2.
[33] Figure 3a shows predictions with the regression

model described by equation (2), where the effect of GHGs
have been removed by setting their concentration FGHG !
FGHG while including the time dependency for the other
forcings (all the coefficients b0–b10 being the same as
previously). Hence the regression model is the same as
before, but by including or excluding different forcings, the
effects from the different forcings are compared. The
statistical model predictions suggested a cooling if the effect
of GHGs was removed (thin black or blue dashed curves); a
similar result to that seen in the IPCC report [Hegerl et al.,
2007, Figure 9.5]. The pronounced downturn in the pre-
dicted values with FGHG ! FGHG after 1940 (thin black and
blue dashed lines in Figure 3a) can be explained by
exaggerated values for b3–b10 and increasing negative
forcings.

[34] If the solar contribution is ignored by setting FS !
FS , this makes little difference compared to the full multiple
regression (Figure 3b, thin black and blue dashed). The
solar contribution to the most recent warming was estimated
by setting all of the inputs in the multiple regression models
(equation (2)) to their mean value, except for the solar
forcing, using these together with the regression models,
and applying a simple linear trend analysis to the predicted
temperatures. This gave a zero slope for the observations
over the interval 1900–2000, and 11.5 ± 9.7% of the
observed warming for ‘‘all’’ (not shown).
[35] Figure 3 also shows the corresponding analysis done

for ‘‘GHG’’ (thin red dashed) and ‘‘solar’’ (thin green
dashed). None of these experiments, however, reproduced
the observed time evolution for the temperature. The
‘‘GHG’’ analysis exhibited an upward trend between
1880–2000 in Figure 3a (red dashed line), despite FGHG !
FGHG, but the ‘‘solar’’ analysis shows a weak upward
evolution in Figure 3b too (green dashed line), even when
the effect of FS is excluded in the regression analysis. This
sensitivity to unrelated forcings can be explained by a similar
trend in both.

Figure 3. Simulations (solid lines) and predictions (dashed lines) of global mean temperature, the latter based on multiple
regression (equation (2)) masking out either FS or FGHG. (a) Predictions based on multiple regression against GISS forcings
used in the all experiments (thick dashed), together with predictions based on the multiple regression model (thin dashed)
where changes in the concentration of the greenhouse gases have been excluded (FGHG ! FGHG). (b) Same as in Figure 3a,
but the influence of TSI has been excluded (FS ! FS) instead of greenhouse gases. Note, ‘‘Obs. mean (Fs)’’ is hidden
behind another line as b1 = 0 in this case.

Table 4. Regression Coefficients Obtained Through Multiple Regression on the GISS Forcings Estimates (Units in K/[Wm�2])a

Lag = 0 year, Obs. Lag = 1 year, Obs.

Const (b0) �0.18 ± 0.034*** �0.22 ± 0.03***
Solar (b1)
GHG (b2) 0.95 ± 0.18*** 0.91 ± 0.19***
Ozone (b3) 7.45 ± 3.26* 8.10 ± 3.35*
Vapor (b4)
Land (b5) �21.14 ± 6.44** �18.12 ± 6.60**
Snow (b6) �14.44 ± 7.43. �18.79 ± 7.62*
Aerosol (b7) 0.04 ± 0.02*
Black C (b8) 11.58 ± 4.16** 13.18 ± 4.27**
Reflect. (b9) 4.72 ± 1.83* 5.35 ± 1.88**
Indirect (b10) 4.37 ± 1.77* 3.26 ± 1.79.

RSE: 0.09 on 115 df MRS: 0.85,
ARS: 0.84. F: 79.84 on 8 and 115 df,
p < 2.2e�16.

RSE: 0.09 on 115 df MRS: 0.83,
ARS: 0.82. F: 79.78 on 7 and 115 df,
p < 2.2e�16

Lag = 0 year, ‘‘all’’ Lag = 1 year, ‘‘all’’

Const (b0) �0.14 ± 0.02*** �0.26 ± 0.03***
Solar (b1) 0.34 ± 0.11** 0.40 ± 0.16*
GHG (b2) 0.30 ± 0.08*** 0.57 ± 0.17***
Ozone (b3) �2.11 ± 0.69** �2.50 ± 1.06*
Vapor (b4) �29.64 ± 17.39.
Land (b5) �2.22 ± 0.82**
Snow (b6) �6.06 ± 1.44*** �12.86 ± 3.40***
Aerosol (b7) 0.12 ± 0.01***
Black C (b8)
Reflect. (b9) �0.80 ± 0.45. �1.67 ± 1.01
Indirect (b10) �2.03 ± 0.43***

RSE: 0.05 on 116 df MRS: 0.94,
ARS: 0.94. F: 265.5 on 7 and 116 df,
p < 2.2e�16

RSE: 0.07 on 115 df MRS: 0.86,
ARS: 0.85. F: 100.5 on 7 and 115 df,
p < 2.2e�16

aThe rows present the results for the ensemble means for the ‘‘all’’ and the observed temperatures. Signif. codes: ‘‘***’’ 0.001, ‘‘**’’ 0.01, ‘‘*’’ 0.05, ‘‘.’’
0.1, ‘‘ ’’ 1. Abbreviations: RSE, residual standard error; MRS, multiple residual squared; ARS, adjusted R2; df, degrees of freedom; F, F statistic; p, p value.
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[36] If only FS and FGHG from the GISS forcings are used
in equation (2) and the other terms ignored in the regression
model calibration, then the analysis returned similar results
for the observations and ‘‘all’’ (over the interval 1880–2002
and 1-year lag, b̂1 = 0.54 ± 15 K/[Wm�2] and b̂2 = 0.19 ±
0.02 K/[Wm�2] for the observations whereas ‘‘all’’ gave
0.63 ± 0.12 K/[Wm�2] and 0.14 ± 0.01 K/[Wm�2] respec-
tively). Now the estimate for the climate sensitivity was
greater for the solar forcing, and the results contrasted with
b̂1 = 0 K/[Wm�2] for the observations with the full set of
forcings. The regression results were similar when the same
test was repeated for the 1958–2000 interval.
[37] These results differed with the results derived using

equation (1), as excluding all but solar and GHG from the
GISS set of forcings gave stronger weight to the solar
component. Thus colinearity, forcing differences, and unre-
lated internal chaotic variations always have an impact on
identifying the response to forcings, whereas the choice of
interval plays only a minor role in the differences in these
regression results. The trend analysis of the regression
models can be compared with the trends in the ensemble
means of the GCM experiments. The 1900–2000 change in
the ensemble mean for ‘‘solar’’ was estimated to be 0.1 ±
0.01K (here expressed as ± 1 standard deviation) compared
to 0.57 ± 0.04K in the observations, 0.40 ± 0.03K in ‘‘all,’’
and 0.79 ± 0.03K in ‘‘GHG’’. Thus the solar forcing
contributed with 12.61 ± 9.31% of the forcing compared
to greenhouse gases, but could account of 24.63 ± 10.7% of
the change in ‘‘all,’’ where additional forcings lower the net
effect (which would also reduce the impact of solar activ-
ity). Over the 1980–2003 period, GISTEMP suggested a
global warming of 0.39 ± 0.07K whereas ‘‘all’’ suggested
0.22 ± 0.06K, ‘‘GHG’’ 0.49 ± 0.02K, and ‘‘solar’’ 0.02 ±
0.02K. Thus the GCM simulations suggest that the solar
trend over the last period does not differ from zero by more
than one standard deviation.

4. Part 2: Scafetta and West Methodologies

4.1. Methods

[38] In this section, we analyze the GCM experiments
with so-called ‘‘phenomenological’’ methods proposed by
Scafetta and West [2006a, 2006b; hereafter SW06a and
SW06b]. We repeated the analysis in SW06a and SW06b,
and tested the sensitivity of the conclusions to a number of
arbitrary choices. The methods of SW06a and SW06b were
used (1) with the results from the GCM experiments with
known forcings, (2) in sensitivity tests with different values
in the model parameters or with different solar forcing
proxies, (3) in Monte Carlo simulations, and (4) with
spectral analysis.
[39] We reproduced the SW06a study, where changes in S

were estimated by merging the estimates from Lean et al.
[1995] and satellite measurements from Fröhlich and Lean
[1998]. Here we choose to focus on the PMOD composite
and examine SW06a’s least extreme claim of a 25%
temperature increase (since 1980) due to solar influences,
rather than the ACRIM composite-based claim of a 35%
attribution [Willson and Mordvinov, 2003]. The conclusions
about the appropriateness of the methods does not hinge on
the choice of PMOD (there is some contention about
whether the PMOD is the most appropriate TSI representa-

tion, as Lockwood and Fröhlich [2008] conclude that the
PMOD is more realistic than ACRIM, while Scafetta and
Willson [2009] claim that the ACRIM composite is more
realistic. However, the latter paper did not provide any
detailed description of the method used to derive their
results, and while they derived a positive minima trend
for their composite, it is not clear how a positive minima
trend could arise from a combination of the reconstruction
of Krivova et al. [2007] and PMOD, when none of these by
themselves contained such a trend), however, we used the
following formula proposed by SW06a, relating hTi to the
changes in the S for different timescales:

hT̂suni tð Þ ¼ ZeqhS4 tð Þi þ ZS4 S4 t � tS4ð Þ � S4 tð Þ
� �

þ Z22yD4 t � t4ð Þ þ Z11yD3 t � t3ð Þ: ð4Þ

[40] S represents the total solar irradiance rather than the
solar forcing at the top of the atmosphere (S = 4/0.7 � FS).
The coefficients tS4(= 4.3 years), t4(= 2.5 years) and t3(=
1.3 years) describe a time-lagged response, supposedly
representing the effect of thermal inertia associated with
the world oceans. The variables S4(t), D4(t) and D3(t) are
defined as the (wavelet) frequency band components of S,
where S4(t) represented the long timescales (>22 years),
whereas D4 and D3 describe the timescales 14.7–29.3 years
(median 22yr) and 7.3–14.7 years (median 11yr) respec-
tively. We use the ‘‘mra’’ function from the waveslim
package for R to compute the wavelet components (‘‘D =
mra(y, wf = ‘‘la8’’, J = floor(log(length(y),2)), method =
‘‘modwt’’)’’, taking D4(t) = D$D8 and D3(t) = D$D7.),
which should be similar to the algorithm used in the original
analysis.
[41] Our analysis differs from that of SW06a by comput-

ing the linear trend as opposed to taking differences
between filtered values at different times. Furthermore, the
lagged response was estimated by employing cubic splines
for interpolating the value at t + t, where t was taken as lag
in years (a fractional number). It is not clear how the lagged
values were estimated by Scafetta and West [2006a], and the
present reanalysis may differ slightly with their analysis in
this respect.
[42] The coefficients Z11y (referred to as ‘‘Z7 = A7,temp/

A7sun = 0.11 ± 0.02 K/[Wm�2]’’ in the work of Scafetta
and West [2005], hereafter ‘‘SW05’’) and Z22y (or ‘‘Z8 =
A8,temp/A8sun = 0.17 ± 0.06 K/[Wm�2]’’ in SW05) were
estimated as the ratio of amplitudes A using ‘‘f(t) = 1

2
A

sin(2 p t),’’ but SW05 did not disclose how the frequency
w and phase information were accounted for. It is
important to note that the wavelet components may not
necessary be well represented by a sine function of a
specific frequency. However, they used an expression A =
2

ffiffiffiffiffiffiffi
2ð Þ

p
s, where s2 = 1

T

R T

0
[f(t) � f tð Þ]2 dt, so it is

possible that they merely used the ratio Atemp/Asun =
(2

ffiffiffiffiffiffiffi
2ð Þ

p
stemp)/(2

ffiffiffiffiffiffiffi
2ð Þ

p
ssun) = stemp/ssun. They estimated

A8,temp = 0.06 ± 0.01K and A8,sun = 0.35 ± 0.10W/m2.
[43] We nevertheless follow their procedure, and compare

the ratio of the standard deviations of the corresponding
wavelet components for the solar forcing and temperature
respectively. In addition, the ratio was estimated more
explicitly based on the value of A (we refer to this as A0),
however, a robust conclusion should not be sensitive to
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these choices. The latter involved the identification of a
signal within a prescribed frequency band (using linear
regression to estimate the coefficients):

D̂4 ¼ âc cos 2pwtð Þ þ âs sin 2pwtð Þ; ð5Þ

where w was chosen to represent a similar frequency as the
filtered values (t = 22 years), from which amplitude was
given by the regression coefficients:

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2
c þ â2

s

q
: ð6Þ

The estimation of the amplitude (equations (5) and (6)) was
repeated for D3 (t = 11 years).
[44] The robustness of the SW06a method was tested

against different realizations of intrinsic variability using
individual ensemble members of the GCM experiments.
Additionally, we calculated the null distribution for the
amplitudes computed from two sets of Monte Carlo experi-
ments, which in this case consisted of generating series
using a random generator (1) to produce white noise with a
normal distribution, and (2) generating random walk series
where the steps were modeled as white noise. For both of
these simulations, the standard deviation and mean of the
series were set to same values as those for the observed
data.
[45] The surrogate series in the Monte Carlo simulations

were computed either (1) by taking the differences between
two low-pass filtered (moving average) with two different
window lengths corresponding to the timescales chosen in
SW06a, or (2) subject to the same wavelet decomposition
described above.
[46] The method in SW06b was examined by applying it

to a 2000-yearlong control integration (CTL) of the GISS
model with constant forcings, where we know a priori that
hTi varied independently of S. This simulation was used to
test the crude method to estimate transfer functions, based
on fractions of differences D hTi/D S, where x was taken to
be the mean value over a given century, and the D- operator
was the difference between different centuries.
[47] A simple trend analysis was applied to the results,

based on a linear regression between the temperature and
time, providing a crude estimate of the magnitude of the
long-term changes.

4.2. Results

[48] Figure 4 shows the wavelet components and the
sinusoidal best fit for t = 22 years. It is evident that the
frequency band of the wavelet component is too broad to be
well modeled with a simple expression like ‘‘1

2
A sin(2pt),’’

but using the expressions A = 2
ffiffiffiffiffiffiffi
2ð Þ

p
s, we derived A8,sun =

0.32 Wm�2 and A8,temp = 0.18 K for 1900–2000 (A8,sun =
0.32 K Wm�2 and A8,temp = 0.16 K over the interval 1880–
2002). SW05, on the other hand, got A8,sun = 0.35 ±
0.10 Wm�2 and A8,temp = 0.06 ± 0.01 K, but they based
their analysis on the ACRIM S [Willson and Mordvinov,
2003] over the much shorter 1980–2002 period and used a
global surface temperature from the Climate Research Unit,
2005 (they did not provide any reference to the data nor did
they specify whether they used the combined land-sea data
(HadCRUT) or land-only temperatures (CRUTEM).) These

amplitudes are marked as shaded area around the original
series in Figure 4. The middle panel also shows a compar-
ison between the 0.06K amplitude (hatched inner area)
compared with 0.18K (lighter solid shading), and our
estimate (0.17K) is 2

ffiffiffiffiffiffiffi
2ð Þ

p
greater than their number when

we use HADCRUT3v instead of GISTEMP.
[49] For t = 11 years, our analysis gives A7,sun =

0.45 Wm�2 and A7,temp = 0.14 K (not shown), as opposed
to A7,sun = 0.92 ± 0.05 Wm�2 and A7,temp = 0.10 ± 0.01 K in
SW05. We also obtain A7,temp = 0.14 (not shown) if we
repeat the analysis with HADCRUT3v data rather than
GISTEMP.
[50] A change of 2 � 0.92 Wm�2 between solar mini-

mum and maximum implies a change in S of 1.84 Wm�2

which amounts to 0.13% of S, and is greater than the
	0.08% difference between the peak and minimum of solar
cycle 21 reported by Willson [1997] and the differences
between TSI levels of the solar maxima and minima seen in
this study (	1.2 Wm�2; Figure 6). Furthermore, the differ-
ence in S between solar maximum and minimum cannot be
explained in terms of a single wavelet component, but
involves a superposition of several modes (not shown).
[51] We estimate Z22y to be 0.55 K/[Wm�2] using

GISTEMP when taking the ratio of the standard deviations,
or 0.58 K/[Wm�2] using equations (5) and (6) (Figure 4),
both of which were substantially higher than the value used
in SW06a. Table 5 shows corresponding values derived
when the GISTEMP hTi were replaced by global mean
temperatures from the GCM runs. This way, we could test
their method to see if it was able to discriminate between
different forcings in data for which we knew a priori
whether the solar forcing played a role or not. We used
all the available data for these calculations as well as a
common interval for S and hTi (1880–2000) and 1900–
2000.
[52] In general, there are variations in the values for the

coefficients, depending on the method from which they
were estimated and on the time interval chosen. There is
also a scatter between the different ensemble members
within one ensemble, suggesting that the estimates are
affected by intrinsic internal variations.
[53] The ‘‘GHG’’ experiments also give high values for

Z22y, even though it is known a priori that the results from
these experiments are not influenced by the solar forcing.
The value estimated for Z22y using the ratio sT/sS was
calculated to be 0.61 K/[Wm�2] (0.31 K/[Wm�2] using
regression based on equations (5) and (6)) for ‘‘all,’’ 0.82 K/
[Wm�2] (0.66 K/[Wm�2]) for ‘‘GHG,’’ and 0.11 K/[Wm�2]
(0.16 K/[Wm�2]) for the ‘‘solar’’ experiment (Table 5).
However, the individual ensemble members gave values
ranging between 0.79 and 0.86 K/[Wm�2] (0.51–0.78 K/
[Wm�2]) for the ‘‘GHG’’ experiment, whereas the results
for ‘‘solar’’ were more similar to 0.17 K/[Wm�2] from
SW06a: 0.14–0.21 K/[Wm�2] (0.14–0.40 K/[Wm�2]).
[54] For Z11y, the corresponding results were 0.38 K/

[Wm�2] (0.14 K/[Wm�2]), 0.35 K/[Wm�2] (0.13 K/
[Wm�2]), and 0.05 K/[Wm�2] (0.03 K/[Wm�2]) respec-
tively (Table 5). These results suggest that the power seen in
the bands chosen in SW05 and SW06a is influenced by
long-term changes in FGHG, and demonstrate that spurious
results can easily occur. This is the same reason why the
LCF results suggested intervals shorter than 11 years

D14101 BENESTAD AND SCHMIDT: SOLAR TRENDS AND GLOBAL WARMING

9 of 18

D14101



between each correlation peak, and the regression coeffi-
cients were sensitive to the number of inputs in the
regression analysis. Note that the values for Z11y and
Z22y tend to be lower for the ensemble mean than for
each realization of the ‘‘solar’’ runs, supporting the idea
that there is a contamination from the internal variability
(Table 5).
[55] We examined the SW06a method further by carrying

out calculations based on equation (4). Three independent
tests were carried out: (1) using an updated reconstruction
of S [Lean, 2000]; (2) a recalculation of the Scafetta and
West [2006a] curve for the PMOD composite with different
values for the coefficients; and (3) repeating (2) using a
different adjustment for matching the PMOD composite and
the historic S reconstruction.
[56] Figure 5 shows the observed hTi together with values

for hT̂ suni (t) for a number of different inputs for S and
different choices for the adjustment between the observed
irradiance and reconstructions prior to 1979. The curve
reproducing SW06a (thin dark dashed) was almost identical
to the curve in their Figure 3b. Any minor differences may

be due to different ways of calculating lagged values and
different length of series.
[57] The analysis using Lean [2000] rather than Scafetta

and West’s own solar proxy as input is shown as thick black
lines. The thin dark short-dashed line shows results based
on SW06a, but with a variation of their solar proxy using
the mean value over the 17 common years of Lean et al.
[1995] and PMOD to match the mean levels of these two
data sets, rather than for just 1980. The curves were not
critically sensitive to this choice of adjustment, but using the
more recent Lean [2000] reconstruction gives substantially
different results.
[58] Figure 6 shows different estimates for S compared to

SW06a. There were some significant differences between
the Lean [2000] reconstruction and the SW06a S recon-
struction in the 1970s, during which the values from Lean et
al. [1995] and the SW06a S were substantially lower than
the more recent estimates [Lean, 2000]. In other words, the
large difference between 1980 and the end of the time series
reported by SW06a were due to lower values over one solar

Figure 4. The (top) D8 components of S (pink) and (center) hTi (blue) and best fit to equation (5) with
period t = 22 years (thin dashed lines). The original curves are shown in gray. (bottom) Standardized
wavelet components D8 for S (pink) and hTi (blue) together with D5–D7 for hTi. The shaded area around
the best fit 5th-order polynomial trend fits [Benestad, 2003] shows the magnitude of (top) A8,sun and
(center) A8,temp relative to the time series. The hatched area in the center marks A8,temp = 0.06 K.
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cycle as well as a result of stitching together different types
of data.
[59] Table 7 and Figure 5 provide trend estimates based

on equation (4) and different S estimates, and all these are
substantially less than the 25% suggested by SW06a: �7%
to +10% of the total temperature increase since 1980,

depending on the S used as input in equation (4). These
estimates can be compared with the results from the
multiple regression models in part 1, which suggest that S
can explain an increase in hTi over the 20th century by
	0.1K, but no trend since 1980 (Figure 3).
[60] We also explore the sensitivity of the results to the

choice of the parameters used in their model (equation (4)).
Figure 7 shows the results of a sensitivity analysis carried
out for different values for the parameters Z11y and Z22y in
equation (4) (Table 6). The range of values for ZS4 in this
sensitivity study was taken to reflect the spread of the null
distributions of Z22y derived from the Monte Carlo simu-
lations (Figure 8).
[61] The character of the solutions is sensitive to the value

for ZS4 (thin dashed lines; highlighted in bold in Table 6),
for which Scafetta and West took to be similar to Z22y, and
less sensitive to the other coefficients. There is no known
physical reason for why the climate sensitivity on secular
scales should be lower than for 22-year scales, so it is fair to
assume that ZS4  Z22y. Note that the estimates for Z22y for
the observations, shown in Figure 4 (0.55 K/[Wm�2] or
0.58 K/[Wm�2] for 1900–2000, depending on approach;
corresponding values for 1885–2000 were 0.49 K/[Wm�2]
or 0.52 K/[Wm�2] respectively), would yield unrealistic
results with equation (4), as this these would imply values
for ZS4 that are greater than the highest value highlighted in
bold in Table 6 and predictions above the upper curve in
Figure 7. In other words, these high values imply unrealis-
tically high climate sensitivity.
[62] A spectral analysis (not shown) suggests that the

11-year cycles were more prominent in the solutions for
equation (4) than in the observations, which had a stronger
red noise character. The different spectral characteristics
suggest that the estimation of coefficients Z11y and Z22y, by
taking the relative magnitudes between two band-pass-
filtered signals, does not identify a true connection between
the two. These results therefore indicate that estimating Z11y
and Z22y through the SW06a method is prone to noise
contamination and produces spurious results, which is also
implied from the LCF and regression analyses in part 1 of
this study.
[63] A set of Monte Carlo simulations demonstrates that

the ratio between the magnitudes of two similarly band-pass
filtered random signals has a distribution with a consider-
able spread. These distributions are derived using the Monte
Carlo simulations to mimic a random walk process or white
noise in order to generate pairs of synthetic random data
with similar mean and standard deviations to S and hTi
respectively. The pairs of time series are, by construction,
unrelated. Hence this exercise provides a null distribution
and a way to examine the degree of uncertainty associated
with such the method employed in SW05 and SW06a. The
particular set up used here is arbitrary, but the conclusions
are not sensitive to these choices. The ratios of standard
deviations of the pairs of data were estimated for the band-
pass-filtered series using wavelet analysis (Figure 8a) and
white noise (Figure 8b), and by using a moving average to
produce band-passed series from white noise (Figure 8c). In
all these cases, a significant scatter is seen and values 0.11–
0.21 used in SW06a are well within the null distribution.
[64] We applied the SW06b method to the long GISS

CTL simulation (Figure 9) and found that this approach

Table 5. Values for Z22y and Z11y Estimated for the Different

GCM Experiments Using Ratios of Standard Deviations (Left) the

Ordinary Linear Regression (OLR) Approach of Equations (5)–(6)

(Right)a

All data (S: 1610–2000; hTi:1880–2003)
Z11y ‘‘All’’

‘‘GHG’’ ‘‘Solar’’
‘‘All’’

‘‘GHG’’ ‘‘Solar’’Emember sT/sS OLR

1 0.41 0.33 0.10 0.12 0.14 0.05
2 0.44 0.44 0.15 0.15 0.17 0.05
3 0.36 0.38 0.10 0.12 0.12 0.05
4 0.44 0.41 0.13 0.18 0.11 0.03
5 0.38 0.36 0.08 0.14 0.12 0.03
Emean 0.38 0.38 0.05 0.14 0.13 0.03

Z22y

‘‘All’’
‘‘GHG’’ ‘‘Solar’’

‘‘All’’
‘‘GHG’’ ‘‘Solar’’sT/sS OLR

1 0.61 0.79 0.14 0.08 0.68 0.14
2 0.75 0.82 0.21 0.57 0.78 0.21
3 0.57 0.86 0.14 0.54 0.70 0.40
4 0.54 0.82 0.14 0.24 0.51 0.19
5 0.64 0.82 0.14 0.36 0.73 0.21
Emean 0.61 0.82 0.11 0.31 0.66 0.16

1880–2000
Z11y ‘‘All’’

‘‘GHG’’ ‘‘Solar’’
‘‘All’’

‘‘GHG’’ ‘‘Solar’’Emember sT/sS OLR

1 0.31 0.31 0.10 0.03 0.09 0.06
2 0.36 0.40 0.14 0.08 0.14 0.05
3 0.29 0.36 0.10 0.05 0.09 0.04
4 0.33 0.38 0.10 0.11 0.10 0.00
5 0.29 0.33 0.07 0.06 0.08 0.03
Emean 0.31 0.36 0.05 0.06 0.10 0.03

Z22y

‘‘All’’
‘‘GHG’’ ‘‘Solar’’

‘‘All’’
‘‘GHG’’ ‘‘Solar’’sT/sS OLR

1 0.50 0.73 0.13 0.44 0.97 0.10
2 0.67 0.70 0.20 0.50 1.01 0.23
3 0.50 0.80 0.13 0.32 1.11 0.36
4 0.47 0.73 0.13 0.17 0.90 0.19
5 0.57 0.70 0.13 0.54 1.05 0.23
Emean 0.53 0.73 0.10 0.36 1.00 0.17

1900–2000
Z11y ‘‘All’’

‘‘GHG’’ ‘‘Solar’’
‘‘All’’

‘‘GHG’’ ‘‘Solar’’Emember sT/sS OLR

1 0.28 0.38 0.10 0.10 0.17 0.06
2 0.36 0.41 0.13 0.14 0.25 0.09
3 0.33 0.44 0.10 0.13 0.20 0.06
4 0.36 0.44 0.10 0.16 0.22 0.04
5 0.28 0.38 0.10 0.08 0.14 0.06
Emean 0.31 0.41 0.05 0.12 0.19 0.04

Z22y

‘‘All’’
‘‘GHG’’ ‘‘Solar’’

‘‘All’’
‘‘GHG’’ ‘‘Solar’’sT/sS OLR

1 0.45 0.76 0.15 0.18 0.66 0.07
2 0.42 0.70 0.15 0.23 0.69 0.09
3 0.42 0.82 0.12 0.13 0.85 0.28
4 0.42 0.70 0.21 0.21 0.58 0.20
5 0.42 0.64 0.09 0.06 0.68 0.12
Emean 0.42 0.70 0.09 0.06 0.68 0.13

aHere, ‘‘Emember’’ refers to ensemble member, and ‘‘Emean’’ refers to
results derived using the ensemble mean rather than individual runs. The
coefficients have been estimated by taking all the available years, the
maximum common interval (1880–2000), and the 1900–2000 period, and
the large variations give an indication of how a little robust the method is.
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produced values of similar magnitude as the lower limits of
the values reported in SW06b (ZS,1 = 0.17 ± 0.02 � 0.52 ±
0.075 K/[Wm�2], ZS,2 = 0.22 ± 0.02 � 0.61 ± 0.065 K/
[Wm�2], and ZS = 0.20 ± 0.03 � 0.57 ± 0.075 K/[Wm�2],
depending on the choice of solar reconstruction), even when
we knew a priori that the hTi was not influenced by S.
Figure 8d shows a histogram of values derived from CTL,
and simple Monte Carlo simulations (not shown) further
suggest a wide range for the null distribution for D hTi/D S.
The SW06b approach is also ill-posed when D S ! 0 and
jD hTij > 0, and thus cannot be a generalizable approach.

5. Discussion

[65] The evaluation of the GISS ModelE hTi simulations,
the LCF with solar forcing, and regression studies, suggest
that the model approximately reproduces the observed
statistical relationships between the global mean tempera-
ture and the solar and GHG forcings.
[66] The regression results reported above are only robust

for strong forcings, and the values for a and b were
consistent for ‘‘all’’ at 1-year lag (Tables 3 and 4), but the
value for the solar forcing coefficient (b1) was set to zero
for the observations as the stepwise screening excluded
solar forcings as input for the multiple regression.
[67] One explanation for the ‘‘all’’ experiment yielding a

stronger solar-induced trend in hTi than seen in the obser-
vations may be that the GCM was too sensitive to solar

forcing. However, another explanation may be that errors in
the forcing estimate was exactly correct for the model (by
construction), but may not be for the real world. Further-
more, the intrinsic variability also influences the estimates.
[68] We know a priori that the solar forcing coefficient

(a1) should be zero for the ‘‘GHG’’ ensemble, but the
univariate regression produced â1 = 0.31 ± 0.03 K/
[Wm�2]. Negative values for a1 were obtained for ‘‘resid-
ual’’ in the univariate analysis, however, the multiple
regression against S and lnjrj returned positive values.
The value for the greenhouse gas coefficient (a2) obtained
from the ‘‘GHG’’ ensemble was substantially greater than
for ‘‘all’’ and ‘‘obs’’ (Table 3), most likely due to the
colinear negative aerosol forcing.
[69] Both FS and FGHG contain trends, and the different

forcing components are not mutually orthogonal. Different
ensemble members representing the same forced response
but different realizations of intrinsic variability give differ-
ent values for the solar and GHG regression coefficients.
The linear regression analysis in part 1 was, however,
unable to provide an exact description of the nonlinear
response of the complicated climate system, due to the
presence of colinearity in the forcings, internal chaotic
variations, slow nonlinear response that may produce a
more complete response after some time, or ‘‘leakage’’
between the different components [Leroy, 1998].
[70] Additionally, there may also be larger uncertainties

in the forcing before 1958, which could affect the results for

Figure 5. Observed hTi (5-year moving average and annual mean) and various solutions for Tsun using
the SW06a method and their S, Lean [2000], and a S splice similar to the one in SW06a but using all 17
overlapping years for adjusting the Lean et al. [1995] S rather than just 1980. Linear trends after 1980 are
shown as thin dashed lines (the values are shown in Table 7). Gray region corresponds to the axis ranges
used in SW06a. The anomalies are departures from the 1900 value (using the 5-year moving average
curve).
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the observations (though not for the numerical experi-
ments). Benestad [2005] suggested that the sunspot record
may have lower quality before 1900, as there was a
dramatic change in the solar cycle length characteristics at
around the start of the 20th century. Over the interval 1958–
2000, the time series for S (little trend) and lnjrj were less
colinear than over the 1880–2002 period. This may imply
that the estimates based on equation (1) and the forcings
over 1958–2000 may provide more reliable estimates of the
sensitivity.
[71] The coefficient for greenhouse gases from the all-

forcings multiple regression is b̂2 = 0.91 ± 0.19 K/(Wm�2),
suggesting a climate sensitivity that is substantially greater
than the equilibrium value reported for this model (0.67 K/
(Wm�2)). Regression coefficients of â 	0.45 K/(Wm�2),
on the other hand, imply a transient climate sensitivity that
is more consistent with the 1.5–1.6�C reported by Solomon
et al. [2007].
[72] The values for solar and greenhouse gas forcing

coefficients (a1 and a2) may in principle differ if they
involve different feedback processes or if other mechanisms
are involved. One example could be galactic cosmic rays
(GCR) affecting low cloud cover [Carslaw et al., 2002;
Dickinson, 1975; Ney, 1959] or solar UV modifying the
planetary wave propagation and heat distribution [Shindell
et al., 2001]. In these cases the forcing values might be
underestimated, hence leading to an apparently larger sen-
sitivity. However, the regression coefficients were similar
for both GCM and observations, and the fact that these

additional mechanisms were not present in these GISS
ModelE simulations, suggest that processes such as GCR
are not important, in agreement with Sloan and Wolfendale
[2008] and Kristjánsson et al. [2008].
[73] It should be noted that the p values in Table 3 were

estimated assuming independent and identically distributed
(iid) data, but the presence of autocorrelation lowers the true
degrees of freedom. Thus the true p values should be higher
than those shown in the tables, and the true error bars
should be wider. Furthermore, the regression analysis
employed here does not yield robust results when additional
forcing terms are included. Similarly, the fact that the
regression did not pass the Durbin-Watson test for uncor-
related residuals, suggests that the regression was subopti-
mal. However, the purpose of using regression analysis here
was simply to provide a means for comparing different data
sets and studying their robustness.
[74] These results reveal the dangers in attributing char-

acteristics of hTi to similar features in the forcings, and
highlight the difficulties associated with detection and
attribution more generally. We have also shown through
the regression exercises that neglecting important forcings
may inflate the climate sensitivity estimates since colinear-
ity between different forcings interferes with the estimation
of the sensitivity to each other. This is the main reason why
the results produced by the methods in SW06a and SW06b
are likely misleading. The key lessons are that detection and
attribution has to include all factors (not just a single one)

Figure 6. The reproduced SW06a S (dark gray) were similar to the curve in SW06a [Figure 2b]. The
standard deviation of S for each year is shown as error bars for the satellite era, and a large scatter in S
implies more uncertain estimates of the mean. Also shown are more recent estimates of S ([Lean, 2000]
thick black).
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and ensure that results are robust to different realizations of
the intrinsic variability.
[75] There is an additional issue with the methodology of

SW06a and that is the value they assume for the coefficient
Zeq This was taken as the ratio 288 K/(1365 Wm�2) = 0.21
K/[Wm�2]. The choice of this value determines the long-
term sensitivity of the climate and is in fact the chief
unknown; it can’t simply be assumed. Taking this value
as the absolute temperature divided by the total irradiance
implies that climate change is linear from absolute zero to
the present-day temperature, an assumption that is nowhere
supported, and to our mind, extremely unlikely. Further-
more, the estimate Zeq = 0.21 K/[Wm�2] implies a climate
sensitivity to the TOA radiative forcing of 4.5�C, and the
climate sensitivities implied from SW06b were even higher.
The adoption of such a high value as used by SW06a and
SW06b, has a huge effect on their results.
[76] Variations in Zeq can affect the long-term mean

temperature, but not the trends directly. However, the value
was used as an upper limit for the values for ZS4, which had
a direct bearing on the estimated trends. Spectral analyses
and Monte Carlo experiments indicate that the strategy used
in SW06a for estimating Z11y and Z22y is prone to noise
contamination, thus producing possibly spurious and biased
results. The values for Z22y and Z11y had been taken as the
ratios between band-pass filtered values of global mean
temperature and estimates for S representative for 22-year
and 11-year timescales respectively, despite there being no
direct correspondence between the two types of filtered
curves [SW05, Figure 4]. In our emulation, we were not

able to get exactly the same ratio of amplitudes, due to lack
of robustness of the SW06a method and insufficient meth-
ods description. If our estimates for Z11y and Z22y were used
as parameters in equation (4), we would get unrealistic
values for hT̂ suni (t). Furthermore, the method fails to take
the phase information into account, and a weak amplitude in
the 22-year solar cycle was likely responsible for the
spuriously high value for Z22y. The lack of prominent
spectral peaks in the power spectrum of observations and
the presence of a spectral peak in the reconstructions also
suggest that the values for the transfer coefficients were
spuriously inflated.

Table 6. List Over Sensitivity Calculations With Equation (4)

Using Different Values for the Parameters

Zeq Zs4 Z22y Z11y ts4 Z4 Z3

0.21 0.17 0.17 0.11 4.3 2.5 1.3
0.10 0.17 0.17 0.11 4.3 2.5 1.3
0.00 0.17 0.17 0.11 4.3 2.5 1.3
0.21 0.05 0.17 0.11 4.3 2.5 1.3
0.21 0.30 0.17 0.11 4.3 2.5 1.3
0.21 0.17 0.05 0.11 4.3 2.5 1.3
0.21 0.17 0.30 0.11 4.3 2.5 1.3
0.21 0.17 0.17 0.05 4.3 2.5 1.3
0.21 0.17 0.17 0.30 4.3 2.5 1.3
0.21 0.17 0.17 0.11 4.3 2.5 0.5
0.21 0.17 0.17 0.11 4.3 2.5 3
0.21 0.17 0.17 0.11 4.3 0.5 1.3
0.21 0.17 0.17 0.11 4.3 10 1.3
0.21 0.17 0.17 0.11 4.3 2.5 1.3

Figure 7. Sensitivity of the solution for hT̂ suni(t) to different values for the parameters listed in Table 6
and for different ways of combining PMOD and Lean et al. [1995] and Lean [2000] S.
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[77] We showed above through Monte Carlo simulations
that the ratio between the magnitudes of two similarly band-
pass filtered random signals has a distribution with a
considerable spread. The conclusions of SW06a therefore
hinge on the assumption that none of the variance in the two
frequency bands of the temperature was caused by other
factors other than solar. This assumption is unlikely to hold.
[78] In an analogous way, the analysis of SW06b was

based on the assumption that preindustrial variations in hTi
could entirely be associated with changes in S. This will
give an unrealistically high climate sensitivity, since other
forcings, particularly volcanic, may also have played a
significant role [Shindell et al., 2004]. Additionally, the
use of only one temperature reconstruction (for the northern

hemispheric rather than global mean), underestimates the
structural uncertainties in these estimates.
[79] There are additional issues concerning the analyses

of Scafetta and West, even if the problematic parameter
estimation for their models are ignored. One important
difference between the solutions for hT̂ suni(t) here and in
SW06a can be traced to low S values in the work of Lean et
al. [1995] reconstruction between 1970 and 1980. Using the
more recent Lean [2000] S there is no trend since 1980.
Furthermore, they spliced the ACRIM Total Solar Irradi-
ance (TSI) product to a TSI reconstruction based on
reconstruction by Lean et al. [1995] or Wang et al.
[2005] in such a way that the average reconstructed TSI
value over 1980–1991 corresponded with the ACRIM
mean for the same period. However, the different series

Figure 8. Null distribution for the SW06a and SW06b transfer functions for two cases wherein it is
known a priori that there is no common signal. (a–c) Monte Carlo simulation of ratios of s: (a) random
walk and wavelet components [SW06a], (b) white noise and wavelet components [SW06a], and (c) band-
pass filtered with moving average filters [SW06a]. (d) The SW06b ratios derived using hTi from CTL
rather than actual observations.
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had different trends over the same period, and stitching
together data in such a simple fashion is likely to
introduce nonhomogeneity.
[80] A discrepancy between hT̂ suni (t) and the global

mean temperature is clearly apparent in Figure 5, where
the temperature exhibits a local maximum around 1940,
whereas hT̂ suni (t) peaks around 1960 for all solutions.
Similar characteristics can also be seen in the figures of
SW06a, although they were not discussed.
[81] It has been also established that this 1890–1930

‘‘early century warming’’ was limited to the Arctic
[Johannessen et al., 2004] whereas the more recent
warming has involved the whole latitudinal range. Thus
a convincing solar warming hypothesis explaining both
the warming periods would need to account for these
different geographical fingerprints.
[82] Furthermore, SW06a did not carry out a proper trend

analysis for estimating the increase in hTi, but took the
difference between instantaneous values of filtered data
which also leads to a further inflation of their estimates.
The purported low-end estimate of a 25% contribution from
a solar origin since 1980 was not supported, as a proper
trend analysis using a realistic reference level yields 8–10%
when based on their strategy (Figure 5 and Table 7). If the
Lean [2000] S were used instead of Lean et al. [1995], then
the trend would be negative, thus more in line with Lean
[2006].
[83] Scafetta and West proposed two mechanisms which

may amplify the response to solar variations: (1) a purported

effect of GCR on low cloud cover and hence the planetary
albedo, or (2) changes in the solar UV radiation and a
dynamic response to stratospheric warming [Shindell et al.,
2001; Haigh, 2003]. However, there is lack of a long-term
trend in the GCR [Lockwood and Fröhlich, 2007; Benestad,
2005; Richardson et al., 2002]. A more recent study
suggests that GCR do not have an important effect on the
cloud formation [Sloan and Wolfendale, 2008].

6. Conclusions

[84] We analyzed the GISS ModelE hTi in terms of its
trend, LCF against solar forcing, and a set of regression
analyses, and found that it gave a realistic reproduction of
the observed global mean temperature. In particular, GISS
ModelE simulates a response to solar and GHG forcings
roughly consistent with the observations, but the exact

Figure 9. Comparison between centennial mean values for both S and GISS CTL. These time series are
used to estimate the histogram in Figure 8d, showing rations derived from different combinations of the
differences between the 100-year mean values.

Table 7. Trend Estimates (the Proportion of the Total Warming

Explained) and Standard Deviation Derived Using a Linear Model

Between Tsun and Year Since 1980, Expressed in the Percentage of

Similar Trend Analysis for the GISS Temperaturea

Lean [2000] SW06 ‘‘All years’’

Estimate �7% 10% 8%
Stdv ±1.3% ±1.3% ±1.3%

aThe trend estimates are shown as thin dashed lines in Figure 5, and ‘‘all
years’’ refer to TSI reconstruction where the mean level for all overlapping
years have been used to adjust the PMOD data rather than just 1980.
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contribution from each forcing is difficult to pinpoint using
statistical methods alone. Linear regression does not give
unbiased and robust results if one tries to attribute the effect
of different forcings on the temperature. The lack of
robustness can also give rise to inflated values for the
coefficients used in the statistical models of Scafetta and
West. Nevertheless, variations in S appear to have a weak
effect on the global mean temperature, but cannot explain
the global warming since 1980.
[85] We also repeated the analyses of Scafetta and West,

together with a series of sensitivity tests to some of their
arbitrary choices. These tests showed clearly that the pub-
lished uncertainty in their estimates was greatly underesti-
mated. In particular, the arbitrary assumption of their
equilibrium sensitivity (Zeq) has a dramatic impact on their
attribution of 20th century changes to solar forcing. We next
showed that their methodologies were not able to robustly
retrieve the solar contribution in GCM experiments where
the answer was known a priori. In fact, we found that the
presence of internal variability and additional forcings
greatly confounded their method’s accuracy. Even in much
simpler cases, examined here using Monte Carlo simula-
tions of synthetic climate time series, we found that their
diagnostics had a very wide range in the absence of a true
signal, so cannot be considered robust metrics of a solar-
induced contribution.
[86] We conclude that as with the simpler linear regres-

sion methodologies described earlier, the SW methodology
is highly sensitive to the internal variability of the climate
system and the presence of colinear trends in different
forcings. Given the concomitant increases in greenhouse
gas forcings over the 20th century, this implies that their
published attributions greatly exaggerate the role of solar
variations in global mean temperature trends.
[87] Claims that a substantial fraction of post 1980 trends

can be attributed to solar variations are therefore without
solid foundation, and solar-related trends over the last
century are unlikely to have been bigger than 0.1 to 0.2�C.
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