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Abstract

An L(2, 1)-labeling of a graph is a mapping from its vertex set into nonnegative
integers such that the labels assigned to adjacent vertices di�er by at least 2,
and labels assigned to vertices of distance 2 are di�erent. The span of such
a labeling is the maximum label used, and the L(2, 1)-span of a graph is the
minimum possible span of its L(2, 1)-labelings. We show how to compute the
L(2, 1)-span of a connected graph in time O∗(2.6488n). Previously published
exact exponential time algorithms were gradually improving the base of the
exponential function from 4 to the so far best known 3, with 3 itself seemingly
having been the Holy Grail for quite a while. As concerns special graph classes,
we are able to solve the problem in time O∗(2.5944n) for claw-free graphs, and
in time O∗(2n−r(2 + n

r )r) for graphs having a dominating set of size r.
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1. Introduction

An L(2, 1)-labeling of a graph is a mapping from its vertex set into non-
negative integers such that the labels assigned to adjacent vertices di�er by at
least 2, and labels assigned to vertices of distance 2 are di�erent. The span
of such a labeling is the maximum label used and the minimum possible span
of an L(2, 1)-labeling of a graph G is denoted by λ(G). This variant of graph
coloring is recently receiving considerable attention (see [4, 10, 14, 29] for some
surveys on the problem and its generalizations). It is motivated by the Fre-
quency Assignment Problem whose task is to assign frequencies to transmitters
in a broadcasting network while avoiding undesired interference. In the L(2, 1)-
labeling model the vertices of the input graph correspond to the transmitters
of a network and the edges indicate which pairs of transmitters are too close
to each other so that interference could occur even if the broadcasting channels
were just one apart. The second condition follows from a requirement that no
transmitter should have two or more close neighbors transmitting on the same
frequency.

The concept of distance constrained graph labeling was introduced by Hale
[16] and, according to [15], Roberts [26] was the �rst one who suggested to
investigate the L(2, 1) case in particular. In their seminal paper [15], Griggs
and Yeh present �rst complexity results and several inspiring conjectures. Their
conjecture that λ(G) ≤ ∆(G)2 initiated intensive research and is still not fully
resolved. It is known to be true for many special graph classes and quite recently
has been proved for graphs of large maximum degree [18]. Yet it is interesting to
note that the Petersen and Ho�mann-Singleton graphs are the only two known
graphs that satisfy equality in this bound (for maximum degree greater than 2).

From the complexity point of view, Griggs and Yeh showed that determin-
ing λ(G) is NP-hard and raised the question of computational complexity of
determining λ(G) for trees. The latter was answered by Chang and Kuo by
providing a polynomial time algorithm in [5]. This has been later improved to
a linear time algorithm by Hasunuma et al. in [17]. For general graphs, Fiala
et al. [9] proved that deciding λ(G) ≤ k remains NP-complete for every �xed
k ≥ 4 (for k ≤ 3 the problem is polynomial). NP-completeness for planar in-
puts was proved by Bodlaender et al. [2] for k = 8, by Janczewski et al. [20] for
k = 4 and �nally by Eggeman et al. [7] for all k ≥ 4. The fact that distance
constrained labeling is a more di�cult task than ordinary coloring is probably
most strikingly documented by the NP-completeness of deciding λ(G) ≤ k for
series-parallel graphs [8] (here of course k is part of the input).

Recent trend in algorithmic research is designing exact exponential time al-
gorithms for NP-hard problems while trying to minimize the constant which is
the base of the exponential running time function. Kratochvíl et al. [25] gave
an O∗(1.3161n) 1 algorithm for L(2, 1)-labeling of span 4 (and this algorithm
was referenced as one of the examples of the Measure and Conquer branching

1In the O∗, Ω∗ and Θ∗ notations we suppress the polynomial factor.
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technique in [13]). A dynamic programming approach can be used to deter-
mining the L(2, 1)-span (or, in other words, to decide λ(G) ≤ k even when k
is part of the input). The development in this area has been quite interesting.
An exact algorithm for the so called Channel Assignment Problem of Král' [24]
implies an O∗(4n) algorithm for the L(2, 1)-labeling problem. This has been im-
proved by Havet et al. [19] to an O∗(3.8739n) algorithm by proving and using a
bound on the number of 2-packings in a connected graph. That paper concludes
with a conjecture on partitioning graphs into stars which would imply a better
running time for the L(2, 1)-labeling problem when the minimum degree of the
input graph is high. This conjecture was later proved by Alon and Wormald [1],
however, even for arbitrarily large minimum degree the running time is not bet-
ter than O∗(3n). In the meantime, Junosza-Szaniawski and Rz¡»ewski [22, 23]
modi�ed the algorithm and re�ned the running time analysis and proved that
their algorithm runs in time O∗(3.2361n). A lower-bound of Ω(3.0731n) on the
worst-case running-time of their algorithm is also provided. The magic running
time of O∗(3n) seemed hardly attainable.

Then at Dagstuhl Seminar 10441 Exact Complexity of NP-hard Problems
in November 2010, Peter Rossmanith reported on an O∗(3n)-time algorithm
for the L(2, 1)-labeling problem. Next, using the inclusion-exclusion principle
and the fast zeta transform, Cygan and Kowalik [6] proposed an O∗((`+ 1)n)-
time algorithm for the channel assignment problem, where ` is the maximum
edge weight. This result also implies an O∗(3n)-time algorithm for the L(2, 1)-
labeling problem. Both those results raised a natural question about a possibility
of designing an algorithm with time complexity bounded by O∗(cn) for some
c < 3. In this paper we provide a breakthrough in this question by proving the
following theorem.

Theorem 1. The L(2, 1)-span of a connected graph can be determined in time
O∗(2.6488n).

Our algorithm is based on a reduction of the number of operations performed
in the recursive step of the dynamic programming algorithm, which is in essence
similar to Strassen's algorithm for matrix multiplication [28]. This trick itself
achieves running time O∗(3n). Further improvement is obtained by proving
in Section 2 an upper bound on the number of pairs of disjoint subset of the
vertex set, where one of the sets is a 2-packing. Such bounds are also provided
for claw-free graphs and graphs with a small dominating set, allowing better
running-times of our algorithm on these graph classes. We believe that these
bounds and the technique which is used for obtaining them are of interest on
their own.

2. Auxiliary Combinatorial Results

Throughout the paper we consider �nite undirected graphs without multiple
edges or loops. The vertex set (edge set) of a graph G is denoted by V (G)
(E(G), respectively). The number of vertices of a graph G is called the order of
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G and denoted by |G|. The open neighborhood of a vertex u in G is denoted by
NG(u). The setNG[u] = NG(u)∪{u} denotes the closed neighborhood of u. The
neighborhood of a set X of vertices in G is denoted by NG(X) =

⋃
v∈X NG(v)

and its closed neighborhood is denoted by NG[X] = NG(X) ∪X. For a subset
X ⊆ V (G) we denote the subgraph of G induced by the vertices in X by G[X].
A graph H is a spanning subgraph of G if V (H) = V (G) and E(H) ⊆ E(G).
The symbol n is reserved for the number of vertices of the input graph, which
will always be denoted by G. The distance distG(u, v) between two vertices u
and v in a graph G is the length of a shortest path joining u and v. The diameter
of the graph G, denoted by diam(G), is the maximum distance between vertices
in G, i.e., diam(G) = maxu,v∈V (G) dist(u, v).

A subset S of the vertex set of G is called a 2-packing if the distance of any
two distinct vertices of S is at least 3 (i.e., S is an independent set and no two
vertices of S have a common neighbor in G). A pair (S,X) of subsets of V (G)
is called a proper pair if S ∩X = ∅ and S is a 2-packing in G. The number of
proper pairs in G will be denoted by pp(G) and by the de�nition, we have

pp(G) =
∑

S⊆V (G)
S is a 2-packing

2n−|S|.

Finally, we de�ne
pp(n) = max pp(H)

where the maximum is taken over all connected graphs H with n vertices.

2.1. Bounds on the number of proper pairs in arbitrary connected graphs

In this section we establish an upper-bound and a lower-bound on the maxi-
mum number of proper pairs in arbitrary connected graphs. Then in Section 2.2,
we will focus on such bounds for connected claw-free graphs. These upper-
bounds will be helpful to establish the worst-case running-time of our algorithm
given in Section 3.

Theorem 2. The value of pp(n) is bounded above by O(2.6488n).

Proof. Let G = (V,E) be a connected graph on n vertices such that pp(G) =
pp(n). We observe that if S is a 2-packing of G, then for any edge e of G, the
set S is also a 2-packing of G = (V,E \ {e}). Thus removing an edge does not
decrease the number of proper pairs and we can remove edges from the graph
as long as it stays connected. Hence without loss of generality, we assume that
G is a tree.

(∗) Suppose in G there are two leaves v1 and v2, which have a common neigh-
bor v3. Notice that every proper pair in G is proper in the graph H
obtained from G by removing the edge v1v3 and adding the edge v1v2

(see Figure 1). Since this operation does not reduce the number of proper
pairs, we can assume that there are no two or more leaves with a common
neighbor in G.
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v1

v2

v3

v1

v2

v3

Figure 1: Transformation of two leaves with a common neighbor.

It is easy to observe that pp(0) = 1 (as we let that (∅, ∅) is the only proper pair
of the empty graph), pp(1) = 3 and pp(2) = 8. Assume that |V (G)| ≥ 3 and let
P be a longest path in G. Let v be an end-vertex of the path P , u its neighbor
on P , and c a neighbor of u on P other that v (the third vertex on P ). By the
observation (∗) we can assume that deg(u) = 2.

(A) If deg(c) ≤ 2, we can partition all proper pairs (S,X) into two subsets:
those in which v /∈ S and those in which v ∈ S (see Figure 2).

v u c

Figure 2: Case (A) with deg(c) ≤ 2.

Notice that if v /∈ S, then v can be in X or outside S ∪X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
following recursion:

pp(G) ≤ 2pp(G− v) + 4 pp(G− {v, u, c}) (1)

and hence
pp(n) ≤ 2 pp(n− 1) + 4 pp(n− 3). (2)

(B) If deg(c) > 2, let d be the neighbor of c on P other than u. Let U =
NG(c) \ {d} and let W = NG(U) \ {c}. Then all vertices in W are leaves of G
(since otherwise P is not the longest path) and all vertices in U except at most
one are of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No vertex from U is a leaf in G (see Figure 3(a)).
(B1) There exists a vertex x ∈ U which is a leaf in G (there can be at most one

such vertex by the observation (∗)) � (see Figure 3(b)).

We can partition the set of proper pairs (S,X) into those in which S ∩ (W ∪
U) = ∅ and the others.

If S ∩ (W ∪ U) = ∅, each of the vertices in W ∪ U can be in X or outside
S ∪X.

If S∩(W ∪U) = Ŝ 6= ∅, Ŝ must be a 2-packing in G. Notice that the number
of proper pairs (Ŝ, X̂) in G[W ∪U ∪{c}], such that Ŝ 6= ∅ and c /∈ Ŝ is equal to:
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w1

w2

wq

u1

u2

uq

c

for q ≥ 2

(a) Case (B0) with deg(c) > 2
and no neighbor of c is a leaf.

w1

wq

x

u1

uq

c

for q ≥ 1

(b) Case (B1) with deg(c) > 2
and one neighbor of c is a leaf.

Figure 3: Cases (B0) and (B1)

1. (3q − 2q)2q+1︸ ︷︷ ︸
S∩(W∪U)=∅

+ q · 3q−12q+1︸ ︷︷ ︸
S∩(W∪U)6=∅

= 3q−12q+1(3 + q) − 22q+1 for q ≥ 2 in the

case (B0).
2. (3q − 2q)2q+2︸ ︷︷ ︸

S∩(W∪U)=∅

+ q · 3q−12q+2︸ ︷︷ ︸
S∩(W∪U\{x}) 6=∅

+ 3q2q+1︸ ︷︷ ︸
x∈S

= 3q−12q+1(9 + 2q) − 22q+2 for

q ≥ 1 in the case (B1).

Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪X.
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we

obtain the following recursions:

pp(n) ≤ 22q
pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) (3)

pp(n) ≤ 22q+1
pp(n− 2q− 1) + (3q−12q+1(9 + 2q)− 22q+2)pp(n− 2q− 2). (4)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (5)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (5) holds for n ≤ 2. Now assume
that the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <

2 · τ3 · τn−3 = 2 · τn

Case (B0)
pp(n) ≤ 22q

pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1)pp(n− 2q − 1) ≤ 2(22q ·
τn−2q + (3q−12q+1(3 + q)− 22q+1) · τn−2q−1) = 2 · τn(22q · τ−2q + (3q−12q+1(3 +

q)− 22q+1) · τ−2q−1) = 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1)

One can easily verify that the function h0(x) = ( 2
τ )2x−( 2

τ )2x+1+ 4(3+x)
τ3 ( 6

τ2 )x−1

is decreasing for all real x > 2 and h0(2) = 1.
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Hence pp(n) ≤ 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1) ≤ 2 · τn.
Case (B1)

pp(n) ≤ 22q+1
pp(n − 2q − 1) + (3q−12q+1(9 + 2q) − 22q+2)pp(n − 2q −

2) ≤ 2(22q+1τn−2q−1 + (3q−12q+1(9 + 2q) − 22q+2)τn−2q−2) = 2 · τn(( 2
τ )2q+1 −

( 2
τ )2q+2) + 4(9+2q)

τ4 ( 6
τ2 )q−1)

Since the function h1(x) = ( 2
τ )2x+1− ( 2

τ )2x+2 + 4(9+2x)
τ4 ( 6

τ2 )x−1 is decreasing
for all real x > 1 and h1(1) < 1, we obtain:

pp(n) ≤ 2 · τn(( 2
τ )2q+1 − ( 2

τ )2q+2 + 4(9+2q)
τ4 ( 6

τ2 )q−1) < 2 · τn.
We have shown that regardless of the structure of G, the function 2 · τn is

an upper bound on the number of proper pairs in G. Hence pp(n) = O(τn) =
O(2.6488n). �

One may be inclined to conjecture that the worst case is attained in the
case of a path Pn on n vertices. A simple calculation shows that pp(Pn) =
Θ(2.5943..n) is given by the recursion (2): pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3)
(see also Section 2.2.2). The following example shows that intuition fails in this
case.

Theorem 3. The value of pp(n) is bounded from below by Ω(2.6117n).

Proof. We shall prove the theorem by showing a graph with Θ(2.6117..n)
proper pairs. Let us consider the following graphs:

1 2 k

Ak

1 2 k

Bk

1 2 k

Ck

1 2 k

Dk

Let ak, bk and ck denote the number of proper pairs in the graphs Ak, Bk
and Ck, respectively. Let dk denote the number of such proper pairs (S,X) in
the graph Dk, in which the 2-packing S does not contain the crossed out vertex.
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Considering separately the number of proper pairs (S,X), in which S con-
tains or does not contain the marked vertices, we obtain the following system
of recursions: 

ak = 2bk−1 + 4ak−1

bk = 2ck + 2dk
ck = 2ak + 12dk−1

dk = 4dk−1 + 12ak−1

Solving this system we obtain the result ak = Θ(xk), where x = 17.8149.. is the
positive solution of the equation x3 = 16x2 + 576.

Since k = n/3, the graph Ak contains ak = Θ(17.8149..n/3) = Θ(2.6117..n)
proper pairs. �

2.2. Bounds on the number of proper pairs in connected claw-free graphs

In graph theory, a complete bipartite graph K1,3 is also called a claw. A
graph is called claw-free if it contains no copy of K1,3 as an induced subgraph.
Claw-free graphs are a well-studied class of graphs. We refer the reader to [3]
for properties of this graph class not given in this paper. Let ppcf (n) denote the
maximum number of proper pairs in a connected claw-free grap on n vertices.
Let G be a claw-free graph on n vertices with ppcf (n) proper pairs.

Observation 1. If the diameter of G is at most 2, at most one of the vertices
in V (G) can belong to a 2-packing. Hence pp(G) ≤ n · 2n−1 + 2n.

Assume that diam(G) ≥ 3. Notice that removing an edge from a graph does
not reduce the number of proper pairs, hence if H is a spanning subgraph of G,
then pp(G) ≤ pp(H).

Let H be a spanning tree of G. Let P be a longest path in H, v1 be an
end-vertex of P , u1 be its neighbor on P , w be the neighbor of u1 on P other
that v1 (the third vertex on P ) and x be a neighbor of w on P other that u1

(the fourth vertex on P ).

2.2.1. Transformations

Depending on the structure of G near the end-vertex v1 of P , we shall
apply one of the following transformations to H, obtaining another spanning
subgraph of G. The transformations are applied recursively, in the given order
of precedence. The main goal of the transformations is to obtain a spanning
subgraph of G, in which a longest path ends either with an induced copy of P4,
or with a clique with pendant vertices (see Figures 13 and 14). After obtaining
such a structure, we can apply one of the branching rules described in Section
2.2.2.
Case 1

Suppose degH u1 > 2. In this case all H-neighbors of u1 except at most one
are leaves in H (otherwise P would not be the longest path in H). Let v1 and
v2 be two neighbors of u which are leaves in H (see Figure 4).

Notice that since G is claw-free, there exists in G at least one of the edges
v1w, v2w or v1v2.
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v1

v2

u1 w

Figure 4: Case 1: deg u1 > 2

(T1a) If viw ∈ E(G) for some i ∈ {1, 2} (without loss of generality let i = 1), add
it to H and remove from H the edge u1w (H := (V (G), E(H) ∪ {v1w} \
{u1w}) (see Figure 5).

v1

v2

u1 w

v1

v2

u1 w

Figure 5: Transformation (T1a)

(T1b) If v1v2 ∈ E(G), then add it to H and remove from H the edge v2u1 (see
Figure 6).

v1

v2

u1 w

v1

v2

u1 w

Figure 6: Transformation (T1b)

Notice that if none of the above transformations can be applied to H, then
degH u1 = 2 (it cannot be smaller than 2 since diam(G) ≥ 3).
Case 2

If there exists an H-neighbor y 6= x of w which is a leaf, then there exists in
G at least one of the edges: u1y, u1x, xy (since G is claw-free) (see Figure 7).

(T2a) If u1y ∈ E(G) or xy ∈ E(G), then add it to H and remove the edge u1w
or wx, respectively (see Figure 8).

(T2b) If u1x ∈ E(G), then add it to H and remove the edge u1w (see Figure 9).

Notice that if none of above transformations can be applied, then each H-
neighbor of w except x (let us call them u1, . . . , uq) is of degree exactly 2 and
their neighbors other than w (let us call them v1, . . . , vq � see Figure 10) are
leaves in H, since P is the longest path in H and G is claw-free.
Case 3

Assume degH w > 2.
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v1 u1 w x

y

Figure 7: Case 2: one of neighbors of w is a leaf in H

v1 u1 w x

y

v1 u1 w x

y

v1 u1 w x

y

v1 u1 w x

y

Figure 8: Transformation (T2a)

(T3a) If uix ∈ E(G) for some i ∈ {1, . . . , q} (without loss of generality let i = 1),
then add it to H and remove from H the edge xw (see Figure 11).

If no edge uix is in E(G) for i ∈ {1, . . . , q}, then the vertices u1, . . . , uq, w
induce a (q + 1)-clique in G.

(T3b) Add to H all the edges uiuj for i, j ∈ {1, . . . , q} and i 6= j (see Figure 12).
Note that by application of (T3b), H is no longer a tree.

2.2.2. Branching rules

Let H be constructed from a spanning tree of G in the given way. If none of
the above transformations can be applied to H any more, one of the following
cases occurs.

(B1) degH w = 2 (see Figure 13)

In this case we can partition all proper pairs (S,X) into two subsets: those
in which v1 /∈ S and those in which v1 ∈ S.

Notice that if v1 /∈ S, then v1 can be in X or outside S ∪ X. If v1 ∈ S,
then none of the vertices {u1, w} can belong to S. Each of them can be in X or
outside S ∪X. Since the graphs G− v1 and G− {v1, u1, w} are connected and
claw-free, we obtain the following recursion:

pp(G) ≤ 2pp(G−v1)+4pp(G−{v1, u1, w}) ≤ 2 ppcf (n−1)+4ppcf (n−3). (6)

(B2) Transformation (T3b) has been applied to H (see Figure 14).
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v1 u1 w x

y

v1 u1 w x

y

Figure 9: Transformation (T2b)

v1

v2

vq

u1

u2

uq

w x

Figure 10: The graph H after applying transformations in Case 1 and Case 2

In this case we can partition all proper pairs (S,X) into two subsets: those
in which {v1, . . . , vq} ∩ S = ∅ and the remaining ones.

Notice that if {v1, . . . , vq}∩S = ∅, then each vertex vi can be in X or outside
S ∪X. If {v1, . . . , vq} ∩ S 6= ∅, then none of the vertices in {u1, . . . , uq, w} can
belong to S. Each of them can be in X or outside S ∪ X. Since the graphs
G−{v1, . . . , vq} and G−{v1, . . . , vq, u1, . . . , uq, w} are connected and claw-free,
we obtain the following recursion:

pp(G) ≤ 2q ppcf (n− q) + (3q − 2q)2q+1
ppcf (n− 2q − 1) (7)

for q ≥ 2.
We shall prove by induction on n that for n ≥ 0 the following holds:

ppcf (n) ≤ 2 · τn (8)

where τ ≈ 2.5943 is the positive root of the equation τ3 = 2τ2 + 4.

It is easy to verify that inequality 8 holds for all n ≤ 3. Moreover, by the
Observation 1, if diam(H) ≤ 2, then pp(H) ≤ (n + 2)2n−1 ≤ 2 · τn for n ≥ 3.
Let us assume that the inequality holds for all values smaller than n and that
diam(H) ≥ 3. Then one of the cases (B1) or (B2) occurs.

Case (B1)
ppcf (n) ≤ 2ppcf (n− 1) + 4ppcf (n− 3) ≤ 2 · τn−3(2τ2 + 4) = 2 · τn

Case (B2)
ppcf (n) ≤ 2q ppcf (n−q)+(3q−2q)2q+1

ppcf (n−2q−1) ≤ 2·τn
(
( 2
τ )q + 2 6q

τ2q−1 − ( 2
τ )2q+1

)
One can easily verify that the function h(x) = ( 2

τ )x + 2 6x

τ2x−1 − ( 2
τ )2x+1 is

decreasing for all real x > 2 and h(2) < 1.
Hence ppcf (n) ≤ 2 · τn

(
( 2
τ )q + 2 6q

τ2q−1 − ( 2
τ )2q+1

)
≤ 2 · τn.
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Figure 11: Transformation (T3a)
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Figure 12: Transformation (T3b)

We have shown that regardless of the structure of H, the function 2 · τn is
an upper bound on the number of proper pairs in H. Hence ppcf (n) = pp(G) ≤
pp(H) = O(τn).

On the other hand, a path is claw-free and there are exactly Θ(τn) proper
pairs in Pn. Hence we have the following Theorem:

Theorem 4. The value ppcf (n) is Θ(τn), where τ ≈ 2.5943.

2.3. Covering graphs with connected subgraphs

The main tool in [19] was partitioning a connected input graph into stars
of orders at least 2. Our approach is to divide the computation into connected
subgraphs of large constant order. The star graph is an example showing that
one cannot always �nd such a partition. However, we can �nd a covering with
a small overlap of the connected subgraphs, as shown by the following result.

Theorem 5. Let G be a connected graph of order n and let k < n be a positive
integer. Then there exist connected subgraphs G1, G2, . . . , Gq of G such that

(i) every vertex of G belongs to at least one of them,
(ii) the order of each of G1, G2, . . . , Gq−1 is at least k and at most 2k (while

for Gq we only require |V (Gq)| ≤ 2k), and
(iii) the sum of the numbers of vertices of G′is is at most n(1 + 1

k ).

Proof. Assume G is rooted in an arbitrary vertex r and consider a DFS-tree
T of G. For every vertex v let T (v) be the subtree rooted in v. If |T (r)| ≤ 2k
then add G to the set of desired subgraphs and �nish. If there is a vertex v such
that k ≤ |T (v)| ≤ 2k then add G[V (T (v))] to the set of desired subgraphs and
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Figure 14: Case (B2)

proceed recursively with G \ V (T (v)). Otherwise there must be a vertex v such
that |T (v)| > 2k and for its every child u, |T (u)| < k. In such a case �nd a subset
{u1, . . . , uj} of children of v such that k ≤ |T (u1)|+ · · ·+ |T (uj)| ≤ 2k−1. Add
G[{v} ∪ V (T (u1))∪ · · · ∪ V (T (uj))] to the set of desired subgraphs and proceed
with the graph G \ (V (T (u1)) ∪ · · · ∪ V (T (uj))). This procedure terminates
after at most n

k steps and in each of them we have left at most one vertex of the
identi�ed connected subgraph in the further processed graph. Notice that from
this construction follows that also the graph G[V (Gi)∪ V (G2)∪ · · · ∪ V (Gq)] is
connected for all i ∈ {1, . . . , q}. �

3. Exact Algorithm for L(2, 1)-labeling

One key ingredient in our algorithm are algebraic manipulations very similar
to fast matrix multiplication: If we have 2k×2k-matrices A and B we can divide
them each into four block matrices of the same size. We can then compute AB
very easily by eight matrix multiplications of 2k−1 × 2k−1-matrices. Doing so
recursively leads again to a running time of O(n3)�just as the naive algorithm
itself. It is, however, possible to improve on the running time by using only
seven matrix multiplications to achieve the same result [28]. It turns out that
this technique alone does not work in our case, though. We have to use one
other trick: We jump between two representations of partial L(2, 1)-labelings
in the course of our dynamic programming algorithm. The idea to use di�erent
representations of the same data in dynamic programming is not new and was
used in a similar way before [27].

We de�ne the partial function ⊕ : {0, 0̄, 1, 1̄} × {0, 1} → {0, 1, 1̄} via this
table:

⊕ 0 0̄ 1 1̄

0 0 0 1 1
1 1̄ − − −

The entry �−� signi�es that ⊕ is not de�ned on that input.
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We generalize ⊕ to vectors via

a1a2 . . . an ⊕ b1b2 . . . bn =


(a1 ⊕ b1) . . . (an ⊕ bn) if ai ⊕ bi is de�ned for

all i ∈ {1, . . . , n},
unde�ned otherwise,

and to sets of vectors A ⊆ {0, 0̄, 1, 1̄}n, B ⊆ {0, 1}n via

A⊕B = {a⊕ b | a ∈ A, b ∈ B, a⊕ b is de�ned }.

In a nutshell our algorithm proceeds as follows: Given a graph G = (V,E) of
order n, with V = {v1, . . . , vn}, it computes tables T0, T1, . . . , T2n ⊆ {0, 0̄, 1, 1̄}n.
Table Tl contains a vector a ∈ {0, 0̄, 1, 1̄}n if and only if there is a partial labeling
ϕ : V → {0, . . . , l} such that :

1. ai = 0 i� vi is not labeled by ϕ and there is no neighbor u of vi with
ϕ(u) = l,

2. ai = 0̄ i� vi is not labeled by ϕ and there is a neighbor u of vi with
ϕ(u) = l,

3. ai = 1 i� ϕ(vi) < l, and
4. ai = 1̄ i� ϕ(vi) = l.

Once we have all tables Tl it is easy to �nd the smallest l such that Tl
contains at least one vector from {1, 1̄}n � such vectors correspond to solutions
where all vertices are labeled. We then know that such an l is the L(2, 1)-span
of G.

Let P ⊆ {0, 1}n be the encodings of all 2-packings of G. Formally, p ∈ P if
and only if there is a 2-packing S ⊆ V such that for all i, 1 ≤ i ≤ n, pi = 1 i�
vi ∈ S.

Our strategy is to compute Tl+1 from Tl ⊕ P . If a ∈ Tl is a vector corre-
sponding to a partial L(2, 1)-labeling ϕ and p ∈ P corresponds to a 2-packing
C in G, we aim at extending ϕ by setting ϕ(ui) = l+ 1 for all ui ∈ C. Such an
extension is valid if and only if pi = 1 implies ai = 0, and then ai⊕pi = 1̄. Thus
Tl ⊕ P is already almost the same as Tl+1: a ∈ Tl+1 i� there is an a′ ∈ Tl ⊕ P
such that

1. ai = 0 i� a′i = 0 and there is no vj ∈ N(vi) with a′j = 1̄

2. ai = 0̄ i� a′i = 0 and there is a vj ∈ N(vi) with a′j = 1̄

3. ai = 1 i� a′i = 1, and
4. ai = 1̄ i� a′i = 1̄.

To compute Tl+1 from Tl ⊕ P is therefore easy: Look at each vector in Tl ⊕ P
and determine for each 0 whether it remains 0 or has to be changed into 0̄.
What remains is to �nd a method to compute Tl ⊕ P fast.

Towards this end let us �x a constant k (whose size will be speci�ed later).
Let G1, . . . , Gq be a covering of G by connected subgraphs guaranteed by The-
orem 5 and let k′ be the order of G1. Hence, the relation k ≤ k′ ≤ 2k holds as
long as q > 1.
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We need one more formalism: If w is a vector and A is a set of vectors, then

Aw = {v | wv ∈ A }

is the set of all vectors that fall into A after we pre�x them with w. Here wv
denotes the concatenation of vectors w and v.

If A ⊆ {0, 0̄, 1, 1̄}n and B ⊆ {0, 1}n, where n > k′, we can compute A ⊕ B
in the following useful, though perhaps at �rst sight complicated, manner:

A⊕B =
⋃

u∈{0,0̄,1,1̄}k
′

v∈{0,1}k
′

s.t. u⊕v defined

(u⊕ v)(Au ⊕Bv)

=
⋃

v∈{0,1}k
′

w∈{0,1,1̄}k
′

w
[( ⋃

u∈{0,0̄,1,1̄}k
′

s.t. u⊕v=w

Au

)
⊕Bv

]

To illustrate the approach, suppose that k′ = 1, that A ⊆ {0, 0̄, 1, 1̄}n is a
table containing vectors representing partial labelings of a graph G, and that
B ⊆ {0, 1}n is a table of vectors representing 2-packings of G. The ⊕-operation
over vectors of A and B can be carried out in the following simple way, where
terms for which the ⊕ operation is not de�ned are omitted : A⊕B = (0⊕0)(A0⊕
B0)∪ (0⊕ 1)(A0⊕B1)∪ (0̄⊕ 0)(A0̄⊕B0)∪ (1⊕ 0)(A1⊕B0)∪ (1̄⊕ 0)(A1̄⊕B0).
As suggested by our previous formula, this can be rewritten as : A ⊕ B =
0((A0 ∪A0̄)⊕B0)∪ 1((A1 ∪A1̄)⊕B0)∪ 1̄(A0⊕B1). When the size of the pre�x
k′ is larger than 1, the computation of the ⊕-operation is even more impressive.
In the following, we assume that k ≤ k′ ≤ 2k, for a �xed constant k, and we
consider the formula given above to compute A⊕B.

Let us analyze how long it takes to compute A ⊕ B in this manner. We
are especially interested in the number of ⊕-operations on sets with vectors of
length n− k′. We can omit such a computation if the �rst set, i.e.,⋃

u∈{0,0̄,1,1̄}k
′

s.t. u⊕v=w

Au (9)

is empty. So how many pairs v,w are there such that there is at least one u
with u ⊕ v = w? If we �x v, then obviously vi = 1 implies wi = 1̄. So for a
�xed v there are at most 2k

′−||v|| many w's, where ||v|| denotes the number of
positions i such that vi = 1.

The total number of pairs v,w such that w = v ⊕ u for some u and that
therefore produce a nonempty contribution in (9) is therefore at most∑

v∈{0,1}k′
2k
′−||v||.
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Thus, if we draw the v's from a set of vectors that represent the 2-packings
of a connected graph, then we �nd at most pp(k′) such pairs and, hence, we
need to make only such many recursive computations of ⊕ on sets of vectors of
length n− k′.

Since we can cover the input graph by induced subgraphs of orders between
k and 2k, this is indeed possible. Theorem 5 implies that the total length of the
vectors is n′ ≤ n(1 + 1/k).

As the length of the vectors is n′ ≥ n, it follows that several coordinates may
correspond to the same vertex. However this is not a problem for the algorithm:
To be consistent we require that the value of each coordinate corresponding to
the same vertex have to be equal, otherwise the algorithm simply removes such
a vector from the current table.

In each recursive computation we have to prepare up to pp(k′) many pairs
of sets of vectors of length n′ − k′, where k ≤ k′ ≤ 2k. Then we recursively
compute ⊕ on these pairs. From the result we get the next table Tl+1 in linear
time. Preparing the recursive calls and combining their results takes only time
linear in the sizes of A and B. The size of B is at most O(n2n

′
) bits and the

size of A is at most O(n pp(n′)) bits if we use only our tables Tl for A: The 1̄'s
form a 2-packing and for all other nodes there are only two possibilities, 1 or
0/0̄.

We arrive at the following recurrence for the running time:

tn′ = O
(
n pp(n′) + pp(k′)tn′−k′

)
for k ≤ k′ ≤ 2k

We can prove by induction on n′ that every solution of this recurrence ful�lls
tn′ = O

(
nn′pp(n′)

)
: Using the induction hypothesis on tn′−k′ yields

tn′ = O
(
npp(n′)

)
+ pp(k′)O

(
n(n′ − k′)pp(n′ − k′)

)
= O

(
npp(n′) + n(n′ − k′)pp(n′)

)
= O

(
nn′pp(n′)

)
.

We arrive at our main result by choosing the constant k so big (k ≥ 61425 is
su�cient) such that 2.64876..1+1/k ≤ 2.6488 since then tn ≤ tn′ = O∗(pp(n(1 +
1/k))) ≤ O∗(2.6488n).

Consequently, we have the following Theorem :

Theorem 6. The L(2, 1)-span of a connected graph can be determined in time
O∗(2.6488n).

Combining the previously described algorithm (whose pseudocode is also
given in Section 4) and the bound provided by Theorem 4, the running-time of
our algorithm can be slightly improved for claw-free graphs :

Corollary 7. An L(2, 1)-span of a claw-free graph can be determined in time
O(2.5944n).

Remark 1. Since line graphs are claw-free and edge version of L(2, 1)-labeling
of a graph G is equivalent to an L(2, 1)-labeling of a line graph of G, we obtain
the following corollary.
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Corollary 8. An edge L(2, 1)-labeling problem can be solved in time O(2.5944m)
and exponential space, where m denotes the number of edges of the input graph.

4. Pseudocode of the Algorithm

For the sake of completeness, we provide in this section the pseudocode of
the algorithm described in Section 3.

Let G1, . . . , Gq be a covering of a given graph G by connected subgraphs as
ensured by Theorem 5. Let di be the order of Gi for 1 ≤ i ≤ q. We denote by n′

the sum d1 + · · ·+ dq. Let A ⊆ {0, 0̄, 1, 1̄}n
′
and B ⊆ {0, 1}n′ . We �rst provide

Algorithm MUL which computes A⊕B using the methods from Section 3.

Algorithm MUL(A,B, d1, . . . , dq):

if q = 1 then return A⊕B �;
k′ := d1;
for each v ∈ {0, 1}k′ do
R := ∅;
for each w ∈ {0, 1, 1̄}k′ do
A′ := ∅;
for each u ∈ {0, 0̄, 1, 1̄}k′ do
if w = u⊕ v then A′ := A′ ∪Au �

od;
if A′ 6= ∅ then R := R ∪MUL(A′, Bv, d2, . . . , dq) �

od
od;
return R

Obviously, the body of the innermost loop is executed exactly 24k
′
times.

All operations can be carried out in constant time except set union and the
recursive calls to MUL. A set union X ∪ Y takes at most n(|X| + |Y |) steps
if we implement sets as simple arrays and remember that we can sort them
using radix-sort. Not counting recursive calls the running time is therefore
O(n(|A|+ |B|)) if d1 = k′ = O(1). In the boundary case that q = 1 then a brute
force attack to compute A⊕B can be carried out in O(n · |A| · |B|) = O(n8k

′
),

which is constant if d1 = k′ = O(1).

Let (v1, . . . , vn′) be the vertices of G (with duplicates allowed) such that

(v1, . . . , vn′) = (u11, . . . , u1d1 , u21, . . . , u2d2 , . . . . . . , uq1, . . . , uqdq )

and Gi = (ui1, . . . , uidi). Let k be a constant large enough so that pp(1 +
1/k) = τ1+1/k < 2.6488, where τ = 2.6487.. is the positive root of the equation
τ5 = 16τ+88 as provided in the proof of Theorem 2. As the proof of Theorem 5
is constructive and provides a polynomial-time algorithm to compute a cover
G1, . . . , Gq, we can arrange the decomposition of G into G1, . . . , Gq in such a
way that k ≤ di ≤ 2k for any 1 ≤ i < q. In addition, Theorem 5 ensures
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that n′ ≤ n(1 + 1/k). While the correctness of the following algorithm does
not depend on such an arrangement, it is crucial to the running time, which is
closely related to all pp(G[Gi])'s. We can only guarantee those to be small if
the G[Gi]'s are connected. We refer the reader to Section 3 for the running-time
analysis.

Finally the following Algorithm T computes tables T1, . . . , T2n.
Algorithm T (G,n, v1, . . . , vn′)

T0 := {0n′};
P := ∅;
for each x ∈ {0, 1}n′ do
if { vi | xi = 1 } is a 2-packing then P := P ∪ {x} �

od;
for l = 1, . . . , 2n do
R := MUL(Tl−1, P, d1, . . . , dq);
Tl := ∅;
for each x ∈ R do
for i, j = 1, . . . , n′ do
if xi = 0, xj = 1̄ and vi ∈ N(vj) then xi := 0̄ �

od;
Tl := Tl ∪ {x}

od;
od;
return T1, . . . , T2n

5. Computing L(2, 1)-labeling of graphs with a small dominating set

Havet et al. [19] presented a re�ned analysis of their algorithm for graphs
that can be partitioned into disjoint stars, each containing at least d vertices.
They called such graphs d-well partitioned. We can conduct similar analysis for
our algorithm. This leads to a better bound for the complexity of the algorithm
for more general class of graphs � the graphs with minimum dominating set of
size at most r (let us call them r-dominated).

Let us start by recalling the de�nition of a dominating set. Given a graph
G = (V,E), a subset D ⊆ V is called dominating set if each vertex of V \D has
at least one neighbor in D. In this section, graphs do not have to be connected.
Assume that D = {w1, w2, . . . , wr} is a dominating set in a given graph G.
Then the set of vertices of G can be easily partitioned into r disjoint stars with
centers in vertices of D. If some vertex is dominated by more than one vertex
from D, we include it to only one, arbitrarily chosen, star. Let S(v) for v ∈ D
denote the set of vertices of a star with the center in v.

Lemma 9. There are at most
(
r
k

) (
n
r

)k
2-packings of size k in any r-dominated

graph with n vertices.

Proof. Notice that at most one vertex from every star belongs to a 2-packing.
We can choose k stars in

(
r
k

)
ways. Then we can choose the vertices for 2-packing
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in
∏k
i=1 |S(wji)| ways, where wji is the center of ji-th star. It is easy to observe

that this product has largest value if the stars have the same order.
Hence the number of sets can be bounded by

(
r
k

)∏
1≤i1<i2<···<ik≤r |S(wi)| ≤(

r
k

)∏
1≤ii<i2<···<ik≤r

n
r =

(
r
k

)
(nr )k. �

If we consider a graph consisting of r disjoint stars, each having the same
number of vertices, we notice that the bound presented above is tight.

Lemma 10. There are at most 2n−r(2 + n
r )r proper pairs in any r-dominated

graph on n vertices.

Proof. Let us calculate the number of proper pairs (S,X). For every �xed
2-packing X, every vertex from V (G) \ Y can belong to S or not. Hence the
bound on number of proper pairs is

∑r
k=0

(
r
k

)
(nr )k2n−k = 2n−r(2 + n

r )r. �

An shown by Fomin et al. [12], �nding a minimum dominating set in a graph
on n vertices can be done in time O(1.5137n) and exponential space.

Corollary 11. The L(2, 1)-span of any r-dominated graph on n vertices can be
found in time O∗(2n−r(2 + n

r )r).

Simple calculation shows that for n
r > 3.8912 the bound from Corollary 11

is better than the bound from Theorem 6. The �gure below shows how the
complexity of the algorithm depends on n

r .

0 5 10 15 20 25 30

n

r

1

2

3

4

5

Corrolary 1

Theorem 1

Figure 15: The power bases of complexity bounds from Theorem 6 (plain line) and Corollary
11 (dashed line) in terms of n

r
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