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Abstract

■ Functional imaging has become a primary tool in the study
of human psychology but is not without its detractors. Although
cognitive neuroscientists have made great strides in under-
standing the neural instantiation of countless cognitive pro-
cesses, commentators have sometimes argued that functional
imaging provides little or no utility for psychologists. And indeed,
myriad studies over the last quarter century have employed the
technique of brain mapping—identifying the neural correlates
of various psychological phenomena—in ways that bear mini-
mally on psychological theory. How can brain mapping be made
more relevant to behavioral scientists broadly? Here, we describe

three trends that increase precisely this relevance: (i) the use of
neuroimaging data to adjudicate between competing psycholog-
ical theories through forward inference, (ii) isolating neural
markers of information processing steps to better understand
complex tasks and psychological phenomena through probabi-
listic reverse inference, and (iii) using brain activity to predict
subsequent behavior. Critically, these new approaches build
on the extensive tradition of brain mapping, suggesting that
efforts in this area—although not initially maximally relevant to
psychology—can indeed be used in ways that constrain and
advance psychological theory. ■

INTRODUCTION

Scientists have measured blood flow in the living human
brain for over 50 years (Ingvar & Lassen, 1961). In the last
quarter century, however, the use of noninvasive tech-
niques such as PET and (later) fMRI has exploded, and
these techniques have emerged as near-ubiquitous meth-
ods in the psychologistʼs toolkit. fMRI and PET have been
applied to domains as diverse as lie detection and love in
search of the ever-elusive neural correlates of X. But, like
Brussels sprouts at Thanksgiving dinner, some have won-
dered whether functional imaging really does complement
the bird or serves solely as an attractive yet unpalatable gar-
nish to the broader enterprise of psychological research.
For instance, in a classic commentary on the study of emo-
tion, Lazarus (1984) wrote that “[e]fforts to deal with areas
of confusion in psychological theory by reduction to anat-
omy and physiology usually represent an attempt to clarify
obscurities at one level of analysis by reference to obscuri-
ties at another.” (p. 128). Lazarusʼ views are shared bymany
psychologists who often view neuroimaging as only du-
biously relevant to their questions of interest. As these
techniques reach the age of majority, it is worth taking
stock of whether neuroimaging has matured enough to
contribute meaningfully to psychology.

This reflection is especially pertinent given the colli-
sion of two tides in the general view of neuroimaging.
On the one hand, people rate scientific explanations of
psychological phenomena as more satisfying when they

contain “brain scan” information—even when that infor-
mation is logically unrelated to the explanation at hand
(McCabe&Castel, 2008;Weisberg, Keil, Goodstein, Rawson,
& Gray, 2008). On the other hand, members of the scientific
community have invoked voodoo (Vul, Harris, Winkielman,
& Pashler, 2009) and dead salmon (Bennett, Baird, Miller, &
Wolford, 2011) in leveling frequent charges that neuro-
imaging has not (Coltheart, 2006; Cacioppo et al., 2003) or
even cannot (Gul & Pesendorfer, 2008) constrain our under-
standing of psychological processes. Henson (2005, 2006)
eloquently answered several such criticisms by outlining
specific ways in which neuroimaging data can be brought
to bear on theories at the psychological level of explanation.
However, Hensonʼs insights and those of others (e.g.,
Poldrack, 2006) have too often been ignored by both sides
of the imaging hullaballoo: Critics have often failed to rec-
ognize some valid applications of neuroimaging, and neuro-
imaging has often been wielded in a manner ill-befitting its
real utility.
The aims of the present article are thus simple. We will ar-

gue that the tradition of brain mapping in neuroimaging—
although potentially a powerful source of insight for
psychologists—has often been used in ways that provide
little or no power to constrain psychological theory. Much
of the data available from brain mapping studies do little to
help psychologists working in classic cognitive domains
(such as memory) to inform and advance information pro-
cessing models. We believe that this observation has led
some psychologists to take an overly cynical stance on
the ability of imaging to make such contributions. Recent
advances in neuroimaging design and analysis techniquesHarvard University
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that we describe in this article may render this criticism
outdated and as such suggest the emergence of a very ex-
citing time in which complementary contributions may be
forged across the disciplines of psychology and cognitive
neuroscience. The goal for this article then is to emphasize
ways in which neuroimaging has, can, and will be used to
contribute knowledge to psychology that is difficult to
glean by nonphysiological methods.
Here we will emphasize three such uses of imaging.

First, the logic of association and dissociation allows for
adjudication between competing psychological theories
that make similar behavioral predictions. Second, the vast
landscape of data amassed by the brain mapping tradition
has allowed for consistent association between activity of
a given brain region and likely information processing
steps. This structure to function mapping has allowed
researchers to draw relatively reliable probabilistic reverse
inferences about the neural markers of specific cognitive
processes, which can be used to reveal the mechanistic
“ingredients” (the set of basic cognitive processes that
combine to give rise to a complex psychological phenom-
enon) that support complex psychological phenomena.
Third, neuroimaging has allowed for the investigation of
brain–behavior relationships by using the brain as in inde-
pendent rather than dependent variable, which has bol-
stered our ability to constrain psychological models with
insights gained from neuroimaging.
Before describing these advances in detail, we will take

a brief foray into the short, but remarkably extensive his-
tory, of neuroimaging research. The aim here is to chart
the divergence of two related methods that have had
powerful effects on the development of neuroimaging in-
vestigations and have helped to resolve intractable ques-
tions in psychology.

NEUROIMAGING—DOWN AT
THE CROSSROADS

David Ingvar and colleaguesʼ early work on CBF (e.g.,
Ingvar & Risberg, 1967) was pioneering in that it allowed
biologists to measure the regional flow of blood in the
brain in response to the performance of cognitive tasks
such as reciting a series of digits in reverse (Risberg &
Ingvar, 1973). This work was limited in spatial resolution
and was too invasive for widespread use in typical popu-
lations, as it required injection of a radiotracer into the
carotid artery but provided the foundation on which all
later developments in neuroimaging stand. With the
advent of PET in the 1980s, researchers could map changes
in blood flow in a much more precise manner and with a
bolus intravenous injection that made the technique sim-
pler to implement and thus more scalable. The first dem-
onstrations of distinct regions of the cortex responding to
the presentation of single words (Petersen, Fox, Posner,
Mintun, & Raichle, 1988) and to distinct visual stimuli
(Fox et al., 1986) represented a crossroad in the history
of behavioral science by promising psychologists the

unprecedented power of being able to look directly into
the mindʼs black box and observe the living brain as it went
about its business. Importantly, these two early studies
(from the same research group) engendered radically differ-
ent scientific approaches, all while using the same technique
and ostensibly asking similar experimental questions. In
one case (Petersen), the neuroimaging data were relevant
directly to competing cognitive accounts of a psychological
phenomenon, whereas in the other case (Fox), the neuro-
imaging data were relevant at the level of analysis of brain
organization but were of no relevance to cognitive theory.

Begetting the first experimental tradition, Petersen
et al. (1988) demonstrated that cortical activity discrimi-
nates between visually and auditorily presented words.
Critically, these data argued directly in favor of one psy-
chological interpretation of the functional organization of
language and directly against another. Before this work,
the prevailing view in clinical neurology was that words
were initially encoded visually and then transformed into
an auditory code for semantic and articulatory access
(serial coding of linguistic information; Geschwind, 1965).
Cognitive models, on the other hand, emphasized the exis-
tence of separate modality-specific codes for words pres-
ented visually and verbally. Petersen and colleagues showed
with neuroimaging data that perception of visually and
auditorily presented words activated different modality-
specific regions of cortex, but that repetition or semantic
processing of visually presented words did not activate
the auditory regions suggested by Geschwindʼs model of
transformation into auditory codes, arguing in favor of a
more distributed model of word processing (parallel pro-
cessing of linguistic codes; Coltheart, 1985; Rumelhart &
McClelland, 1982).

Such uses of neuroimaging to constrain theory rely on
forward inference (Henson, 2006), an approach that, in
turn, depends on two complementary forms of logic. The
first is the logic of dissociation (a type of reasoning allied
with dissociations in neuropsychology; see, e.g., Bechara
et al., 1995), which holds that qualitatively distinct patterns
of brain activity accompanying different tasks or stimulus
types (e.g., words presented visually vs. auditorily) imply
psychological dissociation between these phenomena
(existence of separable visual/verbal codes). This disso-
ciability, in turn, can render single process models (e.g.,
of serial conversion between visual and verbal word codes)
untenable. The second form of forward inference relies on
the complementary logic of association, which holds that
overlapping brain activation across two distinct tasks imply
that similar cognitive mechanisms support those tasks. For
example, both experiencing pain and observing a loved
one experiencing pain engage regions in the so-called
“pain matrix,” including anterior insula, anterior cingulate,
and SII (Kross, Berman, Mischel, Smith, & Wager, 2011;
Singer et al., 2004). By the logic of association, this neural
overlap implies that direct experience and observation of
pain may share information processing features. Although
the logic of association and dissociation is, of course, not
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ironclad (both because neuroimaging is a relatively coarse
physiological method and because the same brain region
could be involved in multiple processes depending on
contextual factors) forward inference allows neuroscien-
tific data to provide converging, irreplaceable evidence
about the mechanisms underlying numerous psychol-
ogical phenomena.

The second research tradition sparked by early neuro-
imaging work has a more checkered past in psychology. It
began with Fox et al.ʼs (1986) landmark article, which used
PET to map the retinal projection topography of human
primary visual cortex. Presciently, Fox et al. concluded that
“[a]pplications of this strategy for high-resolution brain
mapping potentially are quite broad” (p. 808). In so doing,
Fox et al. (1986) fostered the research tradition of brain
mapping—isolating the neural activity associated with
particular stimuli or task demands—that has become extra-
ordinarily commonplace in cognitive neuroscience. Many
modern applications of this tradition make direct connec-
tion with longstanding theory in neurophysiology and pro-
duce rapid advances in our understanding of brain
organization, as is the case with high-resolution retinotopic
mapping studies (Logothetis, 2008). In addition, since
Fox et al.ʼs early finding, brain mapping has been used
to identify the neural correlates of such higher visual
phenomena as the representation of faces (Parvizi et al.,
2012; Kanwisher, McDermott, & Chun, 1997), bodies
(Downing, Jiang, Shuman, & Kanwisher, 2001), and places
(Epstein & Kanwisher, 1998), as well as countless nonvisual
phenomena such as affective experience (Phillips et al.,
1997) and theory of mind (Zaki, in press; Mitchell, 2009;
Saxe, Carey, & Kanwisher, 2004; Saxe & Kanwisher, 2003).

Although it has been enormously popular, two major
factors have curtailed psychologistsʼ enthusiasm for brain
mapping. First, the rise of multivoxel pattern analysis and
other multivariate imaging techniques (Norman, Polyn,
Detre, & Haxby, 2006) has called into question the basic
tractability of simple one-to-one structure to function
mappings in neuroscience. For example, multivoxel pat-
tern analysis has revealed that the cluster of fusiform gyrus
once attributed solely to perceiving faces (Kanwisher et al.,
1997) may respond to other stimulus classes (e.g., places)
as well (Hanson & Halchenko, 2008).

A second and more problematic issue is that, even if
scientists can state unequivocally that a single brain region
(e.g., visual area MT) responds to only one class of stimuli
(e.g., motion; Tootell et al., 1995), this knowledge may
not add anything of interest to psychological theory. The
notion that the brain houses cognition surprises no one,
and for many psychologists, knowing exactly which part
of the brain instantiates a psychological process is of little
use. For example, even if we could localize romantic love
to the ACC (Bartels & Zeki, 2004), what does that tell us
about love? Such a finding may tell us something about
the ACC, but at Marrʼs (1982) computational and algo-
rithmic levels, it tells us next to nothing about how the
mind of a human represents love. That is, results from

brain mapping often fail to connect in meaningful ways
with psychological theory.
Here, we will argue that multiple advances in neuro-

imaging now provide such a connection. These novel
techniques can further allow scientists to repurpose of
the wealth of brain mapping data toward a clear goal:
using the results from neuroimaging to refine thinking
about human psychology.

WHAT HAVE YOU DONE FOR ME LATELY?
PUTTING BRAIN MAPPING DATA TO WORK

Critically, expanding the contribution of neuroimaging to
psychology requires scientists to repurpose the founda-
tion of knowledge built by brain mapping research in novel
ways. Just as learning the guitar requires the development
and automation of a physical mapping between finger
placement, strings, and sound produced, developing a
semantic network of knowledge in neuroimaging has re-
quired the careful and repeated association of functions
with structures. Now the challenge for the field has been
to develop past the basic C chord shape and use this vast
knowledge network as a basis for the inventive improvisa-
tion that is possible only once the fundamentals are sound.
We believe that the following theoretical approaches pro-
vide just such a means, and allow neuroimaging to fulfill its
promise as a technique truly complementary to psycholo-
gical investigation, in at least two ways. The rest of the
article will expand upon these advances.

PROBABILISTIC REVERSE INFERENCE

Among the primary complaints leveled against brain
mapping is that it can support inaccurate or misleading
reverse inference. That is, given that a particular brain region
responds to a certain type of psychological phenomenon,
researchers might—and often do—assume that engage-
ment of that region in other settings implies that those set-
tings include similar psychological ingredients. This is
problematic because many brain regions likely support a
slew of computations, as opposed to a single psychological
mechanism. As such, assumptions about cognitive pro-
cesses based on brain activity boil down to a researcherʼs
highly subjective decisions about how to label a given locus
of brain activity. For example, if a researcher documents
activation in the medial-temporal lobe when a participant
sees aword, does thismean that the participant is (i) encod-
ing that word or (ii) thinking about a physical place that
the word might conjure up for them? Both of these pro-
cesses have been related to the medial-temporal lobe,
and it is unclear, a priori, how to interpret this activity. At
its worst, reverse inference has led to meaningless popular
press assertions that—for example—voters feel “conflicted”
about a political candidate based on activity in their ACC
(Miller, 2008; Iacoboni et al., 2007) or that consumers love
their iPhones based on activity in anterior insula (Lindstrom,
2011).
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That said, a new tradition is carving out areas in which
reverse inference can be both credible and useful. Specifi-
cally, researchers are now employing “brute force” data-
informatic techniques that combine results from countless
brain mapping studies with Bayesian inference to derive
the actual probability that—given activity in a particular brain
region—the study that observed this activation included a
given psychological phenomenon (Poldrack, 2011; Yarkoni,
Poldrack, Nichols, Van Essen, & Wager, 2011; Yarkoni,
Poldrack, Van Essen, & Wager, 2010). Such an approach
can be executed both within and across data sets.

Reverse Inference within Data Sets

A number of pioneering studies in the last few years have
used patterns of neural activation to draw accurate infer-
ences about what participants are experiencing (e.g.,
which of a set of images a participant is viewing; see Kay,
Naselaris, Prenger, & Gallant, 2008). This form of reverse
inference not only demonstrates the power of brain activity
to predict individual subjective states; more broadly, it sug-
gests that scientists can leverage neuroimaging data to
gather novel information about the “building blocks” of
psychological tasks. Consider a recent study by Poldrack,
Halchenko, and Hanson (2009), in which researchers used
brain activity from a set of participants performing numer-
ous tasks (e.g., risk taking, response inhibition, semantic
judgments) to predict—based on neuroimaging data
alone—which of a number of tasks new participants were
completing. Beyond classifying these tasks with an impres-
sive degree of accuracy, this analysis revealed which pat-
terns of brain activity predicted the performance of each
task and identified which common neural networks (e.g.,
dorsomedial thalamus and striatum) accurately predicted
multiple tasks. Finally, this allowed Poldrack et al. to map
these neural networks onto behavioral features of each
task, and begin to build a “cognitive ontology” of psycho-
logical ingredients that might bind tasks together at the
level of the brain (Damoiseaux et al., 2006). Such a cogni-
tive ontology could codify findings from neuroimaging in a
way that facilitates their application to psychology by, for
example, allowing psychologists to generate new hypoth-
eses regarding the cognitive processes involved in tasks
that had previously been analyzed from the information
processing perspective. This network-level analysis can
provide new insights—directly from the function of the
brain–about the common processes that characterize large
numbers of cognitive and psychological phenomena.
Because such a network-level analysis requires the assump-
tion that regions interacting in networks are performing
the same or similar computations, it is important to note
thatmajor advances in imaging analysis over the last 10 years
or so have allowed us as a field to map out these networks
intrinsically (at rest) and during task performance and in
comparison with different developmental age groups
(Dosenbach et al., 2010) and even different species
(Vincent et al., 2007). One of the major findings from

the functional connectivity literature is the remarkably
powerful stability of involvement of given regions in given
functional networks (Yeo et al., 2011). To the degree that
one imagines that regions interact in a similar way when
they form part of stable networks, we can presumably
be more confident that the kinds of computations they
engage in will be similar.

Reverse Inference across Data Sets

Probabilistic reverse inference can also beperformed across
data sets, for example, using meta-analytic techniques
(Lamm, Decety, & Singer, 2011; Wager, Jonides, & Reading,
2004). In one particularly powerful example of this ap-
proach, Yarkoni and colleagues (www.neurosynth.org)
amassed neuroimaging data from thousands of published
neuroimaging articles and matched this activity to com-
monly used words in each manuscript. This technique
allows for a formal characterization of how likely it is—given
activation of a particular neural structure—that an article is
assessing a particular psychological construct. First, articles
are combed for how often they mention particular phrases
of interest and are then divided into sets based on whether
or not those phrases appear at high frequency (e.g., one
mention of “self-referential” for every 1000 words). Then,
activations reported in each article are extracted and tagged
for having been reported (or not) with those keywords.
Using this analysis engine, one can determine, for example,
that 87% of articles reporting activation in the posterior
cingulate cortex also included “self referential processing”
at high frequency. Although this information is, in isolation,
less than useful, it begins to allow us to weed out alternative
cognitive explanations for the presence of activation in a
given brain region. Because we know that 87% of posterior
cingulate cortex articles also include the frequently used
term “self referential processing,” we can assume a rela-
tively high level of confidence that self-referencing is one
of the cognitive mechanisms at play in our own experiment
that observed posterior cingulate activation. If “emotion,”
for example, is observed in only 4% of such articles, then
it becomes disingenuous of us to argue that our posterior
cingulate activation is reflecting emotional processing. This
kind of quantification allows for much more rigorous appli-
cation of reverse inference as researchers are no longer free
to cherry pick examples from the literature where “brain re-
gion X has been shown in paper Y that examined cognitive
process Z.” The ultimate utility of this approach is in im-
proving the quality, reliability, and utility of neuroimaging
data, and further, these quantification values can only im-
prove as more and more data are added to such databases.
In turn, this allows much greater confidence in the results
emerging from neuroimaging and thus much greater con-
fidence in the relative strengths of structure-function map-
pings observed by cognitive neuroscientists. Although
admittedly biased toward scientistsʼ choices about how to
describe their work (Poldrack, 2011), this approach offers
a number of qualitative improvements over prior forms of
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reverse inference. Not only does it allow for estimations of
how strongly linked particular brain regions and psycholo-
gical processes are, but it also allows for the estimation of
base rates related to each brain region. For example, re-
gions with high base rates of activation (e.g., the anterior
insula, which is engaged across a significant minority of
tasks) necessarily provide less power to predict partici-
pantsʼ psychological states than those with low base rates
of engagement. Thus, the use of large meta-analytic data
sets allows researchers to use neuroimaging data in new
ways (to perform reverse inference) and also to understand
when imaging data will be most (and least) useful in draw-
ing these inferences.

Summary

The development of methods for probabilistic reverse
inference provides neuroscientists with deeply generative
new tools for informing psychological theory. Critically,
the meta-analytic techniques described here are wholly
dependent on the exhaustive tradition of brain mapping.
That is, without thousands of studies focused on localiz-
ing particular psychological tasks and experiences in the
brain, scientists would have no foundation on which to
model the power of brain activity to predict psychological
experiences. This points out an intriguing twist in the
relationship between neuroscience and psychology:
Although brain mapping is often used in ways that do
not directly inform psychological theory, it is this same
approach that is now opening the door to a deeper under-
standing of how brain activity can indeed be used to con-
strain and build such theories.

THE BRAIN AS PREDICTOR

Another powerful method for constraining psychological
theory using neuroimaging comprises flipping the brainʼs
typical role: from that of a dependent variable to that of
an independent variable (cf. Berkman & Lieberman,
2011). This broad approach has been used in many inge-
nious ways to provide at least two qualitative advance-
ments to the role of neuroimaging in psychology. First,
it refines our understanding of the functional role of
brain activity as relevant to psychological phenomena.
Second, it refines investigation of highly pertinent psycho-
logical phenomena (such as the experience of conscious
will) whose mechanisms have remained underspecified
using previously available methods. Although true causa-
tion requires random assignment of observations to differ-
ent levels of an independent variable, we feel that each of
the fMRI predictions detailed below have strong theoretical
grounding and provide us with information that goes well
beyond the observation that brain region X is associated
with cognitive process Y. We first discuss results in the
domain of decision-making, broadly construed and then
outline a technical advance that allows direct use of the
brain as an independent factor, real-time fMRI.

Decision-making

People often act in ways that contradict norms of ration-
ality (Kahneman, 2003), and further fail to understand
the sources of their choices and attitudes (Nisbett &
Wilson, 1977; Festinger & Carlsmith, 1959). Althoughmany
psychologists and economists have explored the sources of
irrationality (Wilson, Wheatley, Meyers, Gilbert, & Axsom,
2000; Tversky & Kahneman, 1974, 1981), using brain activ-
ity to predict subsequent decisions can provide converging
evidence about the mechanisms that likely support both
rational and irrational choices.
A growing body of work in neuroscientific research is

now answering this call. For example, people often
change their attitudes for reasons unbeknownst to them,
and yet neuroscientists have been able use brain activity
to predict later attitude change. In one instance of this
effect, individuals who claim to equally prefer two items
(e.g., two posters)—but are forced to choose between
them—later claim to like the chosen item more than
the nonchosen one (Brehm, 1956). A recent study found
that this postchoice shift in preference can be predicted
by activity in the ventral striatum (Sharot, De Martino, &
Dolan, 2009), an area broadly involved in the computa-
tion of value (Rangel, Camerer, & Montague, 2008). This
new insight from neuroimaging (that changes in attitude
can be predicted before they occur and rely on changes
in brain regions that signal value) stands in contrast to
the prevailing views from cognitive dissonance theory—
that we change our attitude postchoice because it is incon-
sistent with our behavior (Festinger, 1962), or from self-
perception theory (Bem, 1967), that we infer our attitude
from our behavior (e.g., “I must really like poster A,
because thatʼs the one I chose”). This particular observa-
tion represents well the use of a novel prediction approach
that is entirely dependent upon yet goes beyond the tradi-
tion of brain mapping. Finally, individualsʼ preferences are
often altered by othersʼ opinions or persuasive messages
(Latane, 1981; Asch, 1955). Recent work has reliably pre-
dicted such socially induced shifts in preference using
brain activity in the ventral striatum (Zaki, Schirmer, &
Mitchell, 2011; Klucharev, Hytonen, Rijpkema, Smidts, &
Fernandez, 2009) as well as medial prefrontal cortical re-
gions often associated with considering theminds of others
(Falk, Berkman, Mann, Harrison, & Lieberman, 2010).
Brain activity can also predict interpersonal choices,

such as those to altruistically help others. Historically,
psychologists and philosophers have debated the mecha-
nisms underlying altruism: Some theorists argue that indi-
viduals are instinctively selfish, but curtail these impulses to
help others out of a sense of obligation or a strategic search
for the benefits (e.g., reciprocity or reputation) that altru-
ism can produce (DeWall, Baumeister, Gailliot, & Maner,
2008; Camerer & Fehr, 2006; Nowak, Page, & Sigmund,
2000). Others argue that altruism requires no such top–
down control, but instead provides individuals with an
intrinsic hedonic experience that prompts generous action
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(de Waal, 2008; Andreoni, 1990). Neuroimaging data pro-
vide an important complementary source of evidence in
this domain. This is because neuroimaging has produced
reliable markers of both top–down control over prepotent
responses (prominently in the anterior cingulate and lat-
eral pFC; Botvinick, Braver, Barch, Carter, & Cohen, 2001)
and the experience of reward and value-based decision-
making (prominently in mesolimbic dopaminergic targets
such as ventral striatum and ventromedial pFC; Rushworth,
Noonan, Boorman, Walton, & Behrens, 2011; Knutson,
Taylor, Kaufman, Peterson, & Glover, 2005). As such, brain
activity in either of these systems before altruistic choices
provides important supportive evidence for a control- or
value-based view of altruism.
Recently, neuroimaging studies have demonstrated

that neural markers of both of these processes can predict
altruism, in a context-dependent fashion. In some cases,
prosocial and cooperative behavior tracks with activity in
regions in lateral pFC associated with control (Steinbeis,
Bernhardt,&Singer, 2012; Spitzer, Fischbacher,Herrnberger,
Gron, & Fehr, 2007), whereas other research demonstrates
that activity in dopaminergic targets predicts prosociality
(Zaki & Ochsner, 2012; Zaki & Mitchell, 2011; Hare,
Camerer, Knoepfle, & Rangel, 2010; Harbaugh, Mayr, &
Burghart, 2007) in a manner tightly linked to individualsʼ
levels of prosocial choices both inside (Zaki, Lopez,
& Mitchell, 2013) and outside the laboratory (Morelli,
Rameson, & Lieberman, 2012). This suggests a dual-process
model in which altruism can be driven by either value or
control, in a context-dependent fashion. Critically, because
these different patterns of brain activity underlie function-
ally similar (i.e., prosocial) choices, neuroimaging here
affords an important complement to behavioral approaches
to the study of prosociality.

Conscious Will

We have summarized multiple ways in which brain activa-
tion can predict later decisions. Libet and colleaguesʼ early
EEG experiments (Libet, Gleason, Wright, & Pearl, 1983)
set the stage for later fMRI investigations of the contro-
versial psychological concept of conscious will. Libetʼs
work showed that readiness potentials can predict the
onset of a self-guided decision up to a second before the
behavior was initiated. In a fascinating fMRI experiment
that cuts to the heart of research at the confluence of
philosophy, psychology, and neuroscience, Soon and col-
leagues (Soon, Brass, Heinze, & Haynes, 2008) were able to
use neuroimaging in a surprisingly novel manner—to
reveal the outcome of a personʼs freely made decision sev-
eral seconds before the participant acted upon that deci-
sion. In this task, participants viewed a stream of single
letters (presented for 500 msec each) and during that
stream were at liberty to decide when they were going
to make a button press. Participants made their response
and then indicated during the presentation of which letter
(and hence at what time) they had made their decision.

Results revealed that activations in the medial pFC and
medial parietal cortices predicted a participantʼs given
response between 7 and 10 sec before the participant indi-
cated that they had made their choice. These results, in
concert with other work in neuroimaging that reveals a role
of for these regions in self-relevance (e.g., Moran, Macrae,
Heatherton, Wyland, & Kelley, 2006) provide us with curi-
ous information about the experience of conscious will that
should spur development of theory in psychology.

Real-time fMRI

Scientistsʼ understanding of brain–behavior relationships
can be further advanced through a relatively recent inno-
vation in neuroimaging, the use of real-time fMRI (Hinds
et al., 2011; Park, Park, & Kim, 2009; deCharms et al.,
2004). In many cases, this approach can provide even
stronger evidence about the causal links between brain
activity and experience. For instance, Yoo and colleagues
(Yoo et al., 2012) monitored activation in the parahippo-
campal cortex (PHC) in real time, a region important for
the encoding of visual scenes. Rather than presenting
information about the activation to participants as others
had done previously, Yoo and colleagues defined states of
PHC activation as either “good” or “bad” for subsequent
encoding and conditionalized their trials on this basis.
When moment-to-moment PHC activation was low (i.e.,
“good” preparedness for encoding) or high (“bad” pre-
paredness for encoding), the experimenters presented
novel scenes to participants and revealed that later recog-
nition memory performance was improved when scenes
were presented immediately after the identification of
“good” PHC brain states. This method is intimately predi-
cated on prior brain mapping studies indicating PHCʼs
involvement in memory formation for scenes, yet answers
the charge that neuroimaging data cannot be used to
imply that particular brain states cause particular cognitive
changes in a subtle and satisfying manner.

Summary

A few things are worth noting about the brain as predic-
tor approach. The lionʼs share of research employing this
approach has been published in the last 5 years. Yet, for
its short tenure, this approach has been used to predict
behaviors across a number of varied domains, spanning
choices made seconds to weeks after brain activity is re-
corded. More importantly, this tradition—although use-
ful simply for its ability to clarify the functional role of
brain activity—achieves its maximal utility when piggy-
backing on the tradition of brain mapping. In conjunction,
these two approaches allow researchers to use neuro-
imaging not only to confirm psychological predictions
but also to create new ones. This toolbox of techniques
for imaging researchers can produce a better direct map-
ping between what we have discovered with behavioral
methods over many years of research and what we have
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discovered with neuroimaging methods over the recent
past. The ability to use brain states to predict decisions
and to improve memory are just two of many such exciting
developments that are wholly dependent on the develop-
ment of a technique that had been initially maligned as
nothing more than phrenology in glorious Technicolor. We
must first ask ourselves whether these innovations were
foreseeable when those first murky images of the human
brain at work began to swim into view and, if not, whether
similarly exciting developments neuroimaging may hold in
the next 20 years are, at present, equally opaque.

Conclusion

The path of developments in the industry of neuro-
imaging exemplifies those in any economic industry. Early
development of an exciting new technology (e.g., the
home computer by Atari, Apple, and others) leads to a
rapid expansion in the marketplace (e.g., the IBM-
compatible PC), fueled by ever-decreasing barriers to
entry and innovation on all sides (e.g., vast improvements
in transistor technology and cheapening permanent
storage). After this initial flush period of development, a
tipping point occurs at which the market is unable to
sustain the existence of so many suppliers of a once-
rare-but-now-generic product. The market experiences a
shakedown, during which suppliers who are unable to
innovate disappear (e.g., Compaq), and innovative new
technologies (the laptop, tablet computing) begin to dom-
inate, precipitating the beginning of a new cycle of boom
followed by shakedown. We believe that neuroimaging is at
the precipice of its first shakedown and that this shake-
down will necessarily entail the retooling of our ideas away
from more traditional technologies (brain mapping stud-
ies) to newer, leaner, andmore subtle “technologies,” such
as the brain as predictor approach, forward inference, and
the causal application of fMRI, among others we have not
had space to mention here.

In summary, whereas some of the earlier criticisms of
neuroimaging are valid, we feel that they were largely
based on an incomplete perception of the field, a field
that, for reasons we have described here, is much more
dynamic than some have presupposed and may more
accurately be considered the pumpkin pie of psychol-
ogyʼs Thanksgiving dinner: iconic, inviting, and containing
something for us all to enjoy.

Reprint requests should be sent to Joseph M. Moran, Depart-
ment of Psychology, Harvard University, Cambridge, MA 02138,
or via e-mail: jmoran@wjh.harvard.edu.
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