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When used in conjunction with appropriate extrapolation schemes, full configuration interaction

(FCI) calculations employing systematic sequences of spherical Gaussian primitives with even-

tempered exponents shared by functions of different angular momenta are capable of affording

ground-state energies of the two-electron harmonium atoms with a few-mHartree accuracy that is

sufficient for calibration and benchmarking of approximate electron correlation theories of

quantum chemistry. The present approach, which is slated for use in future computations of

electronic properties of harmonium atoms with between three and five electrons, calls for a series

of 15 FCI runs involving basis sets with between four and eight Gaussian primitives of the

sp, spd and spdf type. Its applicability is limited by linear dependencies among basis functions

that become significant for small (i.e. less than 0.03) values of the force constant.

1 Introduction

Exactly (quasi-)solvable models of quantum mechanics that
pertain to real physical systems are few and far between.
Among nontrivial instances of such models, the two-electron
nonrelativistic harmonium atom,1–3 defined by the Hamiltonian

Ĥ ¼ 1

2

XN

i¼1

ð#r̂2

i þ o2r2i Þ þ
XN

i4j¼1

1

rij
ð1Þ

withN= 2 (here and in the following the atomic units are used),
has attracted much attention from both chemists and physicists.
Since harmonium atoms differ from their ordinary (Coulombic)
counterparts only in the external potential, they are ideally suited
for testing, calibration, and benchmarking of approximate
electronic structure methods of quantum chemistry. Indeed, the
two-electron harmonium (especially with the force constanto set
to 1/2) has been widely employed in studies of various quantities
associated with the density functional theory (DFT).4–13 The
ground-state energies and wavefunctions of this species are
available in closed analytical forms for certain (infinitely many)
values of o2 and as very accurate results of numerical
calculations and interpolating approximates otherwise.3

Despite being of even greater interest, harmonium atoms
with N 4 2 have been studied far less than their two-electron
counterparts. With analytical solutions of the respective
Schrödinger equations unknown, the investigations published
so far have either relied on approximate methods or concerned
asymptotic limits. Thus, the ground-state properties of the
three-electron harmonium have been estimated with the help
of an approximate pair model and computed for several values
of o with moderate-quality electron correlation methods.14

The ground-state energies and wavefunctions of the three- and
four-electron species have been analytically determined at the
strong-correlation limit of o - 0.15,16 In addition, energies of
several states of harmonium atoms have been approximately
computed with Monte-Carlo approaches for 2r Nr 8 and a
few values of o.17

The availability of highly accurate electronic structure data
for many-electron harmonium atoms would not only provide
the means for testing approximate electron-correlation
methods on more complicated systems (note that many of
these methods become exact in the case of only two electrons
being present) but also aid in the reliable theoretical description
of three-dimensional quantum dots.18 These species, which
result from confinement of electrons in parabolic potentials
and thus are identical with harmonium atoms, undergo
Wigner crystallization at the strong-correlation limit, forming
the so-called spherical Coulomb crystals.19–22 Such crystals
emerge in diverse branches of physics including, to name a
few, studies of dusty plasmas23 and ultra-cold ions in electro-
magnetic traps.24,25

In light of these facts, it would be desirable to develop a
robust numerical approach to the computation of electronic
properties of harmonium atoms. Such an approach should
produce data of benchmark quality for species with diverse
(though small) numbers of electrons and magnitudes of the
force constant spanning a broad range. Preferably, it should
employ only the widely available quantum-chemical software.
The full configuration interaction (FCI) method26 used in
conjunction with Gaussian basis sets readily satisfies these
criteria. In fact, FCI calculations on two-dimensional
quantum dots have been already reported to produce data of
useful accuracy.27

The research reported in this paper aims at answering
several questions. First of all, it determines the magnitudes
of o for which sufficient accuracy can be attained with reasonable
computational effort. Second, it addresses the issue of the
optimal choices of the basis-set size, the maximum value of the
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angular momentum, and the exponents of the primitives
involved. Third, it tests the viability of extrapolation schemes
to the complete-basis-set (CBS) limit.

The present benchmarks open an avenue to calculations on
harmonium atoms with between three and five electrons, the
results of which will be presented elsewhere.

2 Numerical procedures

All the calculations described in this paper have employed
uncontracted basis sets which, for each value of the angular
momentum between 0 andL (0r Lr 3), involve equal numbers
N (2 r N r 8) of spherical Gaussian primitives with exponents
zkL,N (o) that are even-tempered28 according to the formula

zkL;NðoÞ ¼
o
2
aL;NðoÞ½bL;NðoÞ(

k#1; 1 ) k ) N ð2Þ

The parameters aL,N(o) and bL,N(o), which depend on N and
the maximum angular momentum L but not on the angular
momenta of individual primitives, have been optimized (to
within the relative accuracy of 10#6) by minimizing the
FCI energies EL,N(o) with a combination of simplex and
Newton-Raphson methods.

The computed energies EL,N(o) have been extrapolated to
the respective N-N limits EL(o) by fitting the actual energy
values for N = 4, 5, 6, 7 and 8 with the double-exponential
expression

EL;NðoÞ ¼ ELðoÞ þ A1;LðoÞe#l1;LðoÞN

þ A2;LðoÞe#l2;LðoÞN ð3Þ

which generalizes the Dunning extrapolation.29 The resulting
system of five non-linear equations has been solved analytically
with the help of the Ramanujan algorithm.30

In turn, the estimates EL(o) have been extrapolated to the
respective CBS limits E(o) by fitting the values of EL(o) for
L = 1, 2 and 3 with the expression31–33

ELðoÞ ¼ EðoÞ þ BðoÞ
½Lþ CðoÞ(3

ð4Þ

It should be noted that, although being significantly closer to
the exact energies than their unextrapolated counterparts, the
estimates EL(o) and E(o) are not variational.

All the calculations have been carried out by computing the
respective one- and two-electron integrals with the Gaussian03
suite of programs34 and inputting them into the FCI program
of Knowles and Handy.35

3 Results

The force constant o measures the magnitude of electron
correlation effects in harmonium atoms. In the two-electron
species, the critical force constant ocrit E 0.04012 constitutes
the boundary between the weak- and strong-correlation
regimes.3 For o 4 ocrit, the system is essentially a set of two
three-dimensional harmonic oscillators perturbed by Coulombic
coupling. Consequently, it is amenable to description within
the perturbation theory, which yields3

E(o) = 3o + (2/p)1/2o1/2 + D + O(o#1/2) (5)

where

D = #(2/p) [1 # (p/2) + ln2] E #0.0779 (6)

for the ground-state energy. For o o ocrit, the system has the
characteristics of the respective Coulomb crystal perturbed by
quantum effects due to kinetic energy. The different natures of
the two regimes are reflected in the ground-state electron
densities r(r), which at r = 0 possess maxima for o 4 ocrit

and minima for o o ocrit, the transition being accompanied
by changes in the patterns of the natural orbital occupancies.3

Although the optimized basis-set parameters aL,N(o) and
bL,N(o) vary smoothly with o (Fig. 1 and 2), the calculations
become progressively more difficult as o becomes smaller than
ocrit. This is due to the extent of linear dependences among the
primitives with even-tempered exponents increasing rapidly as
bL,N(o)- 1, which is exactly the behavior observed within the
strong-correlation regime. Apparently, reproduction of electron
densities that exhibit both minima (for r = 0) and maxima
(for some r 4 0) requires combinations of exponential
functions with almost degenerate exponents. In practice,
FCI calculations with the presently employed Gaussian basis
sets are found to be limited to magnitudes of force constant
greater than ca. 0.03. This conclusion is likely to remain valid
for harmonium atoms with more than two electrons.
The dependences of aL,N(o) and bL,N(o) on o follow

simple empirical equations. In particular, both the values of
#ln(#No1/2lnaL,N) (Fig. 1) andNlnbL,N (Fig. 2) are accurately
approximated for N Z 4 by second-order polynomials in
o#1/2, the quadratic contributions diminishing with increasing
N. For basis sets composed of two and three primitives, the
dependences are less regular, making the corresponding
FCI energies EL,2(o) and EL,3(o) unsuitable for extrapolation
to their N - N limits. Thanks to careful optimization of
aL,N(o) and bL,N(o) for each o, these limits are approached
quite rapidly (Table 1). For example, the present calculations

Fig. 1 The dependence of #ln(#No1/2lna3,N) on o#1/2 for L = 3.

The respective results for L = 0, 1, and 2 are qualitatively identical.

The solid lines are fitted second-order polynomials in o#1/2.
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yield E0,8(1/2) = 2.0343349, which is only 10#7 higher than
that previously obtained with 16 Gaussian functions.36

Further improvements in the accuracy of the FCI energies
are afforded by extrapolations, first to the limit of N - N
[eqn (3)] and then to the CBS limit [eqn (4)]. The first
extrapolation produces energies EL(o) that comprise partial-
wave contributions with angular momenta not greater than L
to electron correlation (Table 2). Of particular interest are
values of E0(o), which account for the radial correlation only.
These data, computed for 20 different values of o, agree to all
digits with the previously published unextrapolated values36

for o ¼ 5#
ffiffiffiffi
17

p

24 , whereas in four cases (for o = 1/10, 1/2, 10,
and 100) they are slightly lower. At the weak correlation limit
of o - N, the computed EL(o) conform to eqn (5) with
D = #0.0322,#0.0683,#0.0728, and #0.0740 for L = 0, 1, 2,
and 3, respectively.

The additional energy lowerings due to the N - N extra-
polation are quite significant, reaching 6 * 10#6 for large force
constants (Fig. 3). It should be noted that attempts to include
the values of EL,2(o) and EL,3(o) (by augmenting the r.h.s. of
eqn (3) with one additional exponential function) produce
complex fitting parameters, which in turn yield EL(o) with
erratic dependences on o. This behavior can be traced

back to the less regular variation of these quantities with o
(see above).
Extrapolation to the CBS limit concludes the present

approach to the calculation of highly accurate energies of
harmonium atoms. The assumed dependence of EL(o) on L
[eqn (4)] follows from the well-known expression for the
partial-wave contributions to the total energies of atoms.31–33

The computed values of the parameter C(o) (Table 3) are of
the order of unity, confirming the validity of the extrapolation
formula. Inspection of the data compiled in Table 4 reveals
that the final estimates E(o) are indeed very close to their exact
counterparts Eexact(o) obtained from highly accurate numerical
calculations.3 In general, the relative error in the ground-state
energy is found to increase (although not monotonically)
with decreasing o. For the three exactly solvable cases (i.e.
for o = 1/2, 1/10, and 5#

ffiffiffiffi
17

p

24 ), the absolute errors amount to
2.7 * 10#6, 0.9 * 10#6, and 3.2 * 10#6, respectively.

4 Discussion and conclusions

When used in conjunction with appropriate extrapolation
schemes, full configuration interaction (FCI) calculations
employing systematic sequences of spherical Gaussian primitives
with even-tempered exponents shared by functions of different

Fig. 2 The dependence ofN lnb3,N on o#1/2 for L=3. The respective

results for L = 0, 1, and 2 are qualitatively identical. The solid lines

are fitted second-order polynomials in o#1/2.

Table 1 The optimized basis-set parameters aL,N(o) and bL,N(o) [eqn (2)], and the corresponding FCI energies EL,N(o) for o = 1/2

N a0,N(1/2) b0,N(1/2) E0,N(1/2) a1,N(1/2) b1,N(1/2) E1,N(1/2) a2,N(1/2) b2,N(1/2) E2,N(1/2) a3,N(1/2) b3,N(1/2) E3,N(1/2)

2 0.898029 2.009527 2.0346069 0.921854 1.843789 2.0031763 0.918244 1.928701 2.0014523 0.916622 1.965956 2.0011404
3 0.916926 1.869962 2.0343778 0.931256 1.750024 2.0027231 0.928348 1.813974 2.0008693 0.926757 1.849451 2.0004754
4 0.926391 1.760091 2.0343470 0.939376 1.658507 2.0026460 0.936816 1.708176 2.0007632 0.935242 1.738049 2.0003479
5 0.934293 1.667381 2.0343388 0.944925 1.591401 2.0026266 0.942742 1.631419 2.0007360 0.941332 1.656181 2.0003141
6 0.940191 1.597030 2.0343363 0.949216 1.540707 2.0026203 0.947326 1.573196 2.0007271 0.946075 1.593691 2.0003028
7 0.944974 1.541756 2.0343353 0.952572 1.500670 2.0026180 0.950968 1.527403 2.0007237 0.949892 1.544341 2.0002984
8 0.948858 1.497469 2.0343349 0.955411 1.467665 2.0026170 0.953994 1.490021 2.0007222 0.953091 1.503934 2.0002965
Na 2.0343345 2.0026161 2.0007208 2.0002946

a The extrapolated energies E0(1/2), E1(1/2), E2(1/2), E3(1/2) (see Table 2).

Table 2 The extrapolated FCI energies EL(o)

o E0(o) E1(o) E2(o) E3(o)

0.03 0.2048423 0.1872390 0.1872166 0.1872131
0.033 0.2202746 0.2020557 0.2020386 0.2020337
0.036 0.2354390 0.2166582 0.2166424 0.2166358
0.0365373a,b 0.2381290 0.2192527 0.2192367 0.2192297
0.04 0.2552949 0.2358356 0.2358161 0.2358069
0.05 0.3034506 0.2825685 0.2825213 0.2825038
0.06 0.3499504 0.3279304 0.3278382 0.3278107
0.08 0.4394013 0.4156531 0.4154468 0.4153963
0.1b 0.5254738 0.5004581 0.5001264 0.5000511
0.15 0.7312496 0.7041286 0.7034928 0.7033557
0.2 0.9284684 0.9000238 0.8991221 0.8989284
0.3 1.3079338 1.2778695 1.2765446 1.2762559
0.4 1.6750883 1.6440424 1.6423981 1.6420337
0.5b 2.0343345 2.0026161 2.0007208 2.0002946
1.0 3.7672141 3.7338360 3.7311874 3.7305644
2.0 7.0971063 7.0625814 7.0592759 7.0584674
5.0 16.752298 16.716790 16.712809 16.711796
10.0 32.491021 32.455033 32.450678 32.449546
100.0 307.94625 307.90950 307.90448 307.90313
1000.0 3025.1986 3025.1616 3025.1563 3025.1549

a 5#
ffiffiffiffi
17

p

24 . b Values of o for which closed-form expressions for ground-
state wavefunctions are known.2
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angular momenta are capable of affording ground-state
energies of the two-electron harmonium atoms with a few-m
Hartree accuracy that is sufficient for calibration and bench-
marking of approximate electron correlation theories of
quantum chemistry. Although the present prescription, which
calls for 15 FCI runs, each involving optimization of the basis-
set parameters, is not competitive in terms of computational
efficiency for the two-electron species, it opens an avenue to
systematic, fully automated computations of electronic
properties of harmonium atoms with greater numbers of
particles. Since in those cases the errors in the energy estimates
are expected to be comparable to those presently encountered,
this approach is slated to constitute a superior alternative to

Monte-Carlo calculations, accuracy of which rapidly degrades
with the increasing number of particles.17

Further research is necessary to understand the observed
dependences of the optimal basis-set parameters aL,N(o) and
bL,N(o) on the force constant o. Being able to predict values of
these quantities would significantly decrease numerical effort
and thus extend the usefulness of the present approach to even
larger harmonium atoms.
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