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Abstract 
 

Planning land-use for biodiversity conservation frequently involves computer-assisted reserve 

selection algorithms. Typically such algorithms operate on matrices of species presence-absence in 45 

sites, or on species-specific distributions of model predicted probabilities of occurrence in grid 

cells. There are practically always errors in input data – erroneous species presence-absence data, 

structural and parametric uncertainty in predictive habitat models, and lack of correspondence 

between temporal presence and long-run persistence. Despite these uncertainties, typical reserve 

selection methods proceed as if there is no uncertainty in the data or models. Having two 50 

conservation options of apparently equal biological value, one would prefer the option whose value 

is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis 

for reserve planning can be implemented within a framework of information-gap decision theory, 

generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves 

modifications to the typical objective functions used in reserve selection. Search for robust-optimal 55 

reserve structures can still be implemented via typical reserve selection optimization techniques, 

including stepwise heuristics, integer-programming and stochastic global search. 
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1. Introduction 

 

In the last decade, much scientific effort attempting to cope with biodiversity loss has been directed 60 

into reserve selection studies (see Pressey, 1999; Margules and Pressey, 2000; Moore et al. 2003; 

Noss, 2003; Cabeza et al., 2004; Williams et al., 2004 for reviews). A common feature of these 

studies is the search for the set of candidate sites that optimizes a performance function (e.g. 

number of species adequately covered by reserves) while observing constraints (typically total area 

or cost of protected land). Many variants of site selection algorithms have been produced to solve 65 

such optimization problems (Csuti et al., 1997; Pressey et al., 1997; Cowling et al., 2003; Lamm et 

al., 2002; Moilanen 2005a, 2005b; Moilanen et al., 2005). However, a common feature of all of 

these methods is that optimizations are performed and evaluated as if there is no uncertainty in the 

species distributions that underlie them (Rodrigues et al., 2004; Wilson et al., 2004). 

 70 

For example, consider the much-studied single-representation problem, which seeks “the least 

expensive set of sites that includes at least one occurrence of each species” (Csuti et al., 1997; 

Pressey et al., 1997). This formulation implicitly assumes that (i) observations or predictions of 

species presence are correct, (ii) species distributions do not change and (iii) present occurrence 

indicates long-term persistence in sites. If there are errors in observation, prediction or 75 

characterization of spatial population dynamics, then these assumptions are no longer valid. As a 

consequence, using the single-representation formulation for reserve planning may maximize 

within-reserve extinction rates, especially if selection units are small (Cabeza and Moilanen 2003). 

Thus, optimizing performance (minimizing reserve cost in the single-representation problem) leads 

to solutions that have no robustness to uncertainty in the species distribution information. 80 
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Uncertainty analysis provides a consistent framework for understanding potential consequences of 

errors in inputs. Here we apply one particular branch of decision theory, information-gap theory 

(Ben-Haim, 2006) to conservation planning. Insights gained from this theory indicate that under 

severe uncertainty, the solution that maximizes a performance function is in general unlikely to be a 85 

tenable solution. In particular, a basic theorem of info-gap theory asserts that utility (or 

performance) optimization is equivalent to minimization of immunity to uncertainty. When 

maximizing performance one employs best-estimates, the so-called nominal models (which may be 

probabilistic) and ignores the potential structural or factual errors. The optimal solution will be 

prone to failure due to errors in the underlying distribution models because the optimization process 90 

is completely reliant on these models. This is the case with the single-representation problem. 

 

A reserve solution that is optimal with respect to the nominal estimate is often not robust to 

uncertainty, whereas another solution may be sub-optimal when evaluated using the nominal 

distributions but more robust to uncertainty in these distributions. In fact, a robust solution that is 95 

apparently sub-optimal may be preferable to an optimal solution that has no robustness to potential 

error. We call such solutions robust-optimal. Robustness is a property of the solution that expresses 

immunity to uncertainty in the underlying database and fitted models. More concretely, we may not 

be sure that an entire list of species that are to be protected in a specific set of conservation areas 

will actually persist within the areas to be conserved. However, we want to be reasonably certain 100 

that at least, say, 90% of those species will actually persist within the region. Furthermore, we 

would like to be confident that this outcome will be achieved even if the models upon which our 

decision is based are substantially flawed. This approach to reserve planning is entirely different 

from the common approach, which chooses the optimal set of conservation areas based on best-

estimated models, while risking the possibility of large failure due to model error.  105 
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Decision analytic methods, including uncertainty analysis, are often employed in population 

viability analyses (see e.g., Possingham, 2001a,b; Drechsler and Brugman, 2004; Regan et al., 

2005). However, PVAs typically concern detailed population dynamical analyses for a couple of 

conservation scenarios and one or a few species. In contrast, reserve selection may involve large 110 

optimization problems with large-scale spatial planning and many species. It is not surprising that 

reserve design has so far largely ignored uncertainty, because in most cases uncertainty is not even 

acknowledged let alone quantified in the habitat models that are used for predicting underlying 

species distributions. Methods do exist for producing uncertainty estimates (e.g., Elith et al., 2002; 

MacKenzie et al., 2003; Van Neil et al., 2004; Wilson et al., 2005), but they are rarely implemented. 115 

We believe that part of the problem is that even if methods are available, there are few tools for 

incorporting uncertainty into decision-making (Burgman et. al., 2006).  

 

Figure 1 shows a categorization of the kinds of sites that may be available for conservation. Areas 

that are certain to have high biological value are most important for conservation. Areas that are 120 

certain to have low biological value should be avoided. The robustness analysis applies to areas that 

have high estimated value, but this value is uncertain. These areas have potential for negative 

surprises for conservation, and this potential for negative surprises should be controlled via 

uncertainty analysis. The fourth category includes areas that have low value, but we are unsure of 

this. These could be areas that, for example, have been poorly surveyed. These areas have potential 125 

for positive surprises, which can be handled via the concept of opportuneness in the context of the 

information-gap theory (Ben-Haim, 2006). 

 

The goal of this article is to provide terminology and a methodological basis for robust reserve 

planning. We describe in detail a simple application of information-gap theory to reserve planning 130 
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based on probabilities of occurrence. We also describe plausible uncertainty models for some more 

complex conservation planning applications.  

 

2. Methods 

 135 

2.1 Overview 

 

Below we define three formulations (performance functions) for the reserve selection problem. We 

then describe the information-gap decision theoretic approach to uncertainty analysis and its 

application to reserve planning. The concepts of uncertainty model, robustness, opportuneness, and 140 

a robust-optimal solution are central to this work. Symbols and notation are summarized in Table 1. 

 

2.2 Notation and objective 

 

Indices s, c and m identify species, cells in the spatial domain (often referred to as sites, patches or 145 

areas), and models. Sets of cells, which constitute potential reserves (or reserve networks), are 

identified by sets of indices denoted C. Thus C1, C2 etc represent alternative reserve selections. Not 

all sets of cells are feasible choices due to economic, social or political constraints. The collection 

of all feasible reserve selections is denoted C. 

 150 

Species s occurs in spatial cell c with probability scmp  under model m. The nominal, i.e., best 

available estimate of scmp  is given by scmp~ . ( )pU ~,α  is an info-gap model for the uncertain 

deviation between the true probability distribution and the best estimate (Ben-Haim, 2006). 
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( )pCRsm , , referred to as a representation, is a performance function (e.g., abundance, population 155 

count, number of occurrences), for species s based on model m in reserve network C, where the 

probability in each cell is given by pscm. These performance functions are defined so that a large 

value is preferable to a small value. Furthermore, we will express our performance requirements by 

stating minimal acceptable target values of performance. That is, reserve C has acceptable 

performance, based on the probability distribution pscm, if ( )pCRsm ,  exceeds the target value Ts. 160 

 

Before worrying about uncertainty, our reserve-planning task is to choose a reserve structure 

(including N cells) whose biodiversity performance value is greatest. Intuitively, when planning a 

robust reserve, we begin to worry about uncertainty and deal with it by choosing a reserve structure 

whose biodiversity performance value is reasonably certain to be good enough, and whose 165 

immunity to uncertainty is as large as possible, given certain minimal required outcomes.  

 

We next describe some objectives (performance functions) used commonly in reserve selection. 

Then we describe an info-gap model for uncertainty in the probability of occurrence distribution of 

a species. Finally, we derive the robustness functions for potential reserve designs. 170 

 

2.3 Performance functions for reserve selection 

 

The following discussion is, for convenience, in terms of species, which is our shorthand for any 

biodiversity feature (species, land cover type, vegetation community type) of conservation interest. 175 

 

Expected number of occurrences (e.g., ReVelle et al., 2002; Cabeza, 2003). The total statistical 

weight of each species s in cells indexed by C, based on model m, is: 

∑
∈

=
Cc

scmsm ppCR ),(                                                               (1a) 
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In this formulation pscm could also denote, for instance, area coverage of a vegetation community 180 

type. A typical objective would be to obtain with least cost a given proportion of occurrences for 

each species. 

  

Probability of having at least one occurrence ( Haight et al., 2000; Polasky et al., 2000; Araujo and 

Williams, 2000). The probability of each species s occurring at least once in reserve C is, under 185 

model m: 

.)1(1),( 




 −−= ∏
∈ Cc

scmsm ppCR                                                       (1b) 

In this formulation a probability target could be set for each species and the question would be 

which set of sites achieves this target with least cost. 

 190 

Reserve value via benefit functions (Arponen et al., 2005). Reserve value V(C) is a sum over values 

of individual species: 

∑ ∑==
s s

smss pCRfvCVCV ,)),(()()(         (1c) 

where vs is the weight of species s, and f() is an increasing function of representation, which can be 

defined for example via Eq. (1a). The objective is to achieve highest possible value for the reserve 195 

network given a constraint on the total value of land that can be obtained. In the value function 

approach, the target Ts is actually a reference level at which the species gets value vs, i.e. f(Ts)=1. 

Importantly, both over- and under-representation (with respect to Ts) are valued – a higher 

representation always implies higher value. A reasonable form for f() would be a monotonically 

increasing function, which approaches an asymptote with high Rsm and which has f(0)=0. Note that 200 

a typical reserve selection formulation with a target level set Ts for the expected number of 

occurrences (Eq. 1a), ( )pCRsm , >Ts, actually is a special case of (1c) with vs=1 and f() being a unit 

step function with the step located at Ts. 
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2.4 Info-gap uncertainty models 205 

 

Info-gap models can be used to represent a wide variety of prior information about uncertain 

probabilities. In this section we will discuss three different info-gap models, addressing absolute 

errors, fractional errors, and asymmetrical error intervals. 

 210 

Our best estimate of the probability of occurrence of species s, in cell c, based on an ecological 

model m, is scmp~ . That we use probabilities implies that the actual occurrence of species will be a 

stochastic event. Additionally, these probabilities themselves are highly uncertain – we do not 

know their true values, and an info-gap model is used to represent this uncertainty. An info-gap 

model ( )pU ~,α  for the probabilities of model m is a family of nested sets of probability 215 

distributions pscm centered on the best estimate scmp~ , where α is a parameter describing a horizon of 

uncertainty. Three different structures will be suggested for the uncertainty model, but we first 

discuss the intuitive idea. 

 

Even though scmp~ is our best estimate, it could err by some quantity, say by α . Letting pscm be the 220 

correct probability, then α≤− scmscm pp~ . Under severe uncertainty (Ben-Haim 2006), we do not 

know the horizon of uncertainty, that is, we do not have a meaningful estimate of the error, but 

info-gap theory still allows us to specify an uncertainty model. This uncertainty model is a family 

of nested intervals of possible pscm values: 

.0,~ ≥≤− ααscmscm pp                              (2) 225 

These ideas can be formalized in various ways. The following envelope-bound model will often be 

useful: 
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( ) .0},,, allfor ,~:10{~, ≥≤−≤≤= ααα mcswppppU scmscmscmscm                     (3) 

The set ( )pU ~,α  contains all probabilities pscm ∈ [0, 1] whose deviation from the best estimate, scmp~ , 

is bounded. Importantly, the “uncertainty weights” wscm modulate the fractional errors. A large 230 

value of wscm is chosen for particular indices, scm, if the corresponding probability pscm tends to 

vary more, or be less certain than others. Conversely, small uncertainty weights indicate relatively 

reliable probability estimates. For example, when confidence intervals are available for the 

probability estimates from model m, one can choose each uncertainty weight proportional to the 

size of the (lower half of the) respective confidence interval. The bound is determined by the 235 

horizon of uncertainty, α , which is unknown. Thus the info-gap model is not a single set, but 

rather a family of nested sets. 

 

Other info-gap models can be useful. In Eq. (3), the terms scmwα  represent absolute error in the 

probability. A typical alternative is to consider uncertain fractional error: 240 

( ) ,0, allfor ,'~
~

:0~, ≥








≤
−

≥= ααα s, c, mw
p

pp
ppU scm

scm

scmscm
scm      (4) 

which is equivalent to Eq. (3) with scmscmscm pww ~'= . 

 

The info-gap models in Eqns (3) and (4) entail symmetric uncertainty intervals (except for the non-

negativity requirement). Asymmetric uncertainty intervals can be introduced with 245 

{ } 0,allfor  ,)1()1(:10)~,( ,, ≥+≤≤−≤≤= αααα  s, c, mwppwpppU scmUscmscmscmLscmscm  (5) 

in which wL and wU correspond to lengths of lower and upper halves of confidence intervals, 

respectively. An asymmetric interval may be appropriate when working with bounded quantities, 

such as probabilities. Other more complex models deal with dependencies between parameters and 

other features of underlying models (Ben-Haim, 2006). 250 
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2.5 Robustness 

 

The only probability distribution that we know is that of the best estimate, scmp~ . Based on this 

distribution, we would choose the reserve whose robustness is greatest for a specific performance 

requirement.  255 

 

Consider first a performance function (1a or 1b), ( )pCRs , ,for a given species s. We wish to 

evaluate a potential reserve, defined by its set of indices C. The reserve C is acceptable for species s 

(based on the best-estimated probability distribution scp~ ), if the performance function exceeds the 

target value, 0)~,( ≥− ss TpCR . 260 

 

The robustness question for species s in this reserve is: how wrong can p~  be, without jeopardizing 

the required performance of reserve C? The robustness, ),(ˆ TCsα , of species s in reserve C given 

performance target Ts, is the greatest horizon of uncertainty up to which C has adequate 

performance: 265 

[ ] .0),(min:max),(ˆ
)~,( 



 ≥





 −=

∈ sspUps TpCRTC
α

αα                                          (6) 

),(ˆ TCsα  trades robustness to uncertainty against the demanded performance: as the target value Ts 

gets larger (implying stricter ecological requirements) the robustness ),(ˆ TCsα  gets smaller. High 

performance is more vulnerable to epistemic limitations (e.g. model uncertainty or data error) than 

low performance. Stated differently, the attainment of demanding conservation goals stretches the 270 

probability data scp~  to the limit; the vulnerability to errors increases as the demands on the data-

base grow.  
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In practice this means that in our reserve selection formulations (Eqns 1a-1c) the optimal reserve 

structure based on nominal distributions is likely to have zero robustness for at least one species.  275 

Assume, for example, a reserve selection problem where a target number of populations has been 

set for each species, and the aim is to achieve this representation with minimal cost (area). The 

optimal solution for this problem is by definition such that no sites can be removed from the 

solution without causing a failure to meet the target for at least one species. If the solution consists 

of many small selection units (as it would in real landscape-level planning), some species will be 280 

just above the representation target level. Thus, this solution would be robust to little uncertainty. 

Any error in the distribution information for a species represented just at the required target level 

may cause the target to be failed for that species. 

  

We next extend the robustness defined in Eq. (6), by considering multiple species s and alternative 285 

(species-specific) models m. The reserve indexed by C is acceptable, based on the best estimated 

probability distribution p~ , if the performance function exceeds the target values, 

0)~,( ≥− smsmsm TpCR , for each of species s and each model m. Use of multiple models may be 

reasonable for example when AIC-based model fitting (Burnham and Anderson 2002) suggests 

multiple plausible, yet structurally different models. 290 

 

Now the robustness of reserve C, given performance targets Tsm , is the greatest horizon of 

uncertainty up to which C has adequate performance on all species and with all models: 

.0),(minmin:max),(ˆˆ
)~,(, 






 ≥












 −==

∈ smsmpUpms
TpCRTC

smα
ααα                                   (7) 

The overall robustness of the reserve plan α̂  trades off against the demanded performance targets 295 

Tsm in the same way as ),(ˆ TCsα : robustness goes down as the target values go up. Examination of 

Eq. (7) reveals that α̂  equals the robustness of the least robust species-model combination: 
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),(ˆmin),(ˆ
,

TCTC smms
αα =                                                          (8) 

where smα̂  denotes the robustness of species s using model m. We will prefer reserve C over 

reserve C′ , if the former has greater robustness to uncertainty in the probabilities, at the same 300 

target levels T: 

).,(ˆ),(ˆ    if    TCTCCC ′>′ ααf                                                      (9) 

The strength of the preference for C increases as the magnitude of the difference between the 

robustness values increases. The info-gap robust-optimal reserve, for performance targets T, is the 

set of cells whose robustness is greatest: 305 

).,(ˆmaxarg)(* TCTC
C

α=                                                       (10) 

We can "read" this relation as: the robust-optimal reserve is the reserve structure C*, which 

maximizes overall robustness ),(ˆ TCα . 

 

Computationally, it is relevant to observe that the performance of our reserve is lowest when the 310 

probabilities are at the lower bounds of the intervals defined by any of the Eq. (3)-(5). Thus, for any 

given target T and reserve structure C, ),(ˆ TCsmα  may be calculated by using binary search to 

pinpoint the exact value of α, for which 0),( =− smsm TpCR for at least one species. Then, the 

robustness of the reserve is a minimum over these species-specific values (Eq. 8). If the robustness 

is <0, then reserve C fails to achieve the given target for at least one species. 315 

  

2.6 Opportuneness 

 

In info-gap terminology, “opportuneness” is defined as the lowest level of uncertainty that must be 

present for a sweeping success to be possible. Intuitively, locations with very uncertain biological 320 

value could be very bad but also possibly very good. Opportuneness aims at exploiting the potential 
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for better than expected biological outcome latent in such locations. This is expressed by the 

opportuneness function (the dual of the robustness function): 

,0),(maxmin:min),(ˆ
)~,(, 






 ≥












 −=

∈ ssmpUpms
ApCRTC

smα
αβ                                   (11) 

where β̂ is the opportuneness, and As is an aspiration level for species s. The aspiration level would 325 

be set to a value that indicates a very good conservation outcome. 

 

Low opportuneness means that the nominal estimates must be severely wrong before substantial 

success is possible, which is presented by a large value of ),(ˆ TCβ . In contrast, high opportuneness 

means that only small errors in nominal estimates are required for success to be possible, 330 

represented by a small value of ),(ˆ TCβ . Different reserve structures will have different robustness 

and opportuneness characteristics. In reserve planning, it may be a good strategy to sacrifice some 

biological performance or some robustness in return for high opportuneness. For example, an area 

that is remote and poorly surveyed may have high uncertainty about the biological value residing 

there. On the other hand, high uncertainty implies the possibility of the area proving much more 335 

valuable than what is presently assumed. 

 

3. Results 

 

3.1 Simple reserve planning for robustness using the expected number of occurrences 340 

 

For the purpose of demonstration, consider the following reserve design problem. Fifteen sites are 

available for inclusion in a reserve, and the political and economic exigencies allow for the 

selection of three of those sites. The decision-makers, after careful deliberation, have indicated that 

the goal of planning is to maximize the sum of the probability of occurrence (expected number of 345 
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populations) across three species in the reserve sites (performance function of Eq. 1a).  Estimates of 

the probability of occurrence for each species at each site are available, as are measures of 

uncertainty (Table 2).   

 

The optimal solution to this problem can be found by inspection, by first considering the situation 350 

where the target level for all species is set to 1.0.  Species Z is found only at sites 10, 11, and 12, 

and the solution requires taking any two of these sites to achieve the target. Since species X is not 

well represented in these sites, the third site in the reserve should have a high probability for 

species X, which suggests one of sites 1-4. Further inspection reveals that site 4 should never be 

chosen because site 1 has higher nominal probabilities and both lower and upper bounds of site 1 355 

exceed those of site 4. Tentatively, one could pick site 2, which has highest nominal probability for 

species X.  The reserve design [2 10 11] has a minimum aggregate sum of probability of 1.1 (it is 

limited by species Z). We can actually improve the performance by selecting site 12 instead of 11:  

reserve design [2 10 12] achieves a minimum aggregate sum of 1.3, which turns out to be the 

optimal reserve design, for this particular performance function, under perfect certainty. Note, 360 

however, that this solution is quite sensitive to uncertainty; in particular, the uncertainty associated 

with species Y at site 2 is quite high. If uncertainty is a concern, it might be better to choose reserve 

design [1 10 12]. This entails a small sacrifice in the probability of occurrence of species X, but 

affords some protection from uncertainty about the probability of occurrence of species Y. Thus, 

considering the uncertainty in the probabilities of occurrence motivates the need for info-gap 365 

decision theory. 

 

The solution to this reserve design problem using info-gap theory can be found by embedding the 

performance function (Eq. 1a) into Eq. (6), considering the uncertainty model (Eq. 3), and 

calculating the robustness, α̂ , for a range of target values T for the performance criterion.  (Note 370 
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that we are using only one model here, and the target value is not species-specific). The full info-

gap solution as a function of target level is shown in Fig. 2. The outer boundary of this figure, 

shown in bold, includes the Pareto-optimal solutions (e.g., Chankong and Haimes, 1968) - the 

solutions that cannot be improved on without either decreasing the reservation targets of the most 

vulnerable species or the robustness of the solution.  375 

 

Under perfect certainty, 0=α , the optimal design is the set of sites [2 10 12] and it achieves a 

performance target of 1.3, as noted above.  However, as the desire for robustness to uncertainty 

increases, two things happen: the guaranteed achievable performance T decreases, and different 

reserve designs become favored. For example, at 5.0ˆ =α , design [1 11 12] achieves the highest 380 

assured performance (of 1.05). With a low requirement for robustness, reserve design is primarily 

based on high nominal probabilities, whereas when high robustness (high α̂ ) is required, the 

solutions consist of sites having low standard errors (high certainty) for the nominal probabilities. 

Note that if the uncertainty weights, scw , represent standard errors in the estimates of psc, 5.0ˆ =α  

is roughly equivalent to the uncertainty represented by a 40% confidence interval. 385 

 

For various desired target levels, a number of the reserve designs are tied for maximum robustness, 

but additional information could be used to resolve those ties.  For example, at target level 1.0, 

highest robustness is achieved by two designs, [1,11,12] and [2,11,12], which each have 75.0ˆ =α . 

Yet further inspection reveals that these two reserve designs are equal only with respect to 390 

robustness of the most vulnerable species:  the designs have robustness vectors (1, 4, 0.75) and 

(0.75, 0.8, 0.75) for species X, Y and Z, respectively.  If we use the robustness of the next most 

vulnerable species to resolve the tie, this indicates that [1,11,12] is a better design than [2, 11, 12]. 

 

3.2 Opportuneness 395 
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Designs can be compared in terms of their nominal performance, as well as the robustness and 

opportuneness offered by them. Of the designs compared in Fig. 3, [1, 10, 12] is a clear overall 

winner: First, it has highest nominal performance, 1.3 (at α=0). Then in terms of robustness, [1, 10, 

12] is preferred with high targets and the design is never much less robust than the alternatives. 400 

Furthermore, [1, 10, 12] has highest opportuneness across all targets (lowest uncertainty required to 

allow the possibility of meeting the aspiration). 

  

The choice between [6, 10, 11] and [4, 11, 12] would not be so clear (figure 3). At high targets 

design [4, 11, 12] is more robust than [6, 10, 11] whereas with low targets the situation is reversed. 405 

In terms of opportuneness [6, 10, 11] is overall superior to [4, 11, 12]. Thus the choice between [4, 

11, 12] and [6, 10, 11] would depend on planning priorities. Design [4, 11, 12] is preferred when 

assuming robust planning and low to moderate errors in the models. Design [6, 10, 11] is preferred 

if robustness to high error is required, or if the planning objective is to gamble for the best possible 

outcome (i.e, to take highest opportuneness).  410 

 

In general, both robustness and opportuneness functions for different designs can either cross or not. 

If they do not cross, then one design is always preferred over the other, with the distance between 

the functions indicating the strength of preference. If the functions cross, then there is a reversal of 

preference at the crossing point.  415 

 

3.3 Probability of one occurrence 

 

An alternative formulation of the performance objective (Eq. 1b) asks for a set of sites that contains 

at least one population for each species with a very high probability. With the case of Ts=0.9999, 420 
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this target could be achieved, e.g., by two sites with probabilities 0.99 for each species or four sites 

with probabilities of 0.9. It is worth noticing that this formulation is extraordinarily sensitive to 

uncertainty. Because probabilities accumulate in a multiplicative manner in Eq. (1b), the achievable 

target will be very sensitive to errors in cell-specific probabilities. 

 425 

Going back to the example of Table 2 and looking at species X, it appears that choosing sites [1, 2 

and 3] would give a probability of 1-(1-0.9)(1-0.95)(1-0.85)=0.99925 of having at least one 

occurrence of the species. For conservation decision making this probability appears close enough 

to absolute certainty. The situation changes if uncertainty is acknowledged. At α-level 1.0 

(representing a maximum uncertainty of one standard error), we robustly achieve a probability of 1-430 

(1-0.8)(1-0.75)(1-0.75)=0.9875. At α=2.0 we achieve a probability of 0.9425, which may no longer 

be satisfactory. As in Fig. 2, higher uncertainty implies that a lower target can be achieved reliably. 

 

Furthermore, Eq. (1b) implicitly relies on the assumption that population dynamics (and 

probabilities of occurrences) are independent between selection units. With selection units of the 435 

scale relevant for land-use planning (~hectares), such independence cannot generally be expected 

for sites that are close to each other. Ovaskainen and Hanski (2003) find that if the degree of 

correlation between the occupancy states of two patches is ρ, then the effective number of 

independent populations in a system of N patches is Ne=N/[(N-1)ρ+1] instead of N. In our example, 

if sites 1-3 are close to each other and have fully correlated dynamics, then at α=1.0, we only 440 

achieve a probability of 0.8 of having an occurrence for the species. This simple analysis suggests 

that other sites farther away with lower correlation would be needed to achieve a higher target 

probability of occurrence. Thus, considering uncertainty may change our perception of the safety of 

our conservation plan, from the perspective of maintaining populations of species. 

445 
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3.4 Robust reserve planning using a benefit function 445 

 

The final reserve planning formulation we consider differs from the two previous ones in that no 

strict target (or aspiration) levels for individual species representations are given; rather, 

performance is measured by a continuous benefit function that is a weighted sum over species (Eq. 

1c). The optimal reserve structure based on nominal distributions is the one that gives the highest 450 

value of the summed continuous benefit functions; let’s assume this optimal value is V*.  (Finding 

V* is an optimization task in itself.)   

 

The optimal value, V*, is obtainable with zero robustness (α̂ =0), that is, with no error in the 

nominal distributions p~ .  However, we may be willing to forgo some value in favor of robustness 455 

to uncertainty in the design.  That is, while the maximum performance is V*, there may be some 

lower level, say (1 – γ)V*, that is satisfactory.  Our task, then, is to find the reserve design that 

maximizes robustness while achieving this satisfactory level of performance.  We use info-gap 

methods to do this, replacing Eq. (7) with 
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where γ∈ (0,1) is the parameter specifying how much value we are willing to give up in return for 

robustness. 

 

4. Discussion 

 465 

The presence or persistence of biological value in reserve sites is uncertain for many reasons, 

including observation error, inaccuracies of distribution modeling, spatial population dynamics, the 

extinction debt, anthropogenic threat, succession, land-use changes and climate change. In general, 
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most of these factors are ignored in computational reserve design, which may be based directly on 

presence-absence data or on model-predicted probabilities of occurrence. It follows that even a 470 

simple uncertainty analysis might reveal important weaknesses in reserve candidates. Even so, 

uncertainty analysis is all but missing from reserve selection methodology. The aim of the present 

work is to lay out a methodological basis that can be used as a framework for implementing 

uncertainty analyses in reserve planning. We point out that traditional reserve selection objective 

functions need to be modified to include effects of uncertainty. Actual search for the robust-optimal 475 

reserve structure is still a site selection optimization problem, which can be solved using typical 

optimization and approximation techniques, including stepwise heuristics, integer-programming 

and stochastic global search. 

 

Uncertainty analysis has the potential to change conservation decisions. Do we think the 480 

conservation outcome is good enough based on best estimates? Are we sure the conservation 

outcome is good enough? These are different questions. Of two options with equal or near equal 

nominal value, the one which is more certain is better: this is old news in economics, but the 

message applies equally to conservation. Essentially, our uncertainty analysis is about 

understanding and quantifying tradeoffs between apparent biological value and the certainty of that 485 

information (see Table 1). To reiterate, best places are sure to have high value, robustness needs 

attention when both value and uncertainty are high, and opportuneness exists when apparent value 

is low but uncertain. 

 

The present work concentrates on a couple of relatively simple reserve selection formulations, and 490 

we focus our uncertainty analysis on errors in predicted probabilities of occurrence from habitat 

models. However, we emphasize that the utility of the info-gap theory is not limited to these cases.  
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There are many other quantities that may be used to improve reserve planning algorithms and that 

are uncertain. For instance, Moilanen et al. (2005) outlined a method to aggregate reserves that 495 

avoids the use of an arbitrary boundary length penalty. Instead, it produces aggregated reserves 

based on distributions that have been smoothed according to species-specific dispersal capabilities. 

However, dispersal distance distributions are notoriously difficult to estimate correctly (e.g., 

Thomas et al., 2002).  

 500 

Dispersal is often handled via normalized dispersal kernels (e.g., Kot, 1996), which specify the 

distribution of dispersal distances for individuals leaving a focal site. One common dispersal kernel 

is the negative exponential, exp(-αsdij), where αs is a species-specific parameter describing the 

width of the dispersal kernel. There are two ways to info-gap this. In the simplest case, one could 

say that our estimate of αs uncertain, and the question would be, is our conservation decision robust 505 

to this uncertainty. Alternatively, one could specify that both the parameter and the function itself 

are uncertain. So, the negative-exponential with a given parameter would be the nominal estimate 

of the dispersal kernel, but we could specify that the shape of the function is uncertain. Published 

info-gap formulations include cases where the uncertainty model is, for example, a family of 

monotonously decreasing normalized functions, which have a bounded deviation from a given 510 

nominal estimate (see Ben-Haim, 2006). Such a formulation would be appropriate for analyzing the 

effects of uncertainty in the (tails of the) dispersal kernel.  

 

Distance-dependent correlation in population dynamics (or environmental noise) is another factor 

which may have great impact in PVA analyses or reserve planning (e.g., Moilanen and Cabeza, 515 

2005). A decaying-by-distance correlation function would be a very similar, although even more 

uncertain, target for info-gap than a dispersal kernel. These functions may be troublesome to 

estimate because obtaining long time series of reliable large-scale data for model fitting is very 



 22

hard. Furthermore, spatial population dynamics may be most severely affected by rare events (very 

good or very bad years), which are strong and correlated at large scales  (e.g., Thomas et al., 2002). 520 

Data of such events is rarely available and thus the correlation scale and strength of environmental 

noise would be a very uncertain quantity that often gets ignored or underestimated in spatial 

population models or reserve planning. 

   

Info-gap decision theory provides a way to guard against epistemic uncertainty, but it does not 525 

relieve the decision-maker from the challenge of setting clear objectives. The choice of the 

performance function is not trivial, nor is it the purview of the consulting scientist. Rather, it is an 

expression of the political and social values governing the reserve design. There are multiple 

elements of this expression of values: the choice of the performance function, Rsm(C, p); the choice 

of the target values, Tsm; the choice of species (or biodiversity elements) to consider in the 530 

evaluation; and the method used to balance species against each other (a minimum function in Eq. 

(7), a fixed weighting in Eq. (12), and alternatives exist). Indeed, one of the central lessons of info-

gap theory—that satisficing is more robust than optimization—forces consideration of the ultimate 

objectives of reserve design. In this endeavor, it is important to identify which elements are the 

jurisdiction of scientific assessment, and which are the jurisdiction of political discourse. 535 

 

In summary, we recommend info-gap uncertainty analysis as a standard practice in computational 

reserve planning. The need for robust reserve plans may change the way biological data are 

interpreted. It also may change the way reserve selection results are evaluated, interpreted and 

communicated. Information-gap decision theory provides a standardized methodological 540 

framework in which implementing reserve selection uncertainty analyses is relatively 

straightforward. We believe that alternative planning methods that consider robustness to model 
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and data error should be preferred whenever models are based on uncertain data, which is probably 

the case with nearly all data sets used in reserve planning. 

 545 
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Table 1. Symbols and notation. 

 635 

Symbol Explanation 

 

s  index for species 

c  index for cell (i.e., selection unit, site) 

m  index for model  640 

C  set of indexes for cells, which together define a reserve selection 

scmp   true probability of occurrence for species s in cell c according to model m 

scmp~   nominal distribution: our best estimate for scmp  

scmw  uncertainty weight corresponding to scmp~ . It could be, for example, the standard 

error or length of the confidence interval for scmp~ . 645 

p~   the vector of scmp~  values 

α  horizon of uncertainty 

( )pU ~,α  uncertainty model centered around p~ with horizon of uncertainty α 

Ts  target level of representation for species s 

( )pCRsm ,  representation level of species s in reserve C according to model m and probability  650 

vector p 

α̂ =α̂ (C, T) overall robustness of reserve design C over all models and species with targets T 

β̂ (C, T) opportuneness value of reserve design C over all models and species with targets T 

*C   robust-optimal solution 

655 
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Table 2. Data for reserve selection example. Nominal probabilities of occurrence (p), and measures 655 

of uncertainty for three species at fifteen candidate sites. Non-symmetric error intervals are given 

with wL and wU giving hypothetical relative error rates related to lower and upper halves of 

confidence intervals, respectively. 

 
 660 
Site Species X  Species Y  Species Z 
  c pXc wXc,L wXc,U pYc wYc,L wYc,U  pZc wZc,L  wZc,U 
 
1 0.9 0.1 0.05 0.5 0.1 0.1 0 0 0.5 
2 0.95 0.2 0.03 0.5 0.5 0.3 0 0 0 665 
3 0.85 0.1 0.04 0.5 0.5 0.5 0 0 0 
4 0.8 0.1 0.08 0.4 0.1 0.3 0 0 0 
5 0.7 0.3 0.1 0.4 0.3 0.1 0 0 0 
6 0.6 0.3 0.2 0.5 0.5 0.3 0 0 0 
7 0.5 0.3 0.3 0.5 0.1 0.4 0 0 0 670 
8 0.4 0.5 0.5 0.4 0.5 0.5 0 0 0 
9 0.4 0.1 0.1 0.4 0.1 0.2 0 0 0 
10 0.3 0.1 0.15 0.5 0 0.1 0.4 0.1 0.4 
11 0.1 0 0.05 0.6 0 0.2 0.7 0.3 0.2 
12 0.1 0 0.1 0.3 0 0.1 0.9 0.5 0.1 675 
13 0 0 0.2 0.4 0 0.05 0 0 0 
14 0 0 0.4 0.4 0 0.1 0 0 0 
15 0 0.2 0.2 0.4 0 0.3 0 0 0 
 

680 
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    Moilanen et al. Fig. 1. 685 

 

Fig. 1. A categorization of four kinds or sites with different implications for conservation decision 

making.  

positive 
surprises

negative
surprises

avoidimportant

positive 
surprises

negative
surprises

avoidimportant

high                      low

estimated probability 
of occurrence

certainty of
information

high

low

robustness
requirement opportunity

high                      low

estimated probability 
of occurrence

certainty of
information

high

low

robustness
requirement opportunity



 31

 

 690 

    Moilanen et al. Fig. 2. 

 

Fig. 2. Robustness for different solutions for the simple reserve planning example (Table 2). The 

lines correspond to different solutions. At different robustness requirements (α) different solutions 

are robust-optimal. Alternative equal solutions are in brackets, and equally exchangeable sites in 695 

solutions are listed within parentheses. With low values for α high nominal probabilities are 

characteristic for the selected sites. With high α sites with moderate probabilities but low 

uncertainty (small standard errors) dominate the solution.  
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Fig. 3. Comparison of three reserve designs in terms of robustness and opportuneness. Results for 

designs [1, 10, 12], [6, 10, 11] and [4, 11, 12] are marked by solid, dotted and dashed lines, 

respectively. For each design, the lower half of the line shows robustness (α̂ , eqn 7) of the design 

at the respective target value. The upper half of the line shows opportuneness ( β̂ , eqn 11), the 

minimum uncertainty required to allow the possibility of meeting the aspiration. 705 

 

 

 


