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Electron correlation effects in third-order
densities†

Mauricio Rodriguez-Mayorga,ab Eloy Ramos-Cordoba,ac Ferran Feixasb and
Eduard Matito*ad

The electronic energy of a system of fermions can be obtained from the second-order reduced density

matrix through the contracted Schrödinger equation or its anti-Hermitian counterpart. Both energy

expressions depend on the third-order reduced density matrix (3-RDM) which is usually approximated from

lower-order densities. The accuracy of these methods depends critically on the set of N-representability

conditions enforced in the calculation and the quality of the approximate 3-RDM. There are no benchmark

studies including most 3-RDM approximations and, thus far, no assessment of the deterioration of the

approximations with correlation effects has been performed. In this paper we introduce a series of tests to

assess the performance of 3-RDM approximations in a model system with varying electron correlation

effects, the three-electron harmonium atom. The results of this work put forward several limitations of the

currently most used 3-RDM approximations for systems with important electron correlation effects.

1 Introduction

The equations to calculate the electronic energy of an N-electron
system have been known for a long time, however, their exact
application leads to equations much too complicated to be
solved.1 Indeed, the energy is a well-known functional of the
wavefunction and there exist a plethora of methods to construct
increasingly accurate wavefunctions leading to corresponding
approximations of the electronic energy. The complex structure
of a wavefunction complicates the practical solutions of the
underlying mathematical equations and, therefore, many wave-
function methods can only be applied to molecules of modest
size. Conversely, there are robust theorems assessing the existence
of energy functionals of the density2 and the first-order reduced
density matrix (1-RDM),3 however, the exact functional is not
known and the accuracy of the corresponding approximations is
not so easily assessed.

A completely different set of approximations is obtained if the
working ansatz is the second-order reduced density matrix (2-RDM).
For a system of fermions subject to one and two-particle forces

the exact energy can be completely expressed in terms of the
2-RDM.4–7 Many authors have attempted the calculation of the
ground-state energy from the 2-RDM because it is a much
simpler object than the electronic wavefunction and, therefore,
it entails a reduced computational cost. The use of the variational
method to calculate the energy of a system involves the modification
of the 2-RDM subject to the N-representability conditions (see
Section 2.2). Although a complete set of N-representability
conditions of the 2-RDM is nowadays known,8 a practical solution
to the problem remains to be found. Besides, the N-representability
problem of n-order reduced density matrices (n-RDM), for n 4 2, is
still unsolved.

Notwithstanding, the contracted Schrödinger equation (CSE)9–17

and the anti-Hermitian counterpart (ACSE)18 have rekindled
the interest in methods that use the 2-RDM and higher-order
densities.19 Both CSE and ACSE energy expressions depend on
the 3-RDM (the CSE depends also on the 4-RDM),20,21 which is
usually approximated from lower-order densities.22–24 The
accuracy of these methods depends critically on the set of
N-representability conditions enforced in the calculation and
the quality of the approximate 3-RDM.7,19 There are not many
approximations to the 3-RDM,18,22,23,25 and, to our knowledge,
very few benchmark tests have been performed in order to
compare these approximations.24,26–29 Moreover, no assessment
of the deterioration of the approximations upon inclusion of
electron correlation has been carried out.

n-RDMs are also used in the context of density matrix
functional theory (DMFT)30,31—where the 2-RDM is approximated
from the exact 1-RDM—and in some variations of the density
matrix renormalization group (DMRG) that use up to the 5-RDM.32
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The 3-RDM and higher orders are also used to calculate particle
number distributions in domains33–37 and to construct several
electronic structure descriptors such as multicenter indices38

and aromaticity descriptors.39–43

In this paper we submit the four most employed 3-RDM
approximations (the single-determinant approximation,44

Valdemoro’s,22 Nakatsuji’s23 and Mazziotti’s24) to a series of
constrictive tests that will put forward some important limitations
of these approximations and suggest new means to construct more
robust ones. We will employ highly-accurate full-configuration-
interaction (FCI) benchmark data for the three-electron harmonium
atom, a model system that permits us to test methods under varying
electron correlation regimes and has been successfully used in the
past to test DMFT45 and DFT methods.46–49 The present set of tests
does not involve electronic energies and, therefore, it is not biased
towards providing most accurate energies. In this sense, they add
to the list of benchmark tests that assess the other properties of
RDMs50 and can be used to complement the many existing
energy-based benchmarking tools.

2 Methodology
2.1 Density matrices

The n-order reduced density matrix (n-RDM) of an N-electron
system is obtained from the wavefunction upon integration
over N � n coordinates (see ref. 51 for notation),6

r 10; . . . ; n0; 1; . . . ; nð Þ ¼
N

n

 !
n!

ð
dnþ1 . . .

ð
dN

�C 10; . . . ; n0; nþ 1 . . . ;Nð ÞC� 1; . . . ;Nð Þ:
(1)

where C is the wavefunction describing the system and we have
assumed the McWeeny normalization.52 The n-density function
(n-DF, hereafter) corresponds to the diagonal part of the n-RDM, i.e.,

rnð1; ... ;nÞ¼
ð
d10 ...

ð
dn0r 10; ... ;n0;1; . .. ;nð Þd 10 � 1ð Þ ...d n0 � nð Þ

(2)

The n-RDM can be expanded in terms of a set of M orbitals,
{fi(1)}i=1, M, giving

r 10; . . . ; n0; 1; . . . ; nð Þ ¼
XM

i1 . . . in
j1 . . . jn

nDi1...in
j1...jn

fi1
� 10ð Þ . . .fin

� n0ð Þ

� fj1
ð1Þ . . .fjn

ðnÞ

(3)

where nDi1...in
j1...jn

are the elements of nD, which is the n-th order

density matrix (n-DM hereafter). In the following we will assume
that n-DM is expressed on the basis of canonical molecular
orbitals obtained from a Hartree–Fock calculation, unless other-
wise specified.

In practice, the calculation of the n-DM carries a large
computational cost and it is common to resort to approximate
n-DM constructed from lower-order matrices. Namely, for the

3-DM there exist four well-known approximations: the single-
determinant (SD) approximation (also referred as n = 1, vide infra),

3DSD = 1D41D41D = 1D3, (4)

Valdemoro’s approximation,22

3DVAL ¼ 3!
3
�2
2D� 21D2

� �
^ 1D ¼ 92D ^ 1D� 121D3; (5)

Nakatsuji’s approximation,23

3DNAK
� �pqs

ijk
¼ 3DVAL
� �pqs

ijk
þ
X
l

sl Â 2Dpl
ij

2Dqs
lk

� �
; (6)

and Mazziotti’s approximation,18

3DMAZ
� �pqs

ijk
¼ 3DVAL
� �pqs

ijk
� 1

wpqsijk � 3

X
l

Â 2Dpl
ij

2Dqs
lk

� �
(7)

where 2D = 2D� 1D2 is the cumulant of the 2-DM,53 Â performs the
antisymmetric summation of all superindices and all subindices
(without mixing superindices and subindices) excluding l, sl = 1
for orbitals below the Fermi level and �1 otherwise, and wpqs

ijk =
1Di

i + 1D j
j + 1Dk

k + 1D p
p + 1Dq

q + 1Ds
s. The latter expressions (eqn (4)–

(7)) use Grassmann algebra (notice the wedge product, 4),54 as
introduced by Mazziotti to provide a compact representation of
these approximations.24,55–58

2.2 N-Representability conditions

For a quantum-mechanical system of N identical fermions, the
N-representability problem is the problem of recognizing whether, for
a given n-RDM, there exists an antisymmetric N-particle wavefunction
fulfilling eqn (1). The N-representability problem, therefore, concerns
the determination of conditions (constraints), the N-representability
conditions, to be imposed on the approximate n-RDM to guarantee
the fulfillment of eqn (1).5 If the equality holds the n-RDM is said
to be N-representable. The full set of sufficient conditions for
N-representability of the n-RDM is only known for the 1-RDM5 and
the 2-RDM,8 the latter set carrying a large computational cost.

The use of non-N-representable n-RDM can lead to spurious
results such as non-variational electronic energies.6 Therefore,
methods that use approximate 2-RDM and higher-order densities
such as DMFT, CSE, ACSE or DMRG need to impose the necessary
N-representable conditions that are available. In this work we are
concerned with the assessment of the 3-RDM, and therefore we
will consider the following N-representability conditions that the
3-DM should satisfy:6,59

D (or P) condition:

3Dijk
ijk Z 0 (8)

G condition (I):

2Dij
ij �

3Dijk
ijk Z 0 (9)

G condition (II):

1Di
i � 2Dij

ij �
2Dik

ik + 3Dijk
ijk Z 0 (10)

Q condition:

1 � 1Di
i � 1D j

j � 1Dk
k + 2Dij

ij + 2Dik
ik + 2D jk

jk � 3Dijk
ijk Z 0 (11)
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These N-representability conditions are related to the prob-
ability of finding groups of three electrons in different orbitals
and, therefore, they can be easily illustrated with Venn dia-
grams (see Fig. 1). D condition accounts for the probability of
finding three electrons occupying orbitals i, j and k, Q condi-
tion is related to the probability that neither i, j nor k are
occupied, whereas G conditions I and II concern the prob-
ability of finding the three electrons in i and j but not in k and
the probability of finding the electrons in i but not in j or k,
respectively. These conditions hold for an arbitrary ortho-
normal orbital basis and, therefore, the full validation of
eqn (8)–(11) involves the positive definiteness condition of
the underlying operators.60 The simplest way to check these
conditions consists in finding the diagonal form of the
corresponding operators and check that each associated
eigenvalue is nonnegative. For a 3-DM this procedure involves
the very costly procedure of constructing the natural 3-states.6

In this paper we restrict ourselves to a less constrictive test
that consists in checking the D, G-I, G-II and Q conditions on
the basis of canonical molecular orbitals. 3-DM approxima-
tions that fail to fulfill a given condition on this basis set
obviously fail to satisfy the most general condition.

Apart from these conditions, the 3-DM should satisfy the
symmetry

3Dijk
lmn = 3Dlmn

ijk (12)

and antisymmetry conditions

3Dijk
lmn = �3D jik

lmn = 3Dkij
lmn = . . . (13)

as well as the sum rule imposed by eqn (1), i.e.,

Tr 3D
� �

¼
X
ijk

3D
ijk
ijk ¼ NðN � 1ÞðN � 2Þ (14)

2.3 Multicenter indices

The n-DF can be used to calculate the so-called n-center electron
sharing indices (nc-ESI),61 through the following formula:

d A1;A2; . . . ;Anð Þ ¼ ð�2Þ
n�1

ðn� 1Þ!

ð
A1

d1

ð
A2

d2 � � �
ð
An

dngð1; 2; . . . ; nÞ;

(15)

where

g(1,2,. . .,n) = h(r̂1 � �r1)(r̂2 � �r2). . .(r̂n � �rn)i, (16)

r̂ stands for the density operator6 (see eqn (17) and (19)) and �r
is its average value, i.e., �rA = hr̂iA. From g(1,2,. . .,n), 2n terms
arise and the computationally most expensive one involves the
n-DF,

r̂1 . . . r̂nh iA1...An
¼
ð
A1

d1 . . .

ð
An

dnrnð1; . . . ; nÞ; (17)

and the lower-order DF in a set of three-dimensional space
regions. d(A1,. . ., An) is invariant with respect to the order of the
atoms in the string and is proportional to the n-central moment
of the n-variate probability distribution, n-DF, integrated into
the atomic basins A1,. . ., An:62

d A1; . . . ;Anð Þ ¼ ð�2Þ
n�1

ðn� 1Þ!
Yn
i¼1

N̂Ai
� �NAi

� 	* +
(18)

where N̂A is the particle operator applied to region A and %NA is
the average number of electrons in A (or population of A):

�NA ¼ r̂1h iA¼
ð
d1N̂Arð1Þ �

ð
A

d1rð1Þ: (19)

The large cost associated with the 3c-ESI is mostly due to the
computation of the exact 3-DF, which by itself is a huge
computational task for non-single-determinant wavefunctions.
The 3c-ESI is thus often computed from approximate 3-DF.43,63,64

In a recent work65 we have put forward two new approximations
to the 3-DF that have been used to calculate the 3c-ESI in a series
of molecules. Our approximations were compared against the
Valdemoro,22 Nakatsuji23 and Mazziotti24 approximations, showing
that one of our proposals was clearly superior to the others.65,66 This
3-DF expression was named cube root (CR) or n = 1/3 approximation,
it is exact for single-determinant wavefunctions and is the only
approximation to satisfy the sum rule, eqn (14). It can be obtained by
setting a = 1/3 in the following general expression

ra
3(1,2,3) = ga(1,2,3) � 2r(1)r(2)r(3) + p̂3

1r2(1,2)r(3), (20)

where p̂3
1 is an operator which generates the two possible

subsets of indices of sizes 1 and 2 from the elements in the
set {1,2,3}, r2 is the 2-density function (2-DF) and

gað1; 2; 3Þ ¼ 2
X
ijk

ninjnk
� 	aZi�ð1ÞZjð1ÞZkð2ÞZj�ð2ÞZið3ÞZk�ð3Þ;

(21)

where Zi(1) is a natural orbital and ni its occupation number. The
CR approximation of the 3-DF bears a close resemblance with
Müller’s approximation of the 2-DF67 and provides a simple
expression to calculate the 3c-ESI only in terms of natural orbitals:

~dCR A1;A2;A3ð Þ ¼ 4
X
ijk

ninjnk
� 	1=3

Sij A1ð ÞSjk A2ð ÞSki A3ð Þ; (22)

Fig. 1 Venn diagrams representing the probabilities of occupying
orbitals i, j and k, according to the D, G-I, G-II and Q conditions of
the 3-DM.
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where Sij(A1) is the atomic overlap matrix (AOM) of atom A1,

Sij A1ð Þ ¼
ð
A1

d1Zi
�ð1ÞZjð1Þ: (23)

In the tests of this paper we include the 3c-ESI using two approx-
imations we have recently suggested,65,66 the latter eqn (22) and

edSR A1;A2;A3ð Þ ¼ 4
X
i; j;k

ninjnk
� 	1=2

Sij A1ð ÞSjk A2ð ÞSki A3ð Þ: (24)

which is also indicated as n = 1/2. These approximations, as
well as the single-determinant approximation (n = 1), i.e.,
eqn (4) substituted in eqn (15),edSD A1;A2;A3ð Þ ¼ 4

X
i; j;k

ninjnkSij A1ð ÞSjk A2ð ÞSki A3ð Þ; (25)

only require the calculation of the natural orbitals and their
occupancies and, therefore, bear a very reduced computational
cost (unlike the 3-DM formulations of Valdemoro, Mazziotti
and Nakatsuji that generate 3c-ESI approximations that implicitly
depend on the exact 2-DM). Conversely, the 3-DF approximations in
eqn (20) for a = 1, a = 1/2 and a = 1/3 are referred to as SD (n = 1), SR
(n = 1/2) and CR (n = 1/3), and depend on natural orbitals and the
2-DF. Except in the case of the SD approximation, no 3-DM can be
constructed from the latter formulae and, therefore, some of the
benchmark tests suggested in this paper cannot be applied. For
single-determinant wavefunctions all the approximations analyzed
in this study reduce to the exact formulation.

2.4 Harmonium atom

Our working system is the harmonium atom (HA),68 where the

electrons are confined on a parabolic potential,
1

2
o2r2, and

whose Hamiltonian reads

Ĥ ¼
XN
i

�1
2
r̂2

ri
þ 1

2
o2ri

2


 �
þ
XN
io j

1

rij
(26)

where o is the confinement strength. This model allows an easy
tuning of the amount of correlation by playing with the o parameter.
For large values of o electrons are in a low-correlation regime,
whereas the small-o region corresponds to highly correlated systems.
The two-electron harmonium has been widely used in calibration
and benchmarking of electronic structure methods45–49,69–75 due to
the availability of analytical76–78 and very accurate results.79–82

In the present study we have taken the lowest-lying quartet
(S = 3/2) and doublet (S = 1/2) states of the three-electron HA for
several values of the o parameter (o A [0.1,1000]). FCI calcula-
tions of quartet and doublet 3e-HA from a previous study49 have
been used to generate the exact 3-DM and various approxima-
tions. For the reader’s reference, let us note that the correlation
energy of the helium atom is very similar to the correlation
energy of two-electron harmonium at o = 1/2.

3 Computational details

FCI calculations were performed on the two lowest-lying states
(doublet and quartet) of the three-electron HA for 12 values of

the confinement parameter, o, namely 0.1, 0.15, 0.2, 0.3, 0.4,
0.5, 1.0, 2.0, 5.0, 10.0, 100.0, and 1000.0. We used a modified
version of the code developed by Knowles83,84 and a variationally-
optimized even-tempered basis set consisting of seven S, P, D
and F Gaussian functions, amounting a total of 112 basis
functions.49 1-DM, 2-DM and 3-DM were calculated from the
FCI expansion coefficients using the DMN code85 developed in
our group. The approximate 3-DMs were also generated with the
DMN code.

In this work we will test four 3-DM expressions, namely,
Valdemoro’s (eqn (5)), Nakatsuji’s (eqn (6)), Mazziotti’s (eqn (7)),
and the single-determinant approximation (eqn (4)). A series of
four tests will be used to analyze the performance of these 3-DM
approximations: (i) fulfillment of the sum rule, eqn (14),
(ii) attainment of the D-, G-I, G-II and Q conditions of the
3-DM, eqn (8)–(11) (see Fig. 1), (iii) calculation of the 3c-ESI
between three regions of the Cartesian space and (iv) a termwise
assessment, i.e.,

Tw 3DX
� �

¼
X

ðio jo kÞ�ðlomo nÞ

3DX
� �ijk

lmn
� 3D

ijk
lmn

��� ���: (27)

For the sake of completeness, in tests (i) and (iii) we have also
included the calculation of the two approximate 3-DF obtained
from eqn (20) by setting a = 1/2 and a = 1/3 (vide supra).

The 3c-ESI calculations were performed over several three-
region partitions of the Cartesian space occupied by the HA. In
the end, among many partitions tested we have decided for the
partition that was most affected by correlation effects and,
therefore, poses the most stringent test to the 3-DM approx-
imations. Namely, the Cartesian space is partitioned by two
concentric spheres with radii r1 and r2, which are selected in
such a way that there is one electron in each of the three
resulting regions. Obviously, r1 and r2 vary for each value of o
and each spin state, their values being collected in Table 1. The
calculation of the corresponding overlap matrices, eqn (23),
was performed with the in-house RHO_OPS code.86 The 3c-ESI
values were computed with the ESI-3D87–89 code developed in
our group.

Table 1 Values of r1 and r2 that define the partition of the 3e-HA in three
regions of the Cartesian space

S = 1/2 S = 3/2

o r1/a.u. r2/a.u. r1/a.u. r2/a.u.

0.10 4.03 5.66 4.35 5.92
0.15 3.25 4.54 3.45 4.70
0.20 2.75 3.86 2.93 4.03
0.30 2.17 3.07 2.33 3.21
0.40 1.84 2.62 1.99 2.74
0.50 1.62 2.31 1.76 2.43
1.0 1.10 1.59 1.21 1.68
2.0 0.76 1.10 0.84 1.17
5.0 0.47 0.68 0.52 0.73
10.0 0.33 0.47 0.37 0.52
100.0 0.10 0.15 0.11 0.16
1000.0 0.03 0.04 0.04 0.05
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4 Results
4.1 The sum rule

The plots in Fig. 2 correspond to the difference between the trace of
3D obtained from the different approximations via eqn (14) and the
trace of the exact 3-DM (which for a three-electron system equals
six) against the inverse of the confinement strength, o. The n = 1/3
approximation has not been included because it satisfies the sum
rule. The smaller the o value, the more important the correlation
effects in the HA. For large values of o, all the approximations
provide trace values very close to the exact result. However, as o
decreases, most approximations show significant deviations. The
single-determinant approximation gives a very poor estimate of the
trace with more than 50% of the error for the doublet state at
o = 0.1. Mazziotti’s 3-DM only performs marginally better than
the single-determinant approximation in this case. Valdemoro’s
approximation systematically underestimates the value of the
trace, but provides very accurate results. On the other hand,
Nakatsuji’s 3-DM and n = 1/2 (eqn (24)) approximation also
provide quite accurate trace values but show larger errors than
Valdemoro’s. The quartet state poses a less serious test for the
approximations, giving significantly smaller errors in the calculation
of the trace. In this case, Mazziotti’s 3-DM provides quite accurate
results, improving Nakatsuji’s values. Again, the Valdemoro approxi-
mation provides trace values systematically below the exact ones but
more accurate than any other approximation.

4.2 N-Representability

We have assessed the deviation from the N-representability condi-
tions introduced in Section 2.2 by summing the l.h.s. of eqn (8)–(11)
on the basis of canonical molecular orbitals. The resulting numbers
are plotted against o�1 in Fig. 3. As expected, a more significant
deviation from the N-representability conditions is observed as the
confinement strength is weakened.

The single-determinant approximation of the 3-DM satisfies
the D condition, however, it presents significant errors in the other
N-representability conditions for low values of o. Valdemoro’s
3-DM presents the largest deviations from the D condition for

both states, in line with the fact that it is the only approximation
that underestimates the trace value of 3D. In addition, it presents
non-negligible deviations in the G conditions for the doublet
state. Mazziotti’s approximation shows the smallest errors in the
D condition upon inclusion of electron correlation and, with the
exception of the G-I condition in the doublet state, it presents
the smallest deviations from N-representability conditions. There-
fore, in the case of Mazziotti’s approximation, the large errors in
the sum rule (eqn (14)) seem to be connected to the satisfaction of
the G-I condition. Interestingly, Nakatsuji’s 3-DM presents the
smallest deviations in the G-I condition for the doublet state and
it does not perform better than Mazziotti’s approximation in the
other N-representability conditions. Although there is no apparent
reason for that, on the basis of canonical molecular orbitals, the Q
condition is attained by all the approximate 3-DM, excepting the
single-determinant formulation.

4.3 3c-ESI

The 3c-ESI between regions A, B and C is a measure of the
simultaneous electron sharing between these regions.38,88 The
partition has been constructed to contain one electron in each of its
parts. Upon reduction of the confinement parameter the electron
distribution spreads and, consequently, regions A and B increase
their size. The 3c-ESI decreases with o, showing values between
0.38 and 0.33 for both spin states, which indicate that there is
substantial electron sharing between the three regions.

The difference between the approximate 3c-ESI and the exact
ones is plotted against the logarithm of the confinement
parameter in Fig. 4. In general, the approximations correctly
provide the gross electron sharing, with the exception of
Mazziotti’s in the doublet state. The latter always overestimates
the actual 3c-ESI and, as we have seen in previous tests, it presents
a very large error for low-o values of the doublet state, whereas it
gives very good estimates of the quartet state. For both states,
Valdemoro’s approximation systematically underestimates the
3c-ESI but it provides the most accurate values. Excepting the
doublet state at the strong correlation regime, Nakatsuji’s 3-DM

Fig. 2 Error in the trace of the 3-DM against the inverse of o for the
doublet (top) and quartet (bottom) states of three-electron harmonium.

Fig. 3 Errors associated with the N-representability conditions. Solid lines
are used for the doublet state and dashed lines are used for the quartet
state.
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provides results that are usually worse than Mazziotti’s. The
3-DF obtained from a = 1/3 and a = 1/2 gives better results than
the single-determinant approximation (a = 1) and, for both
states, the n = 1/3 approximation error seems to reach an
asymptotic value.

4.4 Termwise error

Thus far, we have examined the performance of 3-DM approxima-
tions in the properties that depend only on the diagonal part of the
3-DM. In Fig. 5 we find the accumulated termwise error of the 3D,
eqn (27), for the different 3-DM used in this work. Upon decrease of
the confinement strength, the electron correlation enhances
(especially in the doublet state) and the matrices present larger
termwise deviations, as expected. Indeed, for the quartet state,
the single-determinant approximation shows the worst results,
while the other three approximations show similar errors.
Surprisingly, the largest deviations (even larger than the single-
determinant approximation for low-o values) of the doublet state
are presented by Valdemoro’s formulation. Mazziotti’s 3-DM
performs only marginally better and Nakatsuji’s provides the

best results for the range of o values considered in this work.
However, the trends in Fig. 5 suggest that for very low o values
the total errors will be worse than the poor single-determinant
approximation. Finally, it is worth mentioning that the termwise
error increases as o�1 in all cases. On the other hand, the
termwise error of the diagonal elements of the 3-DM is not too
large in most approximations, except for the single-determinant
one (see Fig. 6). Nakatsuji’s approximation shows the smallest
errors at the weak confinement regime.

5 Conclusions

We have introduced a series of four tests for 3-DM approximations
that can be readily computed in a model three-electron system with
varying electron correlation effects. The results of this work put
forward several limitations of the currently most used 3-DM
approximations for systems with important electron correlation
effects. Our results show that most of the properties evaluated show
errors of the 3-DM approximations that increase as o�1 in the
three-electron harmonium atom. Although the approximations
perform reasonably well in accounting for the 3c-ESI, they fail to
satisfy several N-representability conditions. In addition, they also
show significant deviations from the trace numbers upon inclusion
of electron correlation.

The comparison of the quartet and doublet states permits
the analysis of the Coulomb correlation, which is only present
in the doublet state. For this reason, this state poses a most
serious challenge for the 3-DM approximations. Indeed, Mazziotti’s
3-DM performs remarkably bad for the low-spin state if we compare
it against Nakatsuji’s approximation, which provides better 3c-ESI
values and trace numbers for small values of the confinement
parameter. Since Mazziotti’s approximation gives small deviations
for all the tested N-representability conditions but G-I, one is
prompted to attribute the erratic behavior of this 3-DM approxi-
mation to the violation of the G-I condition. Furthermore,
Nakatsuji’s approximation performs reasonably well for this
state and, therefore, one is tempted to conclude that the phase

Fig. 4 3c-ESI errors of the approximate 3-DM for the doublet (above) and
quartet (below) states of 3e-HA plotted against the logarithm of o.

Fig. 5 Termwise errors of the 3-DM approximations for the doublet
(solid) and quartet (dashed) states plotted against the inverse of o.

Fig. 6 Termwise errors of the diagonal elements of the 3-DM approx-
imations for the doublet (solid) and quartet (dashed) states plotted against
the inverse of o.
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factor sl of eqn (6) is responsible for this fact. Investigation along
these lines is currently being pursued in our laboratory.

Finally, one should mention that analytical solutions of two-
and three-electron harmonium atoms at o - 0 have recently
become available and could be used to calibrate 3-DM approx-
imations at this highly correlated limit.90

In general, it is advisable to use approximations other than
the single-determinant formulations, which provide the largest
errors for most tests. However, for large correlation effects, all
approximations fail to satisfy at least one of the tests, suggesting
caution when using the current 3-DM approximations in this
context. In this sense, we expect that the construction of new
3-DM approximations will benefit from the deficiencies shown
by the present test set.
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