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Abstract
A harmonious coloring of a k-uniform hypergraph H is a rainbow vertex coloring such
that each k-set of colors appears on at most one edge. A rainbow coloring of H is achro-
matic if each k-set of colors appears on at least one edge. The harmonious number (resp.
achromatic number) number of H , denoted by h(H) (resp. ψ(H)) is the minimum (resp.
maximum) possible number of colors in a harmonious (resp. achromatic) coloring of H .
A class H of hypergraphs is fragmentable if for every H ∈ H, H can be fragmented to
components of a bounded size by removing a „small” fraction of vertices.

We show that for every fragmentable class H of bounded degree hypergraphs, for every
ϵ > 0 and for every hypergraph H ∈ H with m ≥ m0(H, ϵ) edges we have h(H) ≤
(1 + ϵ) k

√
k!m and ψ(H) ≥ (1− ϵ) k

√
k!m.

As corollaries, we answer a question posed by Blackburn (concerning the maximum
length of packing t-subset sequences of constant radius) and derive an asymptotically tight
bound on the minimum number of colors in a vertex-distinguishing edge coloring of cubic
planar graphs (which is a step towards confirming a conjecture of Burris and Schelp).
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1 Introduction

A coloring of vertices of a k-uniform hypergraph H is rainbow if all vertices of
every edge receive different colors. We say that such a coloring covers a k-subset
A of the set of colors if there is an edge in H whose vertices receive colors from
A. A harmonious coloring of a k-uniform hypergraph H is a rainbow coloring
(of vertices of H) that covers each k-subset of the set of colors at most once. The
harmonious number of H , denoted h(H), is the least possible number of colors in
such a coloring.

Similarly, an achromatic coloring of H is a rainbow coloring which covers
every k-subset of the set of colors. The achromatic number of H , denoted by
ψ(H), is the largest possible number of colors in an achromatic coloring of H (or
0 if there is no achromatic coloring of H).

One can easily observe a kind of duality between achromatic and harmonious
colorings. However, it is worth mentioning that although harmonious coloring of a
k-uniform hypergraph always exists, there are k-uniform hypergraphs (with k ≥ 3)
that do not have an achromatic coloring. For example the hypergraph whose edges
are all k-element subsets of an n-element set of vertices that contain a fixed vertex
has no achromatic coloring, if 2 < k < n.

Both these chromatic parameters have been well-studied for graphs – see the
survey of Edwards [5] for a summary of results in this area. From our perspective,
the most important achievements related to the topic of this paper are theorems of
Edwards and Cairine [4] and Edwards [6], which state that if G is a sufficiently
large graph with bounded degree, then both ψ(G) and h(G) stay within a factor of
(1± ϵ) from

√
2m, where m is the number of edges of G.

Let us observe that harmonious and achromatic colorings of hypergraphs are
closely related to some other combinatorial problems. For example existence of a
harmonious coloring of the hypergraph tKk

q (where tKk
q is the disjoint union of t =(

n
k

)
/
(
q
k

)
copies of the complete k-uniform hypergraph on q vertices) into n colors

is equivalent to existence of a Steiner system S(k, q, n) – a hard combinatorial
problem recently solved for fixed k and q and sufficiently large n by Keevash [10].
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2 New results

A class of hypergraphs H is fragmentable if for every ϵ > 0 there is an integer
c = c(ϵ) such that if H ∈ H is a hypergraph with n non-isolated vertices then there
is a set S of vertices with |S| ≤ ϵn such that each component of H −S has at most
c vertices. Intuitively, a hypergraph is fragmentable if it can be split to fragments of
size bounded by a constant by removing a small portion of vertices. Fragmentable
classes of graphs were introduced and first studied by Edwards and McDiarmid [7].
Our definition is a natural extension of this concept to hypergraphs.

We show asympotically tight bounds on achromatic and harmonious numbers
of uniform fragmentable hypergraphs of bounded degree.

Theorem 2.1 Let H be a fragmentable class of k-uniform hypergraphs of bounded
maximum degree. For every ϵ > 0 there exists some m0 such that if H ∈ H has
m ≥ m0 edges, then h(H) ≤ (1 + ϵ) k

√
k!m.

Theorem 2.2 Let H be a fragmentable class of k-uniform hypergraphs of bounded
maximum degree. For every ϵ > 0 there exists some m0 such that if H ∈ H has
m ≥ m0 edges, then ψ(H) ≥ (1− ϵ) k

√
k!m.

The complementary bounds can be proved easily: if we have a harmonious
(resp. achromatic) coloring of a k-uniform hypergraph with m edges that uses x
colors, then

(
x
k

)
must be greater (resp. smaller) than m. Let Qk,m be the unique real

root of the equation
(
x
k

)
= x(x−1)...(x−k+1)

k!
= m which is not smaller than k. Then

h(H) ≥ Qk,m and ψ(H) ≤ Qk,m. Since k is a constant, Qk,m ∼ k
√
k!m.

It was shown by Edwards and McDiarmid [7] that many important classes of
graphs are fragmentable. This includes the class of planar graphs (and more gen-
erally of graphs of bounded genus) and the class of rectangular lattices of bounded
dimension. Actually, it follows from the work of Alon, Seymour and Thomas [1]
that any class of graphs with a fixed excluded minor is fragmentable.

Several classes of hypergraphs obtained from fragmentable graphs by some
natural constructions are fragmentable. As an example consider the class of dual
hypergraphs of graphs with a bounded maximum degree. For a graph G, by the
dual hypergraph H(G) we mean the hypegraph whose vertices are edges of G and
for every vertex v in G the set of edges incident with v is an edge in H(G). We
observe that if G is a fragmentable class of graphs of maximum degree at most d
then the class of hypergraphs dual to the graphs in G is fragmentable too.

Clique hypergraphs (i.e. hypergraphs whose edges are maximal cliques of
graphs) and neighborhood hypergraphs (i.e. hypergraphs whose edges are neigh-
borhoods of vertices in graphs) obtained from graphs of a fragmentable class pro-



duce next examples of fragmentable classes of hypergraphs.
Face hypergraphs provide still another class of fragmentable hypergraphs. Given

an embedding of a graph G = (V,E) on a surface S, its face hypergraph F (G) is
the hypergraph on V such that every face of G generates an edge in F (G) consist-
ing of the vertices incident to the face. This concept was introduced in [11] and its
chromatic properties were studied by several authors (e.g. see [9]). As classes of
graphs with a bounded genus are fragmentable, one can easily verify that for any
fixed surface S of a finite genus and any class G of embeddings of graphs on S, the
class of face hypergraphs of graphs in G is fragmentable. Therefore our Theorems
2.1 and 2.2 imply some theorems on colorings of graphs in G. For example, let G be
the set of plane triangulations, i.e. embeddings of graphs on a plane such that each
face is formed by a triangle. In this case Theorem 2.1 gives the following result.

Theorem 2.3 For any plane triangulation with at most
(
n
3

)
faces and maximum

degree bounded by a constant there is a rainbow coloring of vertices with n(1 +
o(1)) colors such that the triples of colors assigned to vertices of each face are
pairwise different.

2.1 An application: vertex distinguishing edge coloring

Let G be a graph. We say that an edge coloring of G is vertex-distinguishing if
for any two distinct vertices u, v the set of colors assigned to edges incident with
u differs from the set of colors assigned to edges incident with v (that is, we can
distinguish vertices by the sets of colors that they see). We say that an edge coloring
of G is strong if it is proper and vertex-distiguishing. Clearly, every graph with no
isolated vertices and edges has a strong coloring. The minimum possible number
of colors in a strong coloring of G is denoted by χ′

s(G). A conjecture of Burris and
Schelp [3] states that for every graph G that admits a strong coloring, the value of
χ′
s(G) differs from its obvious lower bound by at most 1. To see what this lower

bound is note that if G has nd vertices of degree d, then
(
χ′
s(G)
d

)
≥ nd. Define j(G)

to be the minimum integer such that
(
j(G)
d

)
≥ nd for all d. Clearly χ′

s(G) ≥ j(G)
and the conjecture states that χ′

s(G) ≤ j(G) + 1 (see [3, Conjecture 1]). Despite a
lot of work in this area, the problem is far from being solved.

Our Theorem 2.1 immediately implies some asymptotic version of the conjec-
ture of Burris and Schelp for cubic planar graphs (which makes an improvement
over known general upper bounds which are tight only up to a multiplicative con-
stant; see [3, Theorem 11]). The same argument works for any other class of frag-
mentable, d-regular graphs (where d is a constant).

Theorem 2.4 For every ϵ > 0 there is some n0 such that if G is a cubic planar



graph on n > n0 vertices, then χ′
s(G) ≤ (1 + ϵ)j(G).

2.2 An application: packing t-subset sequences

Let A be a finite alphabet of order a and let t and r be positive integers such that
t ≤ r + 1. Consider a sequence s = s1s2 . . . sn over A. We say that s is a
packing t-subset sequence of radius r if every t-subset of A appears at most once
as a subset of {si, si+1, . . . , si+r} – or, more formally, if for every t-subset X of
A there exists at most one increasing sequence i1, . . . , it such that it − i1 ≤ r and
{si1 , si2 , . . . , sit} = X . Let Ft,r(a) denote the length of the longest such sequence.

Blackburn [2] asks for a good asymptotic lower bound on Ft,r(a) (where t and
r are fixed and the size of the alphabet goes to infinity). A quick application of our
Theorem 2.1 gives an answer to this question.

Theorem 2.5 Let r and t ≤ r + 1 be fixed positive integers. For every ϵ > 0 there
is a0 such that, for a ≥ a0,

(1− ϵ)

(
a
t

)(
r

t−1

) ≤ Ft,r(a) <

(
a
t

)(
r

t−1

) + r. (1)

3 Overview of the used methods

Before more general results appeared, Edwards and McDiarmid [7] proved the up-
per bound of (1 + ϵ)

√
2m on the harmonious number of fragmentable graphs of

bounded degree (a corresponding lower bound on the achromatic number of those
graphs follows as a corollary). The general idea of their proof is the following.
Given a graph G, remove a ”small portion” of its vertices to obtain a graph G′

whose components are pairwise isomorphic and have order bounded by a constant
(since G belongs to a fragmentable class of graphs, G′ retains almost all edges
of G). Next use Wilson’s theorem [12] to find a harmonious coloring of G′ – a
partition of Kh into edge-disjoint copies of components of G′ corresponds to a har-
monious coloring of G′ with h colors. Finally, color the remaining vertices of G
using a small number of new colors.

This proof does not work for hypergraphs for two reasons. First of them is that
there is no hypergraph version of Wilson’s theorem. The second one is more subtle
and lies in the final step of the reasoning presented above when we need to color ϵn
vertices with new colors. A direct adaptation of the method used in [7] may give a
coloring with Θ(m1− 1

k ) new colors which is too many, for k > 2, as to prove our
theorem we are allowed to use at most O( k

√
m) colors.



We can overcome the first difficulty if we replace the use of Wilson’s theorem
with a theorem of Frankl and Rödl [8]. This idea was inspired by a paper by Black-
burn [2], who used a similar approach to deal with a different, but related problem.
The covering variant of the Frankl-Rödl theorem is sufficient to prove our Theorem
2.2.

However, we are not able to overcome the second obstacle using the Frankl-
Rödl theorem as a black box. Fortunately, the proof of this theorem (which relies
on so-called Rödl nibble method) can be modified to suit our needs.
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