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Comprehensive benchmarking of density matrix
functional approximations†‡

Mauricio Rodrı́guez-Mayorga,ab Eloy Ramos-Cordoba, ac Mireia Via-Nadal,a

Mario Pirisad and Eduard Matito *ad

The energy usually serves as a yardstick in assessing the performance of approximate methods in

computational chemistry. After all, these methods are mostly used for the calculation of the electronic

energy of chemical systems. However, computational methods should be also aimed at reproducing other

properties, such strategy leading to more robust approximations with a wider range of applicability. In this

study, we suggest a battery of ten tests with the aim to analyze density matrix functional approximations

(DMFAs), including several properties that the exact functional should satisfy. The tests are performed on

a model system with varying electron correlation, carrying a very small computational effort. Our results

not only put forward a complete and exhaustive benchmark test for DMFAs, currently lacking, but also

reveal serious deficiencies of existing approximations that lead to important clues in the construction of

more robust DMFAs.

1 Introduction

Density matrix functional theory (DMFT) is among the compu-
tational methods that have experienced a most important
advance in the last years. Its foundations are more than
forty years old1 but the most important progress in the field
has occurred in the last twenty years.2,3 Namely, the use of
the natural orbital representation of the first-order reduced
density matrix has brought many4–22 density matrix functional
approximations (DMFAs) within the context of what is known in
the literature as natural orbital functional theory. Some of these
functionals provide very accurate energies, sometimes competing
with high-level electronic structure methods.23–27

Despite the success, the account of dynamic correlation still
poses a great challenge for DMFAs2,14,23 and calls for means to
separate dynamic and nondynamic correlation within DMFT.22,28,29

The development of more accurate DMFAs also depends on
appropriate benchmark tests and, to our knowledge, only a
recent paper addresses the validation of most DMFAs in the

literature, comparing their performance in the energy calcula-
tion of few-electron systems with different electron correlation.23

Since functionals are mostly used to calculate the electronic
energy of chemical systems, it does not strike as a surprise that
the energy usually serves as a yardstick in benchmarking
DMFAs. However, it is becoming commonly accepted that energy
functionals should be also aimed at reproducing other properties30

in order to construct more robust approximations with a wider
range of applicability. In this line, some of us have recently
tested the spin structure of several DMFAs27,31 using the local
spin32 as a benchmarking tool.

In the present study, we suggest a battery of ten tests to
analyze DMFAs, including several properties that the exact
functional should satisfy. We submit fifteen functionals to this
series of constrictive tests using a model system with varying
electron correlation, the two-electron harmonium atom,33 carrying
a very small computational effort.

Although the construction of computational methods that
can tackle both one- and two-electron systems is relevant in
other frameworks such as density functional theory,34 it is
believed that they do not pose a serious challenge in DMFT.
The reason behind this idea is the existence of a quasi-exact
closed-shell two-electron expression of the second-order
reduced density matrix in terms of natural orbitals.35 However,
there are several facts that go against this idea. First of all,
most DMFAs do not reduce to the quasi-exact expression for
two-electron systems and, therefore, their calibration is justi-
fied. Second, the latter expression depends on some phase
factors (vide infra) that change importantly under certain
circumstances,36–39 including the strong-correlation regime of
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the system studied in this work. Finally, whereas energetic
differences between the quasi-exact result and the exact one
are often negligible, there are several properties studied in this
paper that show non-negligible differences for the quasi-exact
functional.

All in all, we shall see that the set of tests suggested in this
work poses a great challenge for DMFAs and reveals various
defects of the approximations that were hindered by a reason-
able performance in energy benchmark tests. The current
strategy can be easily extended to a larger number of electrons,
thus setting new challenges for the few DMFAs that reduce
to the quasi-exact expression. We are confident that DMFT
developers will benefit from the results obtained in this paper
and will use this test set as a means to construct more robust
approximations.

2 Methodology

The second-order reduced density matrix (2-RDM),40,41

r2ðx1; x2; x
0
1; x

0
2Þ ¼ NðN � 1Þ

ð
dx3 � � �

ð
dxN

� C�ðx 01; x
0
2; x3; . . . ; xNÞCðx1; x2; x3; . . . ; xNÞ;

(1)

where we have adopted McWeeny’s normalization41 and x = (r,s),
is the simplest function in terms of which the explicit expression
of the electronic energy of a physical system is known.42 Hence,
approximations to the 2-RDM in terms of simpler quantities
provide estimates of the energy that, in principle, should reduce
the associated computational cost. Most quantum mechanical
calculations employ orbital basis sets, and it is thus costumary
to express the 2-RDM in a given orbital basis. In this paper, we
adopt the basis of natural orbitals,

2Dss0
ij;kl ¼ C a

y
isa
y
js0als0aks

��� ���CD E
; (2)

where a
y
is (ais) is the creation (annihilation) operator acting over

natural orbital i with spin s; hereafter we will refer to 2Dss0
ij;kl as

the two-density matrix (2-DM). The spinless 2-RDM is a twelve-
variable function, whereas the 2-DM is a four-index tensor of
dimension M4. In the present study we focus on 2-DM approx-
imations built from natural occupation numbers (ONs), {ni}

M
i=1,

where M is the size of the basis set.1–3 The approximate 2-DMs
here studied are built upon the simplification of the 2-DM being
a sparse matrix with only three types of non-zero elements:
2Dss

ij,ij and 2Dss0
ij;ij ,

2Dss
ij,ji and 2Dss0

ij;ji, and 2Dss0
ii;jj . The opposite-spin

elements are actually sufficient to express the exact 2-DM of a
two-electron closed-shell system (see eqn (12)). Each ON-based
2-DM approximation actually provides a DMFA. Among the DMFAs,
the simplest one is the single-determinant (SD) approximation,
whose expression reads40

2DSD,ab
ij,kl = na

i nb
j dikdjl (3)

for the opposite-spin elements and

2DSD,aa
ij,kl = na

i na
j (dikdjl � dildjk) (4)

for the like-spin ones. Upon optimization of natural orbitals
and ONs, the SD approximation produces the Hartree–Fock
energy. In this work, we optimize neither the orbitals nor the
occupations (vide infra) and, in order to avoid confusion with
the Hartree–Fock method (which does not employ fractional
occupancies), we have preferred to call this approximation SD.
We will consider 15 DMFAs, all of which are JKL-only func-
tionals, i.e., functionals that only need Coulomb, exchange and
time-inversion two-electron integrals.43 We have classified
them in two groups: those that only modify the exchange part
of the functional and those that modify both the exchange
and Coulomb parts. The latter group corresponds to the func-
tionals developed by one of us and known as Piris natural
orbital functionals (PNOFs). The first group of DMFAs uses
eqn (3) and

2DX,aa
ij,kl = na

i na
j dikdjl � fX(na

i ,na
j )dildjk, (5)

the expression of fX(ni,nj) determining the functional.44 These
functionals are JK-only functionals but, in practice, they use
the simple SD approximation for the terms involving two-
electron Coulomb integrals (J) and, therefore, they will be
referred as K-functionals hereafter. Their expressions are collected
in Table 1.

PNOFs actually correspond to approximations to the
two-particle cumulant matrix (2G),11 which is defined as the

Table 1 f (ni,nj) functions (see eqn (5)) that define the K-functionals. In a
two-electron closed-shell system FL = 1

DMFA f (ni,nj) Parameters Ref.

SD ninj 40
MBBa (ninj)

1/2 4 and 5
BBC2b ni i ¼ j

� ninj
� �1=2

iaj ^ i 2 FL;1ð Þ ^ j 2 FL;1ð Þ
ninj iaj ^ i 2 1;FL½ � ^ j 2 1;FL½ �
ninj
� �1=2

Otherwise

10

CAc [ni(1 � ni)nj (1 � nj)]
1/2 + ninj 7

CGAd
ninj þ ni 2� nið Þnj 2� nj

� �� �1=2
2

9

MLe

ninj
a0 þ a1ninj

1þ b1ninj

a0 = 126.3101 13
a1 = 2213.33
b1 = 2338.64

MLSICf

ninj
a0 þ a1ninj

1þ b1ninj
iaj

ninj i ¼ j

a0 = 1298.78 13
a1 = 35114.4
b1 = 36412.2

GUg
ninj
� �1=2

iaj
ninj i ¼ j

6

POWERh (ninj)
a 15–17

a Introduced independently by Müller and by Buijse and Baerends.5,8

b The BBC2 functional coincides with BBC110 for a two-electron closed-
shell system. c Csányi and Arias functional. d Csányi, Goedecker and
Arias functional. e Marques and Lathiotakis functional. f Marques
and Lathiotakis functional corrected for self-interaction. g Goedecker
and Umrigar functional. h The a parameter of the POWER functional
is fitted for each o, a(o), in order to reproduce the exact Vee value (see
the ESI for further details).
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difference between the exact 2-DM and the SD approximation,45

2Dss0
ij;kl ¼ 2DSD;ss0

ij;kl þ 2Gss0
ij;kl : (6)

The different PNOF expressions are constructed in terms of
the auxiliary D and P matrices according to the following
recipe:

2GPNOFn,ab
ij,kl = �Dab

ij dikdjl + Pikdijdkl, (7)

2GPNOFn,aa
ij,kl = �Daa

ij (dikdjl � dildjk). (8)

Table 2 collects D and P matrices for all PNOFs. In all
PNOFs Daa

ij = Dab
ij � Dij excepting PNOF3 that takes Daa

ij = 0.
In this work, approximate 2-DMs are constructed from
full configuration interaction (FCI) ONs and, therefore, the
original PNOF5 and PNOF6,20,21 which impose perfect-pairing
constraints in the ONs, cannot be employed. Alternatively, in

this paper we employ the extended versions of PNOF546 and
PNOF647 that are free of these restrictions for a closed-shell
two-electron system. Hereafter, the names PNOF5 and PNOF6
refer to the extended versions of these DMFAs. Unlike
the original PNOF6, the extended version of PNOF6 can be
actually calculated in three different ways, depending on the
definition of Sg, which will be called down (d), up (u) and
average (h),

Sd
g ¼

XFL
i¼1

gi; Su
g ¼

XM
i4FL

gi; Sh
g ¼

Sd þ Su

2
; (9)

where

gi ¼ ni 1� nið Þ þ ki2 � ki
XFL
i¼j

kj ; (10)

Table 2 D and P non-zero matrix elements. The diagonal elements coincide for all functionals: Dii = ni
2 and Pii = ni. SF ¼

PFL
i¼1

hi , Tij = ninj � Dij, hi = 1 � ni,

and Sx
g and gi are defined in eqn (9) and (10), respectively. Og is the subspace containing orbital g, which is below the Fermi level, and several orbitals above

the Fermi level. In a two-electron closed-shell system FL = 1

Dij Pij Cases (i a j) Ref.

PNOF2 hihj
ffiffiffiffiffiffiffiffi
ninj
p þ

ffiffiffiffiffiffiffiffi
hihj

p
þ Tij i 4 j A [1,FL] 12

njhi
1� SF

SF

� 	 ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
njhi

p
þ Tij i A [1,FL] 4 j A (FL,M]

nihj
1� SF

SF

� 	 ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
nihj

p
þ Tij j A [1,FL] 4 i A (FL,M]

ninj Tij i 4 j A (FL,M]

PNOF3 hihj ninj �
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A [1,FL] 18

njhi
1� SF

SF

� 	
ninj �

ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
njhi

p
i A [1,FL] 4 j A (FL, M]

nihj
1� SF

SF

� 	
ninj �

ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
nihj

p
j A [1,FL] 4 i A (FL,M]

ninj ninj þ
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A (FL, M]

PNOF4 hihj �
ffiffiffiffiffiffiffiffi
hihj

p
i 4 j A [1,FL]

njhi
1� SF

SF

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hinj

SF

� 	
ni � nj þ

hinj

SF

� 	s
i A [1,FL] 4 j A (FL,M]

nihj
1� SF

SF

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjni

SF

� 	
nj � ni þ

hjni

SF

� 	s
j A [1,FL] 4 i A (FL,M]

ninj
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A (FL,M]

PNOF5 ninj � ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i = g 3 j = g) 20
ninj

ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i 4 j A (FL,M])

PNOF6x e�2SFhihj �e�SF
ffiffiffiffiffiffiffiffi
hihj

p
i 4 j A [1,FL] 21

gigj/S
x
g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj þ

gigj
Sx
g

 !
njhi þ

gigj
Sx
g

 !vuut i A [1,FL] 4 j A (FL,M]

x = d, u, h gigj/S
x
g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj þ

gigj
Sx
g

 !
njhi þ

gigj
Sx
g

 !vuut j A [1,FL] 4 i A (FL,M]

e�2SFninj e�SF
ffiffiffiffiffiffiffiffi
ninj
p i 4 j A (FL,M]

PNOF7 ninj � ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i = g 3 j = g) 22
ninj

ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i 4 j A (FL,M])
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihinjhj

p
(i 3 j) A [1,FL] 4 ((i A Og 4 j e Og) 3 ( j A Og 4 i e Og))

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihinjhj

p
(i 4 j) A (FL,N) 4 ((i A Og 4 j e Og) 3 ( j A Og 4 i e Og))
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and

ki ¼
1� nið Þe�SF i 2 1;FL½ �

nie
�SF i 2 FL;Mð �

(
(11)

FL being the last occupied orbital below the Fermi level.
For two-electron closed-shell systems, the 2-DM in terms of

ONs is known up to a phase factor, Fij,
35 the following being the

only non-zero elements:

2D
ab
ii;jj ¼ Fij

ffiffiffiffiffiffiffiffiffi
nai n

b
j

q
ðiajÞ; (12)

where Fij = �1, depending on the nature of orbitals i and j. The
most convenient way to choose the phase factors is to split the
set of orbitals into two groups: the orbitals above and below
the Fermi level, and choose Fij = 1 for i and j belonging to the
same group and Fij =�1 otherwise.36 Let us call this approximation
the fixed-phases (FP) approximation. FP is very accurate for most
two-electron systems3,36 with only a few exceptions37,39,48 that
Giesbertz et al. attribute to long-range Coulomb interactions.38 For
two-electron systems, PNOF4, PNOF5 and PNOF7 reduce to FP with
the mentioned phase factors, i.e., eqn (12) with F1i = �1(i a 1)
and Fij = 1 for all other cases. Hence, hereafter we will only
discuss PNOF4 results. Conversely, PNOF2, PNOF3 and PNOF6
expressions were not defined for two-electron systems and,
therefore, the expression given in Table 2 does not reduce to
FP.49 In this work we have decided to study these expressions
in a two-electron model.

Not all approximate 2-DMs correspond to an N-particle
fermionic wavefunction. The set of 2-DMs that satisfy
this condition are called N-representable 2-DMs. Non
N-representable 2-DMs might lead to spurious results such
as non-variational energies.19,42 The set of conditions that
guarantees the N-representability of the 2-DM is known50 but
its calculation involves higher-order density matrices. There are
three conditions that only require the 2-DM for its calculation,
the P-, G- and Q-conditions,51–53 which concern the positive
semidefinite character of P, Q and G matrices,44

Pss0
ij;kl ¼ C a

y
isa
y
js0als0aks

��� ���CD E
; (13)

Qss0
ij;kl ¼ C aisajs0a

y
ls0a
y
ks

��� ���CD E
; (14)

Gss0
ij;kl ¼ C aisa

y
js0a
y
ls0aks

��� ���CD E
: (15)

In order to test these conditions, one must build these matrices
and check the sign of the corresponding eigenvalues. Notice
that the P matrix coincides with the 2-DM and, therefore, the P
condition is equivalent to the non-negativity condition of the
geminal occupancies.

The pair density, r2(r1,r2), is the diagonal part of the 2-RDM
(i.e., eqn (1) when r1 = r01 and r2 = r02) upon integration over spin
and it is the only part of the 2-RDM needed to calculate the
electron–electron repulsion energy (Vee). Although r2(r1,r2) is a
simpler function than the 2-RDM, it depends on six variables
and it is difficult to analyze. Fortunately, there is no need of the

full knowledge of r2(r1,r2) to compute Vee. The calculation of
the electronic repulsion only requires the radial intracule54

density41

I r12ð Þ ¼ r 212

ð
dr
0
1dr

0
2dO12r2ðr

0
1; r

0
2Þdðr12 � r

0
1 þ r

0
2Þ; (16)

where dO12 = sin y12dy12df12. The radial intracule density is a
one dimensional function that provides a graphical means to
analyze r2(r1,r2) at different interelectronic separations and a
simple expression to calculate Vee,

Vee ¼
ð1
0

dr12
I r12ð Þ
r12

: (17)

r2(r1,r2) also enters the expression of the so-called delocaliza-
tion index (DI),55,56 which is a measure of covariance between
the electron population of two regions, A and B,

dðA;BÞ ¼ �2
ð
A

ð
B

dr1dr2 r2 r1; r2ð Þ � r r1ð Þr r2ð Þ½ �; (18)

where r(r) is the electron density. The DI has been used
in the past to calibrate the performance of several
approximations.57–64 In the present work, the DMFAs use the
exact natural orbitals and occupancies and, therefore, the
second term in the r.h.s. of eqn (18) is identical in both the exact
calculation and the DMFA. Hence, the DI difference actually
measures the difference between the exact and the DMFA number
of electron pairs (one in region A and another in B).

3 Computational details

We will test several DMFAs in the two-electron harmonium
atom—a model system with the following Hamiltonian,33,65,66

H ¼ �1
2
r1

2 � 1

2
r2

2 þ 1

2
o2r21 þ

1

2
o2r22 þ

1

r2 � r1j j; (19)

where the o parameter is the confinement strength and tunes
the electron correlation in a continuous manner: low-o values
correspond to a strong-correlation regime whereas weakly
correlated systems are produced at large o. The harmonium
atom has been widely used for benchmarking and developing
functionals23,64,67–77 due to the availability of benchmark
results.48,78–80 The harmonium atom is one of the most difficult
systems for computational methods64,68,76,77 and, therefore, is a
formidable test-bed for DMFAs. In addition to harmonium,
there are other model systems that pose a great challenge
for computational methods, such as the Hubbard model81 or
uniform gases of electrons trapped in rings, spheres and
geometrical objects of higher dimensions.82–85

FCI calculations were performed for the ground-state singlet
two-electron harmonium atom using 20 values of the o para-
meter: 0.03, 0.033, 0.036, 0.0365373, 0.04, 0.05, 0.06, 0.08, 0.1,
0.15, 0.2, 0.3, 0.4, 0.5, 1, 2, 5, 10, 100 and 1000.86 We used a
modified version of the code developed by Knowles and
Handy87,88 and a variationally optimized even-tempered basis
set of seven S, P, D and F Gaussian functions, which form a
total of 112 basis functions.86 The exact 2-DM and the ONs were
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calculated from the FCI expansion coefficients using the DMN89

in-house code. The radial intracule density was computed
using RHO2_OPS90 code which uses the algorithm proposed
by Cioslowski and Liu.91 The calculation of the DI was performed
with the in-house RHO_OPS92 and ESI-3D57,93,94 codes.

In the current study, exact (within the given basis set)
natural orbitals and occupancies are used in fifteen DMFAs
(BBC2, CA, CGA, GU, MBB, POWER, ML, MLSIC, PNOF2,
PNOF3, PNOF4, three PNOF6 definitions and SD) to evaluate
their performance in a series of tests. Namely, we have used the
expressions given in Tables 1 and 2 with FCI ONs to generate
the corresponding approximate 2-DM, which are subsequently
analyzed using ten different tests:

(i) calculation of the 2-DM trace, (ii) cumulative absolute
error (CAE) for the diagonal elements, i.e.,

CAED
2DX
� �

¼
X
ij
ss0

2DX;ss0
ij;ij � 2Dss0

ij;ij

��� ���; (20)

(iii) CAE for all the elements of the 2-DM,

CAE 2DX
� �

¼
X
ijkl
ss0

2DX ;ss0

ij;kl �
2Dss0

ij;kl

��� ���; (21)

(iv) the correct antisymmetry of the 2-DM, i.e.,

ErrA
2DX ;ss0
h i

¼
X
ijkl;s

2DX ;ss
ij;kl þ

2DX;ss
ij;lk þ

2DX;ss
ji;lk þ

2DX ;ss
ji;kl

��� ���;
(22)

(v) P, Q, and G N-representability conditions, eqn (13)–(15),
(vi) the DI between the two symmetric regions generated by a
bisecting plane passing through the center of mass, (vii) the
average interelectronic distance and (viii) its variance, (ix) the
interelectronic repulsion, Vee, and (x) the radial intracule den-
sity profile.

4 Results
4.1 The diagonal elements: sum rule and cumulative absolute
error

The plot in Fig. 1 shows the 2-DM trace errors for several DMFAs
(the exact trace equals two in McWeeny’s normalization41).
BBC2, CA, CGA, MBB, PNOF2 and PNOF4 have not been
included in this plot because they satisfy the sum rule. The
larger the o value, the less important the correlation effects
in the harmonium atom. Indeed, for large values of o all
approximations perform very well because correlation effects
are negligible. However, when correlation increases, SD pro-
duces very poor results. GU and MLSIC have the same diagonal
elements ( f (ni,ni) = ni

2) and, therefore, give exactly the same
trace as the SD approximation for the two-electron case. PNOF3
coincides with SD because the former only modifies the
opposite-spin elements in the cumulant construction and the
opposite-spin cumulant of PNOF3 (like the exact one) does
not contribute to the sum rule. ML is based on a Padé approx-
imant including some fitted parameters that result in wrong

trace numbers. The POWER functional presents non-negligible
errors in the trace as the correlation increases. PNOF6 shows
small trace deviations, the three PNOF6 versions (PNOF6u,
PNOF6h and PNOF6d) differing on the value of Sg (actually,
the Sg definition, eqn (9), is responsible for the violation of the
sum rule). The Sg of PNOF6h provides the smallest error.

To get further insight about the error committed in the
2-DM diagonal elements, we have analyzed the diagonal CAE,
eqn (20), as a function of o�1/2 (Fig. 2). PNOF2 and PNOF4
approximations have not been included in Fig. 2 because the
error produced by these approximations is lower than 10�4. GU
and MLSIC produce exactly the same error as the SD approxi-
mation because the self-interaction correction enforced in
these approximations results in 2Dij,ij terms equal to those
produced by SD. ML, which showed better trace numbers than
SD for all o values, presents a larger diagonal CAE indicating
important error cancellation in the calculation of the trace.
PNOF3 shows smaller diagonal CAE than SD, which necessarily
come from the opposite-spin diagonal components, because
the same-spin components of the 2-DM are identical in both

Fig. 1 2-DM trace error against o�1/2. BBC2, CA, CGA, MBB, PNOF2 and
PNOF4 have not been included because they satisfy the sum rule.

Fig. 2 Cumulative absolute error (CAE) for the diagonal elements of the
2-DM against o�1/2 (eqn (20)). PNOF2 and PNOF4 approximations have
not been included because they present errors lower than 10�4.
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approximations. All PNOF6 versions provide very small CAE,
the best among the three definitions being PNOF6u (hence
PNOF6h best trace numbers were due to error cancellation).
BBC2, CA, CGA, MBB and POWER show larger diagonal CAE
than SD due to the unphysical 2Dss

ii,ii elements that provide a
correct total trace but contribute to important self-interaction
errors. In fact, any K-functional studied in this work produces
the same diagonal elements than the SD approximation (i.e.,
f (ni,ni) = ni

2) if we remove the unphysical elements 2Dss
ii,ii that are

included in some DMFAs.

4.2 Cumulative absolute error

The total CAE (eqn (21)) is plotted against o�1/2 in Fig. 3.
All fifteen DMFAs provide CAE when correlation increases.
A troublesome result is that all K-functionals perform worse
than the SD approximation for all o values. Most of the
approximations show a monotonic increase of the error except-
ing MLSIC, probably due to the parameterization of this approxi-
mation. BBC2 and MBB values coincide for all o and present the
largest total CAE. Their 2-DMs do fully not coincide but for a
closed-shell two-electron system these two DMFAs only differ in
the phase of some unphysical 2Dss

ii,ii elements, which obviously
contribute to the same CAE. All PNOFs perform better than SD
indicating that the cumulant correction of PNOFs improves in
the right direction. The most recently developed approximations,
PNOF4 to PNOF7, show the best agreement with the exact 2-DM,
giving only a small total CAE. Among the three PNOF6, PNOF6u
performs marginally better than the rest. PNOF4 is actually exact
in a wide range of o values, only deviating at the high-correlation
regime. In the high-correlation regime (o r 0.1) several phases
of PNOF4 do not coincide with the exact ones, preventing PNOF4
from reproducing the exact elements of the 2-DM.

4.3 Antisymmetry

The electronic wavefunction must be antisymmetric due to the
fermionic character of electrons. The 2-DM preserves the anti-
symmetric nature inherited from the wavefunction and, there-
fore, deviations from the antisymmetry condition, eqn (22), can
be also regarded as violations of a necessary N-representability

condition. Functionals that do not satisfy this condition fail to
correctly treat the fermionic nature of electrons.

PNOFs were built in order to satisfy the correct antisymme-
try of the 2-DM by constructing approximations from an
inherently antisymmetric cumulant structure. SD is also anti-
symmetric by construction. Fig. 4 shows eqn (22) against o�1/2

for the other DMFAs. The best K-functional is ML, which error
is almost half the error of MBB in the high-correlation regime.
The DMFAs that deviate most from the antisymmetry condition
are BBC2, CA, CGA, and MBB with errors growing as o�1/2.
Conversely, the only DMFA that does not show a monotonic
increase of the error with correlation is MLSIC, once again,
putting forward the parameterized nature of this DMFA.
A self-interaction correction applied to MBB produces the GU
approximation,8 resulting in smaller antisymmetry errors. One
can easily prove that among all K-functionals that one could
devise, the only one that satisfies the antisymmetric condition
is SD. This result evinces the need for designing functionals
that, at least, include J and K components, beyond the SD
approximation.

4.4 N-Representability

In order to check the deviation from the N-representability
conditions, we have computed the eigenvalues of matrices P, Q
and G (eqn (13)–(15)) and summed all negative ones. In Fig. 5
we have plotted the result of the sum against o�1/2.

The 2-DMs of PNOFs give rise to non-negative basis-set-
independent eigenvalues associated to P-, Q- and G-conditions
(see Appendix I for the basis-set dependent and independent
eigenvalues). However, one cannot anticipate the conditions
that the basis-set-dependent eigenvalues might impose in the
functional structure and only PNOF2, PNOF4 and SD satisfy the
N-representability conditions studied in this work. PNOF3
and PNOF6 perform very well even in the high-correlation
regime with the only exception of PNOF3 that shows significant
deviations in the G-condition when correlation increases, in
line with previous findings.19 PNOF6 shows small negative

Fig. 3 Cumulative absolute error (CAE) for the whole 2-DM against o�1/2

(eqn (21)).

Fig. 4 Antisymmetry error of the 2-DMs (eqn (22)) against o�1/2. PNOFs
and SD have not been included because they satisfy the antisymmetry
condition.
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eigenvalues of the P matrix that change depending on the
definition of Sg. In fact, if the wavefunction would correspond
to a perfect-pairing situation (in which natural orbitals are
coupled by pairs, each pair occupancy summing exactly to
one electron) the P-condition would be satisfied for a two-
electron closed-shell system regardless the definition of Sg.
All K-functionals show significant deviations from P-, Q- and
G-conditions that rapidly increase with electron correlation.
The largest errors are presented by MBB, but BBC2, CA, CGA,
GU and POWER also present non-negligible errors. ML and
MLSIC approximations show non-monotonic increase of the
errors due to their parameterized nature.

4.5 Delocalization index

The difference between the approximate DI and the exact one is
plotted in Fig. 6. In the present case, where the density is
computed from exact ONs for both methods (see eqn (18)), the
latter quantity also corresponds to the difference between the
exact and the approximate number of electron pairs between

two regions. Upon increase of electron correlation effects, the
number of electron pairs between regions is expected to
decrease, as found by other calculations of the DI in molecules
under DMFAs (see the ESI‡ for the exact values).57,60,95–97

In general, the gross number of pairs is pretty well described
by BCC2, MBB, PNOF4, PNOF6 and POWER (that present errors
below 3%), whereas CA, GU, MLSIC, PNOF2, PNOF3 and SD
present errors ranging between 20% to 75%. Interestingly, GU,
MBB, MLSIC, PNOF3 and PNOF6u systematically underesti-
mate the DI (i.e., they overestimate the number of electron
pairs) whereas BBC2, CA, CGA, PNOF2 and PNOF6d always
overestimate it. In line with the results obtained in the sum rule
and N-representability tests, PNOF6h provides better results
than PNOF6u and PNOF6d.

4.6 Interelectronic distance

In this section we analyze four quantities related to the inter-
electronic distance: (i) the mean value, hr12i, (ii) the variance,
s2 = hr2

12i � hr12i2, (iii) the interelectronic density distribution
through radial intracule density profiles, and (iv) the Vee. All
these quantities can be calculated from the radial intracule
density, eqn (16).

4.6.1 hr12i and r2. The analysis of the hr12i and the s2

reveals important aspects of the effects of electron correlation
in DMFAs. Usually large hr12i values go with smaller Vee, but
some exceptions exist.98 Hence, large (small) Dhr12i are com-
mon in methods that overestimate (underestimate) electron
correlation, whereas the variance of the probability distribution
measures the spread of the interelectronic distribution. Fig. 7
shows that all DMFAs deviate from the exact hr12i as correlation
increases. BBC2(EMBB), PNOF3, PNOF6d and PNOF6h over-
estimate correlation effects, whereas CA, CGA, GU, ML, MLSIC,
POWER, PNOF2, PNOF4, PNOF6u and SD underestimate
electron correlation at all o values. This is actually the only
test (together with Vee, vide infra) where SD performs clearly and
systematically worse than the other DMFAs. The error of PNOF4
is small and only due to the choice of phase factors. PNOF6h
performs somewhat better than the other two PNOF6 versions.

Fig. 8 plots the difference between the approximate variance,
computed from DMFAs, and the exact one against o�2.

Fig. 5 Sum of all negative eigenvalues of P, Q and G matrices against o�1/2.
PNOF2, PNOF4 and SD have not been included because they satisfy the
N-representability conditions studied.

Fig. 6 Error in the DI against o�1/2. (top) DMFAs with errors below 3% and
(bottom) DMFAs with errors above 3%. Fig. 7 Error in hr12i against o�1.
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Only PNOF4 and PNOF6 show a good agreement with both the
exact hr12i and s2. Interestingly, all DMFAs either underestimate
or overestimate the distribution spread around the average
value, the SD approximation showing the largest overestimation
and MBB presenting the sharpest distribution among all DMFAs.

4.6.2 Radial intracule density. In Fig. 9 we have plotted the
difference between the DMFA and the exact radial intracule
density for three values of the o parameter which cover low-
(o = 1000), medium- (o = 0.5) and high-correlation (o = 0.03)
regimes. These profiles allow a range-separation analysis of
electron correlation, the typical profile of the method that lacks
electron correlation being negative at short distances and
positive at large distances.99 The negative and the positive
regions compensate for all DMFAs that satisfy the sum rule.
For o = 1000 we observe that all DMFAs produce exact results
except CA, CGA, ML, MLSIC and SD. One should keep in mind
that there is residual correlation even at the limit of large o,48,78

however, thus far this is the only analyzed property that some
DMFAs fail to reproduce at the weak correlation limit. CA and
SD actually coincide because CA recovers the SD expression at
this limit. At the medium-correlation regime, no functional is
exact except PNOF4 and PNOF6, whereas at the high-
correlation regime even PNOF4 and PNOF6 show some devia-
tions. PNOF4 presents the smallest error while PNOF6h shows
the best performance among PNOF6 versions. GU, ML, MLSIC,
PNOF3 and SD exhibit larger negative values at short and
medium ranges that are not compensated by positive ones
at larger separations because these functionals do not satisfy
the sum rule.

We may classify the functionals according to their profile.
The only functionals that are not included in this classification
are PNOF4 and PNOF6, which show the smallest errors, and
MLSIC which presents the largest errors. In Fig. 9, for the
medium-correlation regime (see the l.h.s. o = 0.5 plot), there is
a first type of profile including CA, ML, PNOF2 and SD, which
consists in the typical profile of methods that underestimate
electron correlation. Namely, CA and SD underestimate short-
range correlation, whereas ML and PNOF2 underestimate mid-
range correlation. These four DMFAs also underestimated

importantly the value of hr12i. The r.h.s. of the o = 0.5 plot,
including BBC2, CGA, GU, MBB, PNOF3 and POWER, shows an
unusual intracule density profile with overestimation of short-
range correlation and underestimation of mid- and long-range
correlation. The latter group of functionals actually provided
quite accurate hr12i for small and medium-correlation regimes
and, at high correlation, either overestimated hr12i or presented
values that are not much smaller than the exact one (see Fig. 7).
The profile of the intracule density at o = 0.03 can be also used
to classify the functionals. We first find a group of DMFAs
(including BBC2, CA, CGA, MBB and POWER), which presents
two maxima: one at short-range and the other at long-range (see
o = 0.03 r.h.s plot in Fig. 9). A second group of DMFAs includes
GU and PNOF3 that underestimate the interelectronic separa-
tion at all ranges except at very short range (see also o = 0.03 r.h.s
plot in Fig. 9). The last group of DMFAs (ML, MLSIC, PNOF2 and
SD) show large underestimation of short- and medium-range
correlation (see o = 0.03 l.h.s plot in Fig. 9).

Although most DMFAs show similar profiles at different
electron correlation regimes, the values of r12 at which they
underestimate/overestimate the interelectronic separation
changes with o. Hence, if one would use these functionals (at
least those that preserve the profile with electron correlation) in
a range-separation scheme100,101 the attenuating parameter102

should depend on o.103,104 An inspection of the intersection
values at different o puts forward that DI(r12) = 0 occurs at
values of r12 that change with o�1/2. Taking the latter point as
the point at which short- and long-range separation functions
coincide would ensure that errors are kept at different correla-
tion regimes. If we choose the error function, erf(mr12), as
the range-separation function it is easy to prove that the
attenuating parameter, m, should be proportional to o1/2, in
line with the well-known fact that the attenuating parameter
should change with electron correlation.103–106

The radial intracule density of harmonium atom at o = 0.03
presents negative probabilities in the short-range region
(Fig. S2 in the ESI‡). Hence, we are prompted to attribute the
overestimation of short-range correlation at the high-correlation
regime in a number of DMFAs (BBC2, CA, CGA, GU, MBB,
PNOF3, PNOF6 and POWER) to the unphysical behavior of the
associated pair density, which can be traced back to the violation
of the P condition. The only functional that actually shows
overestimation of short-range correlation at o = 0.03 and it is
not due to negative radial intracule density values is PNOF4.
Despite their negative radial intracule density values, the hr12i
values computed with BBC2, CA, CGA, GU, MBB, POWER,
PNOF3 and PNOF6 functionals are not among the worst ones.

4.6.3 Electron repulsion energy. Thus far, all the tests
considered in this work did not measure the ability of DMFAs
to reproduce the electronic energy. In this section, we analyze
the performance of the DMFAs in reproducing the Vee, the only
fraction of the energy that is actually approximated in DMFT.
See previous publications of our group for a similar analysis of
DMFAs in other systems.23,27

Fig. 10 shows the relative error in the Vee against o�1/2.
We have not included the POWER functional because it wasFig. 8 Error in s2 against o�2.
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optimized to reproduce the exact Vee, yielding errors below
10�5 a.u. (see the ESI‡ for further details). CA, GU, ML, PNOF2,
PNOF4, PNOF6u and PNOF6h underestimate correlation
energy, whereas BBC2, CGA, MBB, MLSIC and PNOF6d over-
estimate it. SD performs very poorly with a relative correlation
error that grows linearly with o�1/2. Interestingly, despite the
wrong behavior found in the previous tests, all other DMFAs
perform better. Namely, BBC2, CA, CGA, PNOF4 and PNOF6
present errors below 10%. PNOF4 is virtually exact for all values
of o, whereas PNOF6h and PNOF6d provide very accurate
estimates and only show some minor deviations at the

high-correlation regime. This fact puts forward the need for
tests not based in the energy to reveal some inherent important
problems in DMFAs.

5 Discussion and conclusions

Despite its simplicity, the two-electron harmonium atom has
proven an excellent model for benchmarking.64,107 Even though
two-electron systems should not pose a great challenge for
DMFAs, the present paper has unveiled many problems and

Fig. 9 Difference between the exact and the approximate radial intracule density (eqn (16)) for three values of o (1000, 0.5 and 0.03).
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strengths of current approximations. In the following we
summarize these results and put forward various suggestions
for the development of DMFAs.

The study of the diagonal and the antisymmetry of the 2-DM
reveals the limited accuracy of K-functionals. The only
K-functional that can satisfy the antisymmetry requirements
of the 2-DM is the SD approximation, which, actually, performs
better than (or equal to) any other K-functional in the calcula-
tion of the trace and the assessment of the CAE diagonal
elements. These results evince that the construction of a DMFA
needs to consider, at least, both J and K terms.

Results obtained with ML and MLSIC functionals, which
present errors oscillating with the confinement strength in
many tests, suggest caution in using fitted parameters for the
construction of DMFAs.

The DI test warns against the use of the SD approximation in
strongly correlated systems. The widely used MBB approxi-
mation remains a good approximation in any correlation
regime57 but we suggest the usage of PNOF6h or PNOF7 as
they provide more accurate results. However, the performance
of DMFAs in the DI for molecules is an open question that
needs to be addressed.

As expected, the results of PNOF4 (equivalent to PNOF5,
PNOF7 and FP) are significantly better than those obtained
with other DMFAs with the only exception of PNOF6. PNOF4
test results reveal that the phase dilemma36 reminds an open
problem, which affects the energy in a lesser extent than other
properties. Namely, at the high-correlation regime, non-negligible
errors arise in the off-diagonal elements of the 2-DM that result in
inaccurate DI, interelectronic distances, variances, and radial
intracule densities.

The study of radial intracule densities unveils that many
DMFAs present negative probabilities at short interelectronic
distances, in connection with the violation of the P condition.
On the other hand, numerical inspection indicates that most
DMFAs present DI(r12) = 0 for r12 values that are proportional
to o�1/2. In this sense, it seems natural to choose the latter
point as the crossing point between the attenuating functions
that separate short- and long-range regions in range-separated

functionals. Assuming that the attenuating functions are error
functions depending on an attenuating parameter,100,101 m, it is
easy to show that m should be proportional to o1/2. This fact
can be exploited in the construction of new range-separation
methods.

Let us notice that many functionals performed reasonably
well in the calculation of the exact electronic energy but
produce important errors in the calculation of other properties,
supporting the claim that functional development should
consider other properties besides the electronic energy.30,31 In
the calibration of DMFAs one can use properties such as the
intracule pair density, which are particularly challenging for
DMFAs, or other properties, such as the expected value of
the interelectronic separation and its variance, which are con-
venient because they are easy to compute.

Finally, we can draw the conclusion that a DMFA should
attain as many N-representable properties as possible because
the best-performing functionals are those that satisfy most of
these conditions. Some of these N-representable conditions can
be imposed in the construction of the functional.

The results of this work suggest the construction of a DMFA
following some simple and somewhat expected rules: (i) consider
both J and K energy components beyond the single-determinant
approximation, (ii) impose the known N-representability condi-
tions, (iii) refrain from using empirical parameterization; and
calibrate the functionals using (iv) the energy and other proper-
ties, (v) a model with tunable electron correlation to consider
various correlation regimes.

In the present study we have suggested a battery of ten tests
to analyze DMFAs, including several properties that the exact
functional should satisfy. The tests are performed on a two-
electron model system with varying electron correlation and
carrying a very small computational effort. The test can be
easily extended to a larger number of electrons, thus setting
new challenges for DMFAs. We are confident that DMFA
developers will benefit from the results obtained in this paper
and will use this test set as a means to construct more robust
approximations.

Conflicts of interest
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Appendix I: N-representability
conditions

The analysis of P, Q and G N-representability conditions,
involves the diagonalization of the P, Q and G matrices
(eqn (13)–(15)) for each spin case (aa, bb, ab and ba). Some of
these matrices render themselves to an analytic diagonaliza-
tion, producing eigenvalues that can be used to constrain the
2-DM elements that enter DMFAs; other matrices cannot be
diagonalized and they only impose conditions that can be
checked a posteriori. In this section we present the eigenvalues

Fig. 10 Relative error in Vee against o�1/2.
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and the constraints associated to the P, Q and G conditions
produced by K-functionals and PNOFs.

K-Functionals

These DMFAs assume that the opposite-spin cumulant terms
are zero. Hence, the eigenvalues associated to the opposite-spin
P, Q and G matrices are identical for all methods:
	 P-condition (opposite-spin):

�P
ss0

ij ¼ nsi n
s0
j 
 0 (23)

	 G-condition (opposite-spin):

�G
ss0

ij ¼ nsi 1� ns
0

j


 �

 0 (24)

	 Q-condition (opposite-spin):

�Q
ss0

ij ¼ 1� nsi
� �

1� ns
0

j


 �

 0 (25)

These eigenvalues are necessarily non-negative and, therefore,
the opposite-spin matrices do not impose additional con-
straints in these functionals. Conversely, the same-spin
matrices depend on the definition of f (ni,nj) and thus produce
ad hoc eigenvalues. These eigenvalues are collected in the
following matrices:
	 P-condition (same-spin):

�P
ss
ij ¼

ni
2 � f ni; nið Þ if i ¼ j

ninj þ f ni; nj
� �

if io j

ninj � f nj ; ni
� �

if i4 j

8>>><
>>>:

(26)

	 Q-condition (same-spin):

�Q
ss
ij ¼

ni
2 � f ni; nið Þ if i ¼ j

ninj � f ni; nj
� �

if io j

2 1� ni � nj
� �

þ ninj þ f ðni; njÞ if i4 j

8>>><
>>>:

(27)

	 G-condition (same-spin):

�G
ss
ij ¼

gi if i ¼ j

ni � f ni; nj
� �

if io j

nj � f ni; nj
� �

if i4 j

8>>><
>>>:

(28)

where �gi are the (basis-set dependent) eigenvalues of the
following matrix:

gij ¼
ni ni þ 1ð Þ � f ni; nið Þ if i ¼ j

ninj if iaj

(
(29)

where we have assumed that all occupancies ni refer to s-spin
natural orbitals (i.e., ni � ns

i ). The latter matrices dimension is
M, the size of the basis set. In the case of P and Q conditions, K-
functionals produce two sets (one for each spin case: aa and bb)
of M2 basis-set-independent eigenvalues, giving rise to some
conditions that one can impose in the corresponding func-
tional. The G condition, on the other hand, produces M(M � 1)
basis-set independent eigenvalues (and some corresponding

conditions on f (ni,nj)) and M basis-set-dependent eigenvalues
that can only be checked a posteriori.

PNOF

In the case of PNOF, the matrices to diagonalize are given
in terms of D and P. The conditions will involve like-
and opposite-spin components of the 2-DM because, unlike
K-functionals, PNOFs construct all the spin-components of the
cumulant. We collect below the eigenvalues of these matrices:
	 P-condition (same-spin):

�P
ss
ij ¼

2 ninj � Dij

� �
if i4 j

0 if i � j

(
(30)

	 Q-condition (same-spin):

�Q
ss
ij ¼

2 hihj � Dij

� �
if i4 j

0 if i � j

(
(31)

	 G-condition (same-spin):

�G
ss
ij ¼

nihj þ Dij if iaj

�gi if i ¼ j

(
(32)

where hi = (1 � ni) and �gi are the (basis-set dependent)
eigenvalues of the following matrix:

gij ¼
ni if i ¼ j

ninj � Dij if iaj

(
(33)

where ni = ns
i for eqn (30)–(33).

The opposite-spin components of P, Q and G matrices
produce the following eigenvalues:
	 P-condition (opposite-spin):

�P
ss0

ij ¼
ninj � Dij if iaj

�gi if i ¼ j

(
(34)

where �gi are the (basis-set dependent) eigenvalues of the
following matrix:

gij ¼
ni if i ¼ j

Pij if iaj

(
(35)

	 Q-condition (opposite-spin):

�Q
ss0

ij ¼
hihj � Dij if iaj

�gi if i ¼ j

(
(36)

�gi are the (basis-set dependent) eigenvalues of the following
matrix:

gij ¼
hi if i ¼ j

Pij if iaj

(
(37)
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	 G-condition (opposite-spin):

�G
ss0

ij ¼

nihj þ Dij þ Dji þ njhi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj � njhi
� �2þ 4Pij

2

q
2

if io j

nihj þ Dij þ Dji þ njhi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj � njhi
� �2þ 4Pij

2

q
2

if i4 j

ni if i ¼ j

8>>>>>>>>><
>>>>>>>>>:

(38)

where ni = ns
i for eqn (34)–(38), which are only valid for a

closed-shell restricted system.

Acknowledgements

This research has been funded by Spanish MINECO/FEDER
Projects CTQ2014-52525-P and CTQ2015-67608-P, and the Basque
Country Consolidated Group Project No. IT588-13. M. R. M. wants
to acknowledge the Spanish Ministry of Education, Culture and
Sports for the doctoral grant FPU-2013/00176. M. V. N. wants to
acknowledge the Spanish Ministry of Economy, Industry and
Competitiveness for the doctoral grant BES-2015-072734.

References

1 T. Gilbert, Phys. Rev. B: Solid State, 1975, 12, 2111.
2 M. Piris and J. Ugalde, Int. J. Quantum Chem., 2014, 114,

1169–1175.
3 K. Pernal and K. J. H. Giesbertz, Top. Curr. Chem., 2015,

368, 125.
4 A. M. K. Müller, Phys. Lett., 1984, 105A, 446–452.
5 M. A. Buijse, PhD thesis, Vrije Universiteit, Amsterdam,

The Netherlands, 1991.
6 S. Goedecker and C. J. Umrigar, Phys. Rev. Lett., 1998, 81,

866–869.
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25 X. Lopez, F. Ruipérez, M. Piris, J. M. Matxain, E. Matito and

J. M. Ugalde, J. Chem. Theory Comput., 2012, 8, 2646–2652.
26 X. Lopez, M. Piris, M. Nakano and B. Champagne, J. Phys.

B: At., Mol. Opt. Phys., 2013, 47, 015101.
27 E. Ramos-Cordoba, X. Lopez, M. Piris and E. Matito,

J. Chem. Phys., 2015, 143, 164112.
28 E. Ramos-Cordoba, P. Salvador and E. Matito, Phys. Chem.

Chem. Phys., 2016, 18, 24015–24023.
29 E. Ramos-Cordoba and E. Matito, J. Chem. Theory Comput.,

2017, 13, 2705.
30 M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew and

K. A. Lyssenko, Science, 2017, 355, 49–52.
31 E. Ramos-Cordoba, P. Salvador, M. Piris and E. Matito,

J. Chem. Phys., 2014, 141, 234101.
32 E. Ramos-Cordoba, E. Matito, I. Mayer and P. Salvador,

J. Chem. Theory Comput., 2012, 8, 1270–1279.
33 N. R. Kestner and O. Sinanoglu, Phys. Rev., 1962, 128, 2687.
34 E. Matito, D. Casanova, X. Lopez and J. M. Ugalde, Theor.

Chim. Acta, 2016, 135, 226.
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M. Solà, Phys. Chem. Chem. Phys., 2011, 13, 20690–20703.
60 M. Garcı́a-Revilla, E. Francisco, A. Costales and

A. M. Pendás, J. Phys. Chem. A, 2012, 116, 1237–1250.
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