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Recent development of single-molecule manipulation technologies has made it possible to exert
constant force and torque on individual DNA biopolymers to probe their elastic characteristics
and structural stability. It has been previously shown that depending on the nature of applied
mechanical constraints, DNA can exist in several forms including B-, L- and P-DNA. However,
there is still a lack of understanding in how structural heterogeneity of DNA, which may naturally
arise due to sequence-dependent DNA properties, protein binding or DNA damage, influence local
stability of the above DNA states. To provide a more complete and detailed description of the
DNA mechanics, we developed a theoretical framework based on transfer-matrix calculations and
demonstrated how it can be used to predict the DNA behaviour upon application of a wide range of
force and torque constraints. The resulting phase diagram shows DNA structural transitions that
are in good agreement with previous experimental and theoretical studies. We further discuss how
the constructed formalism can be extended to include local inhomogeneities in the DNA physical
properties, thus making it possible to investigate the effect of DNA sequence as well as protein
binding on DNA structural stability.
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I. INTRODUCTION

Deoxyribonucleic acid (DNA) is a fundamental
biomolecule carrying genetic information in all living or-
ganisms. It consists of two single-stranded polymers that
are wound around each other forming a double helix
structure. Both of these strands are made of a chain of
basic building blocks, each containing a phosphate group,
a deoxyribose sugar, and a nitrogenous base of one of the
four distinct types A, T, G, C. Highly specific formation
of hydrogen bonds between A:T and G:C base-pairs (bp)
of the opposite DNA strands as well as the stacking in-
teraction between aromatic rings of adjacent bases are
the two major forces responsible for the stability of the
double-helix structure of DNA.

In cells, DNA exists mainly in B-form – a right-handed
duplex with a helical repeat hB = 10.4 bp [1]. There-
fore, the number of times the two strands of a relaxed
B-DNA of M base-pairs length twist around each other
is: Lk0,B = M/hB . This quantity, usually referred to as
the DNA linking number, is typically used to character-
ize the topological state of DNA that is often subjected
to various mechanical constraints in living cells. Indeed,
existing experimental data show that the conformation of
the genomic DNA can be modulated by a large amount
of different DNA-binding proteins, which either actively
or passively change the DNA linking number. In particu-
lar, DNA-topoisomerases that can wind or unwind DNA
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duplex cooperating with various DNA-architectural pro-
teins, such as histones, are key elements responsible for
the regulation of the linking number of a circular DNA
or topologically isolated DNA domains in vivo [2].

In experiments using single-molecule manipulation
techniques, it has been shown that if torque exerted on
DNA surpasses a certain threshold value, the DNA fre-
quently undergoes conformational changes to reduce the
accumulated twist elastic energy either by collapsing into
a supercoiled configuration or switching into an alterna-
tive structural form [3–9].

In the first scenario, DNA typically develops plec-
tonemes – structures in which DNA is twisted into a
helical braid-like conformation [10, 11]. In the second
scenario, DNA experiences transition from B- to L- and
P-DNA forms. L-DNA is a left-handed duplex with a
helical repeat hL of ∼ 15 bp, which occurs when DNA
is placed under sufficiently large negative torsional stress
(. −10 pN·nm) [4, 8, 9]. Conversely, at high positive
torques (& 35-40 pN·nm) DNA switches into a right-
handed P-DNA state that has a helical repeat hP of ∼ 3
bp [4, 7, 12]. Although the exact molecular configurations
of L- and P-DNA are not presently known, existing ex-
perimental studies suggest that L-DNA likely comprises a
mixture of denatured and left-handed Z-DNA structures
[4]. As for P-DNA, molecular dynamics simulations show
that at high positive torques DNA undergoes complete
denaturation that results in extruding bases [12].

Both the DNA conformation and interaction with
DNA-binding proteins are determined by an intricate in-
terplay between the elastic properties and structural sta-
bility of the DNA, mechanical constraints applied to it,
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and the nature of the nucleoprotein complexes that are
formed. Detailed understanding of the contribution of
each of these factors into the global DNA organization
requires development of a systematic theoretical frame-
work. While the previous theoretical studies have pro-
vided many important insights into the above problem
[13–19], they were mainly based on the assumption of
uniformity of the DNA physical properties without tak-
ing into account possible local variations, which may ei-
ther result from the sequence-dependence of the DNA
parameters or due to DNA segments’ transitions into al-
ternative structural states.

Here we present a new approach based on transfer-
matrix calculations, which naturally takes into consid-
eration local orientational and structural fluctuations of
DNA. We demonstrate how this method can be used to
provide a systematic description of the DNA behaviour
under applied force / torque constraints, and discuss how
local inhomogeneities in the DNA physical properties can
be easily incorporated into it. Obtained results depicting
the DNA behaviour under various mechanical constraints
show good agreement with the existing theoretical and
experimental studies.

In Sec. II, we outline the general theory and then ap-
ply it in Sec. III A to describe the force- and torque-
dependent behaviour of B-DNA. In Sec. III B, the theory
is further extended to characterize the structural stabil-
ity of DNA and then used to estimate the phase bound-
aries between alternative DNA states. In Sec. III C, we
demonstrate how the developed formalism can be uti-
lized to predict behaviour of DNA with inhomogeneous
physical properties. Finally, in Sec. IV, future applica-

tions of the theory to the understanding of the sequence-
dependent DNA stability and DNA-protein interactions
under force-torque constraints are discussed.

II. GENERAL THEORY

To describe the behaviour of DNA under force and
torque constraints, we modelled the DNA as a discretized
polygonal chain consisting of short segments of equal
length, b (Figure 1(a)). In order to accurately take into
account local mechanical deformations, the value of b is
chosen such that b � A and b � C, where A and C
are the DNA bending and twisting persistence lengths.
Each DNA segment is considered as a rigid body repre-
sented by a local Cartesian coordinate frame (xj ,yj , zj),
which is generated by a three-dimensional rotation about
the origin of a fixed lab coordinate system (x0,y0, z0):
xj = Rjx0, yj = Rjy0, and zj = Rjz0. Here j
is the index of the corresponding DNA segment, and
Rj = RαjRβjRγj denotes a rotation matrix resulting
from the composition of three successive Euler revolu-
tions through angles αj , βj and γj shown on Figure 1(b)
(where αj , γj ∈ [0, 2π] and βj ∈ [0, π]). Since the Carte-
sian coordinate frame of each DNA segment (xj ,yj , zj)
is in a one-to-one relation to the respective rotational
matrix Rj , hereafter we simply use Rj to designate the
jth DNA segment orientation.

In the general case, the expression for the total energy,
Etot, of DNA consisting of N segments includes several
terms:

Etot(R1, ..,RN ) = Ebend + Etwist + Φf + Φτ

=
N−1∑
j=1

[
a
2 (Rjz0−Rj+1z0)2+ c

2 (2π∆Twj(Rj ,Rj+1))2
]
− bf

N∑
j=1

(z0 ·Rjz0)− 2πτ∆Lk
(1)

Here all of the energies are in kBT units. The first sum
in the above expression represents the bending, Ebend,
and twisting, Etwist, elastic energies of the DNA resulting
from the local contributions of adjacent DNA segments.
a = A/b and c = C/b are dimensionless parameters
describing the bending and twisting rigidities of DNA
segments in the discretized model. ∆Twj(Rj ,Rj+1) ≈
1

2πRjz0 · [Rjx0 ×Rj+1x0] is the local DNA twist.

The second sum corresponds to the potential energy,
Φf , arising from the force, f , applied to the DNA along
z0-axis, while the last term takes into account the po-
tential energy, Φτ , resulting from the torque, τ , exerted
on the DNA. In this formula, both f and τ are scaled
by kBT ; therefore, f has a dimension of [1/L] and τ is
dimensionless.

∆Lk is the DNA linking number change from the
reference state, which is chosen to be a straight tor-

sionally relaxed B-DNA form. Using the Calugareanu-
White’s theorem [20, 21], ∆Lk can be expressed as a
sum of two components: ∆Lk = ∆Tw + Wr, where

∆Tw =
∑N−1
j=1 ∆Twj(Rj ,Rj+1) is the DNA total twist

and Wr is the DNA writhe number. In general, Wr de-
pends on the global DNA conformation and can be cal-
culated using the Gauss double integral along the DNA
contour (Appendix G, eq. (G1)). However, it is usu-
ally more convenient to use a simpler Fuller formula [22],
which provides accurate estimations of the DNA writhe
number for certain cases (see explanation following the
equation):

WrF =
1

2π

∫ L

0

(
z0 ·

[
t(s)× ṫ(s)

])
1 + (t(s) · z0)

ds (2)

Here L is the DNA contour length; t(s) is the tangent
vector of the DNA polymer parametrized by the arc
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length s, and ṫ = dt
ds . It can be shown that WrF = Wr

for those DNA conformations which can be obtained by a
continuous deformation of DNA initially extended along
z0-axis direction in such a way that the denominator of
the integrand in eq. (2) never resets to zero for any of
the intermediate DNA configurations [13, 22]. A nearly
straight DNA, or DNA folded into a helical solenoid con-
formation or into a plectoneme aligned along z0-axis di-
rection are examples satisfying this criterion [13, 16]. In
other cases, however, the DNA writhe number Wr does
not necessarily equal to WrF . In fact, it can be proved
that Wr = WrF mod 2 [16, 22, 23].

Despite the above uncertainty in evaluation of the
writhe number for some DNA configurations [23, 24], it
has been previously shown that the Fuller’s formula can
be used to recapitulate the experimentally observed DNA
behaviour up to the onset of the torque-induced buck-
ling transition when DNA starts to develop supercoiled
plectoneme structures [14, 15]. Furthermore, the Fuller’s
formula has a great advantage since it allows the DNA
writhe number to be calculated as a sum of local contri-
butions from the DNA segments. This makes it possible
to apply transfer-matrix calculations to predict the tran-
sition boundary between the extended and supercoiled
DNA conformations and to evaluate changes in the val-
ues of the main observable parameters, such as the DNA
extension or linking number, in response to the force and
torque constraints.

Considering the above notes, we approximated the last
term in eq. (1) describing the DNA torque-dependent
potential energy, Φτ , as:

Φτ = −2πτ∆LkF + τλWrF (3)

Here ∆LkF = ∆Tw+WrF , and the scaling parameter λ

is introduced to account for the repulsive interaction en-
ergy between remote DNA sites brought into a close con-
tact by the DNA buckling, which is expected to monoton-
ically increase with the DNA writhe number. Since most
of extended DNA conformations have writhe WrF ∼ 0,
the additional τλWrF term makes a rather small contri-
bution to the overall energy of such nearly-straight DNA
states. Conversely, this additional term mainly affects
the statistics of buckled DNA configurations appearing
near the onset of the DNA buckling transition. As will
be shown in Sec. III A and III B, under proper choice of
the value of λ, this approximation results in a reasonable
description of the supercoiling transition boundaries on
the DNA phase diagram, which appears to be in good
agreement with the existing experimental data.

By using the Fuller’s formula (eq. (2)), it can be shown
that the DNA linking number change, ∆LkF , can be
expressed as a sum of local DNA segments’ contributions
[13]:

∆LkF =
1

2π

N−1∑
j=1

(α̃j+1+γ̃j+1−α̃j−γ̃j). (4)

where α̃j and γ̃j are the Euler angles of the jth DNA
segment from the extended range of (−∞,+∞).

Substituting eq. (4) and (3) into eq. (1), it is then
straightforward to see that eq. (1), in turn, transforms
into a sum of local energy contributions of neighbouring
DNA segments:

Etot(R1, ..,RN ) =

N−1∑
j=1

Ej(Rj ,Rj+1)−bf(z0 ·RNz0) (5)

where the local energy terms Ej(Rj ,Rj+1) assume the
following form:

Ej(Rj ,Rj+1) =
a

2
(Rjz0−Rj+1z0)2 +

c

2
(2π∆Twj)

2 − bf(z0 ·Rjz0)− τ(2π−λ)∆LkFj − τλ∆Twj (6)

Here ∆Twj = ∆Twj(Rj ,Rj+1) and ∆LkFj = 1
2π (α̃j+1+

γ̃j+1−α̃j−γ̃j).
Using eq. (5), the partition function of DNA, Zf,τ ,

under applied tension, f , and torque, τ , can be found as:

Zf,τ =

∫
dR1..dRN e

−Etot(R1,..,RN )ξ(RN ,R1) =

=

∫
dR1..dRN

N−1∏
j=1

T (Rj ,Rj+1)× σ(RN ,R1) (7)

where ξ(RN ,R1) is a function that imposes spe-
cific boundary conditions on the orientations of the
DNA ends; σ(RN ,R1) = ξ(RN ,R1)ebf(z0·RNz0) and
T (Rj ,Rj+1) = e−Ej(Rj ,Rj+1). In the above for-
mula the integration is carried out over all of the

possible DNA segments’ orientations, i.e.,
∫

dRj =∫ 2π

0
dαj

∫ 2π

0
dγj

∫ π
0

sinβj dβj .

To simplify eq. (7), it is useful to recall that any square-
integrable function, ψ, defined on SO(3) group of 3D
rotation matrices parametrized by Euler angles α, β, γ
can be expanded into a series of orthogonal D-functions,
Dn
ml(α, β, γ) [25]. The expansion coefficients of this se-

ries can be found as ψmln = 2n+1
8π2

∫
dRψ(R)D

n

ml(R),
where for the sake of simplicity hereafter we use the
following notations: ψ(R) = ψ(α, β, γ) and Dn

ml(R) =
Dn
ml(α, β, γ). The bar over function Dn

ml in the above
formula denotes complex conjugation. Performing such
an expansion for functions σ(RN ,R1) and T (Rj ,Rj+1),
it can be shown that eq. (7) reduces to a mere summa-
tion of the respective expansion coefficients (see Appen-



4

dices A-C for more details):

Zf,τ =
∑

m
1
,..,m

N
l1,..,lN
n
1
,..,n

N

N−1∏
j=1

T
mj+1,lj+1,nj+1

mj ,lj ,nj
× σm1,l1,n1

mN ,lN ,nN

 (8)

here

T
mj+1,lj+1,nj+1

mj ,lj ,nj
=

√
(2nj+1)(2nj+1+1)

8π2

∫
dRjdRj+1

D
nj
mj ,lj (Rj)× T (Rj ,Rj+1)×Dnj+1

mj+1,lj+1
(Rj+1) (9)

are the expansion coefficients of T (Rj ,Rj+1) function
organized in a form of a multi-dimensional matrix, T =

[T
mj+1,lj+1,nj+1

mj ,lj ,nj
], and σ = [σm1,l1,n1

mN ,lN ,nN
] is the respective

matrix of the expansion coefficients for the boundary con-
dition function, which can be obtained using a similar
formula.

It is possible to further streamline eq. (8) assuming
that the boundary condition function ξ(RN ,R1) pos-

sesses a symmetry about z0-axis of the lab coordinate
system with respect to either the first or the last DNA
segments’ orientations – such that rotation of any of
these two DNA segments about z0-axis does not change
the value of the boundary condition function. For ex-
ample, we may suppose that there are no restrictions
on the possible orientations of the DNA end segments,
in which case ξ(RN ,R1) = 1. Alternatively, we may
assume that the first and the last DNA segments are
collinear to the z0-axis of the lab coordinate system,
i.e., ξ(RN ,R1) = δ(R1z0 − z0)δ(RNz0 − z0), where δ
is Dirac delta function. Anyway, as soon as the bound-
ary condition function has a symmetry about z0-axis,
it can be shown that eq. (8) can be reduced to a sim-
pler form, where the multi-dimensional transfer matrix
T is replaced by a conventional two-dimensional matrix

S, whose elements, Snjnj+1
= T

0,0,nj+1

0,0,nj
, are defined by

the following analytical expression (see Appendix B and
the crucial relations in eq. (B9), (B14), (B19)-(B20) for
more details):

Snn′(a, b, c, λ) = π2
√

(2n+1)(2n′+1) e−a−c ×∑
p,k,k′,r

(2p+1)(2k+1)(2k′+1)eir(ω−
π
2 )Ir(τ(1− λ

2π ))Ir(c
√

1+χ2 )L p
r (−a)L k

r (−bf)L k′

r (0)

(
p k n
−r r 0

)2(
p k′ n′

−r r 0

)2
(10)

Here i is imaginary unit; χ = τλ
2πc and ω = tan−1(χ);

Ir is modified Bessel function of the first kind; L k
r (s) =∫ 1

−1
dkrr(cos−1 x)e−sxdx is bilateral Laplace transform of

the diagonal elements dkrr of small d-Wigner matrix;(
j1 j2 j3
m1 m2 m3

)
are Wigner 3-j symbols.

Similarly, the multi-dimensional boundary condition
matrix σ becomes replaced by a two-dimensional matrix

V, whose elements are Vnn′ = σ0,0,n′

0,0,n . Using the expan-
sion coefficients formula, it is easy to find that in the
case of the first and last DNA segments z0-axis collinear
boundary condition (see Appendix C, eq. (C12)-(C15)
and eq. (D3)):

Vnn′(b) = 1
4π e

bf
√

(2n+1)(2n′+1) (11)

Alternatively, in the case of DNA ends free orientation
boundary condition we have:

Vnn′(b) = 8π2δn′0in(bf)
√

2n+1 (12)

Here in is modified spherical Bessel function of the first
kind and δn′n is the Kronecker delta (δn′n = 1 if n′ = n
and δn′n = 0, otherwise).

Taking into account the above notes, it can be shown
that the partition function for a homogeneous DNA poly-
mer under applied force and torque constraints can be

computed as the trace of the product of the transfer, S,
and boundary condition, V, matrices:

Zf,τ = Tr(SN−1V) (13)

Knowing the partition function Zf,τ , it is then straight-
forward to calculate the DNA force-extension curve un-
der a constant torque (τ = τ0) and/or the torque-
extension curve under a constant force (f = f0) as

zτ0(f) =
∂ ln(Zf,τ=τ0 )

∂f and zf0(τ) =
∂ ln(Zf,τ )

∂f |f=f0 ,

respectively. The corresponding DNA linking num-
ber changes under the above mechanical constraints

are ∆Lkτ0(f) = 1
2π

∂ ln(Zf,τ )
∂τ |τ=τ0

χ=const and ∆Lkf0(τ) =
1

2π

∂ ln(Zf=f0,τ )

∂τ |χ=const (here parameter χ is treated as
a constant). Since both the DNA extension and link-
ing number change can be directly measured in single-
molecule experiments, the above formulas provide a sim-
ple way to test the semi-flexible DNA model presented
in this study.

We would like to note that while eq. (13) was derived
assuming z0-axis symmetry of the boundary condition
function, this expression can be also used to describe the
behaviour of any sufficiently long DNA with arbitrary
boundary conditions. To show this, matrices T and σ



5

must be first re-written in two-dimensional forms:

Tpp′ = Tm
′,l′,n′

m,l,n and σpp′ = σm
′,l′,n′

m,l,n (14)

Where the elements of two-dimensional matrices are enu-
merated by indexes p and p′, which relate to the old in-
dexes as p(m, l, n) = m+l(2n+1)+ 1

3n(4n2+6n+5) with
a similar expression for p′ = p′(m′, l′, n′). Then, substi-
tuting eq. (14) into eq. (8) and applying the notion of the
matrix Jordan normal form, it can be demonstrated that
in the case of a long DNA the partition function equals to
Zf,τ ≈ κνN−1

max, where νmax is the largest eigenvalue of the
two-dimensional transfer matrix T and κ is the propor-
tionality constant. It is then clear from this expression
for the DNA partition function that the boundary condi-
tion matrix σ only affects the value of the coefficient κ,
which simply results in the DNA free energy offset by a
fixed constant (−kBT lnκ). Thus, behaviour of any suf-
ficiently long DNA under force and torque constraints is
independent from the exact form of the boundary condi-
tion function.

For example, the transfer-matrix calculations show
that all of the quantitative results that will be discussed
below differ by < 5% if the DNA ends free orientation
boundary condition (eq. (12)) is used instead of the z0-
axis collinear boundary condition (eq. (11)) to estimate
the partition function of ∼ 5.1 kbp long DNA. I.e., two
completely opposite scenarios - partially fixed and com-
pletely free DNA ends’ orientation, lead to virtually in-
distinguishable results. Therefore, it does not matter
what kind of boundary condition is used in the transfer-
matrix computations as soon as the contour length of
DNA is much longer than its bending and twisting per-
sistence lengths (L� A and L� C).

Finally, it should be noted that in the case of τ = 0,
the transfer matrix elements defined by eq. (10) con-
verge back to the worm-like chain model of a torsion-
ally relaxed DNA, demonstrating consistency between
the current work and previous theoretical studies (see
Appendix D).

III. RESULTS

A. The mechanical response of B-DNA

To probe how accurate the transfer-matrix approach
is in recapitulating the transition boundary between ex-
tended and supercoiled DNA conformations, we first
studied the mechanical response of B-DNA, assuming
that it cannot switch into alternative structural states.
In these calculations, the DNA bending and twisting
persistence lengths were set equal to the experimentally
measured values of AB = 50 nm and CB = 95 nm
[4, 5, 26]. To correctly describe elastic deformations of
DNA at small scales, the length of each DNA segment,
b, was selected to be much shorter than the DNA bend-
ing and twisting persistence lengths: b = 0.5 nm (i.e.,

each segment contains ∼ 1.5 base-pairs since each base-
pair has rise of 0.33 nm in B-DNA form). Therefore,
the dimensionless bending and twisting rigidities of the
polygonal chain in the discretized model of DNA were
aB = AB/b = 100 and cB = CB/b = 190.

The value of the only unknown model parameter, λ,
was adjusted to match the experimentally observed on-
set of the DNA buckling transition. It was found that by
setting λ from 4.1 to 4.4, the model can accurately depict
the experimentally measured values of the applied force
and torque at which DNA begins to collapse into a super-
coiled configuration (see Figure 2). λB = 4.3 was used for
B-DNA for the rest of the calculations performed in this
study. As for the DNA size, we set it equal to ∼ 5.1 kbp
(totally 3400 DNA segments) in all our computations.

Substituting the above model parameters into eq. (10),
(11) and (13), we plotted the B-DNA force-extension
curves, zτ0(f), at various torque constraints (τ = τ0) as
shown in Figure 3(a). As can be seen from the graph, for-
mation of supercoiled DNA structures (manifested by a
steep DNA extension decrease) begins to take place only
when the applied torque exceeds the threshold value of
∼ 5 pN·nm. In contrast, at small torques of 0 < τ < 5
pN·nm the DNA extension is only slightly shorter com-
pared to that of a torsionally relaxed DNA (τ = 0) due
to the chiral bending fluctuations previously discussed by
Nelson and Marko [11, 15, 27].

While Figure 3(a) demonstrates B-DNA behaviour at
positive torques, it should be noted that DNA folding
into supercoiled conformations occurs both at positive
and negative torques in a symmetric manner, which is
expected since in these calculations B-DNA is not al-
lowed to switch into alternative structural forms (i.e., L-
or P-DNA). This symmetry can be clearly seen from Fig-
ure 3(b), showing that in addition to a rapid extension
drop, the development of supercoiled DNA domains is
also accompanied by a steep change in the DNA linking
number, ∆Lkτ0(f). The DNA torque-extension (zf0(τ))
and linking number change curves (∆Lkf0(τ)) under var-
ious force constraints (f = f0) exhibit a very similar sym-
metric behaviour with respect to the applied torque, see
Figures 3(c-d).

The above data indicate that the approximation of the
torque-dependent potential energy term, Φτ , by eq. (3)
yields reasonable results, reminding those observed in
single-DNA manipulation experiments, see Figure 2 in
ref. [3].

While the transfer-matrix calculations correctly pre-
dict position of the DNA supercoiling transition bound-
aries on the DNA phase diagram (see Figures 2 and 6),
it should be noted that due to the use of the Fuller’s ap-
proximation supercoiled DNA structures formed after the
DNA buckling transition in the presented model do not
necessarily correspond to DNA plectonemes observed in
real experiments. To gain further insights into the shape
of these DNA structures, we carried out Metropolis-
Monte-Carlo simulations based on eq. (1)-(6), see Ap-
pendix G for more details. It was found that although
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the DNA configurations generated by the Metropolis-
Monte-Carlo algorithm (Figure 4(a)) assumed compact
conformations, they lack the expected supercoiled DNA
plectonemes.

Moreover, DNA writhe number estimations obtained
for these DNA configurations using the double Gauss in-
tegral and the Fuller’s formula show a drastic difference
as indicated in Figure 4(a). We further examined the
contributions of different DNA segments into the total
DNA writhe number by applying the both formula to
one of the generated DNA configurations (Figure 4(b),
please refer to Appendix G for the details of the DNA
segments’ writhe number calculations). It can be seen
from the figure that the two calculations give similar re-
sults for DNA segments that are nearly aligned along
the force direction. In contrast, DNA segments that are
aligned in the opposite direction have an expected near-
zero contribution to the DNA writhe number calculated
using the double Gauss integral, while the Fuller’s for-
mula leads to erroneously large values due to the van-
ishing denominator in eq. (2). Such overestimation of
the DNA writhe number by the Fuller’s formula leads
to a strong decrease of the DNA total energy (eq. (1))
at sufficiently high torques, which results in preference
of incorrectly collapsed DNA conformations over other
DNA configurations.

These results suggest that the torque-driven collapse
of the DNA extension (Figure 3(a-c)) and large linking
number change (Figure 3(b-d)) under low force are likely
caused by the formation of these incorrect conformations.
Therefore, while the Fuller’s formula can be used to accu-
rately predict the behaviour of DNA in extended configu-
rations, it does not seem to correctly describe supercoiled
DNA conformations. Hence, the application of the pre-
sented theoretical framework, and any calculations using
the Fuller’s formula in general, should be restricted up
to the onset of the DNA buckling transition.

In the next subsection, we further extend the transfer-
matrix approach to investigate the structural stability
of DNA by taking into consideration that it can switch
between several alternative forms, such as B-, L- or P-
DNA, which have very distinct physical properties [4, 7–
9, 12].

B. The structural stability of DNA

DNA transition from B- to L- or P-DNA states is de-
termined by the base-pairing energy difference between
the respective DNA structures, which can be written as

µu−2πτ∆lk
(u)
0 . Here µu is the energy difference at zero

torque, corresponding to the transition from B-DNA to
a particular state denoted by index u = L, P or B; and

∆lk
(u)
0 = lk0,u−lk0,B , where lk0,u = ±h−1

u is the relaxed
linking number of the respective DNA form per single
base-pair and hu is the helical repeat of DNA in this
form. In the above formula, the sign of lk0,u is positive
for right-handed DNA helical structures (like B- and P-

DNA) and negative for left-handed structures (L-DNA).
Since we use B-DNA as the reference point it is clear that

µB = 0 and ∆lk
(B)
0 = 0.

Taking into account the aforementioned notes, it can
be shown that the transfer matrix, Su, for DNA segments
in state u can be obtained via multiplication of eq. (10) by
an exponential factor containing the base-pairing energy
difference (see Appendix E for details):

(Su)nn′ = e
−q

(
µu−2πτ∆lk

(u)
0

)
Snn′(au,bu,cu,λu) (15)

Here q is the number of base-pairs in individual DNA
segments; bu = qρu is the length of the DNA segments
in state u, and ρu is the base-pair rise in the correspond-
ing DNA form. au = Au/bu, cu = Cu/bu and λu are
the model parameters describing the respective physical
properties of DNA segments in states u = B, L or P.

Using eq. (15), the DNA partition function can be
found as (see Appendix E):

Zf,τ = Tr(UŜN−1V̂) (16)

Where U =
(
I I I

)
is a block-matrix comprising three

identity matrices, I. As for the transfer matrix, Ŝ, and
boundary condition matrix, V̂, they have the following
forms:

Ŝ=

SB SB SB
SL SL SL
SP SP SP

, V̂=

 VB

e
−q

(
µL−2πτ∆lk

(L)
0

)
VL

e
−q

(
µP−2πτ∆lk

(P )
0

)
VP

 (17)

Here blocks Su are defined by eq. (15), and blocks Vu =
V(bu) are described by previously introduced eq. (11)
and (12) depending on the DNA ends boundary condi-
tions.

In all our calculations, the size of the DNA segments
was set to be equal to ∼ 1.5 bp for all of the DNA struc-
tures and the DNA length was ∼ 5.1 kbp (a total of 3400
segments in the discretized polymer chain representing
DNA). For the rest of the L- and P-DNA parameters we
used the values listed below.
L-DNA. Compared to B-DNA, L-DNA has much

smaller bending and twisting persistence lengths of AL =
7 nm and CL = 15 nm [8, 9]. Taking into account that the
contour length of L-DNA per base-pair is ∼ 1.35 times
larger than that of B-DNA (bL = 1.35× bB = 0.675 nm)
[8, 19], the dimensionless bending and twisting rigidities
of DNA segments in the discretized polymer chain model
equal to aL = AL/bL = 10.4 and cL = CL/bL = 22.2.

As for the base-pairing energy difference µL, it is be-
lieved to be in a range of a few kBT [17–19]. A fixed
value µL = 5.0 kBT was used in the calculations pre-
sented below. Furthermore, based on the structural data

for B- and L-DNA, it can be estimated that ∆lk
(L)
0 =

−h−1
L −h

−1
B = −0.16. As will be seen from the compu-

tation results, with these parameters our model can cor-
rectly describe the DNA transition from B- to L-form,
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which takes place at the experimentally measured torque
values of −11 to −10 pN·nm [4, 8, 9].

Finally, due to the lack of information in the existing
literature regarding the transition boundary between ex-
tended and supercoiled L-DNA conformations, the value
of parameter λL was simply set equal to the value of λB
for B-DNA : λL = λB = 4.3. We note that the choice
of λL only affects the supercoiling transition boundary of
L-DNA but does not affect the B-to-L-DNA transition.

P-DNA. The bending and twisting persistence
lengths of P-DNA have been previously estimated to be
AP = 15 nm and CP = 25 nm [19]. Since the contour
length of P-DNA per base-pair is ∼ 1.7 times larger than
that of B-DNA (bP = 1.7 × bB = 0.85 nm), we have
aP = AP /bP = 17.6 and cP = CP /bP = 29.4 for the
dimensionless bending and twisting rigidities of P-DNA
segments.

The relaxed linking number difference between the B-

and P-DNA structures per base-pair is ∆lk
(P )
0 = h−1

P −
h−1
B = 0.24. As for the transition energy difference µP ,

it was estimated based on comparison of the calculated
phase boundary between B- and P-DNA states with the
experimentally measured one, which takes place at ∼ 35-
40 pN·nm torque [4, 7]. It was found that the latter
value can be reproduced in our computations by setting
µP = 17.8 kBT , in good agreement with the value of
15 kBT estimated in an earlier theoretical work [19].

Lastly, the existing experimental data show that the
onset of the P-DNA transition from the extended into a
supecoiled conformation takes place at ∼ 20 pN forces
and 35 − 50 pN·nm torques [12]. Using the transfer-
matrix calculations, we found that a value of λP = −0.5
results in the P-DNA supercoiling transition in the same
range of applied forces and torques.

Substituting the above model parameters into eq. (15)-
(17), we calculated the DNA extension and linking num-
ber change as functions of applied force and torque con-
straints. Figure 5(a) shows the force-extension curves,
zτ0(f) (top), and force-linking number change curves,
∆Lkτ0(f) (bottom), plotted at different negative (left)
and positive (right) torques τ0. As can be seen from the
figure, for sufficiently small torques (τ0 ∈ [−5, 5] pN·nm)
the calculated curves are virtually similar to those ob-
tained for a torsionally relaxed DNA (τ0 = 0 pN·nm)
– the DNA extension demonstrates practically the same
response to the applied force, and only a slight linking
number change is observed with the increasing absolute
value of the torque.

At larger negative torques of τ0 ∈ [−10,−5] pN·nm,
the DNA behaviour still reminds that of a torsionally re-
laxed DNA at high forces. However, when the applied
force drops below a certain threshold value the DNA ex-
tension experiences a steep collapse accompanied by si-
multaneous decrease in the DNA linking number, resem-
bling the typical transition of negatively wound B-DNA
into a supercoiled conformation observed in single-DNA
manipulation experiments.

Application of even stronger negative torques (τ0 <
−10 pN·nm) results in an abrupt change of the zτ0(f) and
∆Lkτ0(f) curves’ pattern indicated by ∼ 1.3 times longer
DNA extension at high forces and a simultaneous large
DNA linking number decrease (by ∼ 900). These results
are consistent with the DNA transition from the right-
handed B-form into a longer left-handed L-DNA struc-
ture at ∼ −11 pN·nm torque observed in experimental
studies [4, 8, 9]. Similar to B-DNA, L-DNA switches from
the extended to a supercoiled conformation as soon as
the applied force drops below a certain threshold, which
is slightly larger for L-DNA as compared to the B-DNA
case due to its higher elasticity.

As for the DNA behavior at positive torques, it practi-
cally mirrors the one described above for negative torques
with the only difference being that B-DNA switches into
alternative P-DNA state at a much higher torque of∼ 35-
40 pN·nm than in the case of B-to-L-DNA transition.
From Figure 5(a), right panels, it can be seen that B-to-
P-DNA transformation is accompanied by a large elon-
gation of the DNA contour length with a simultaneous
abrupt increase in the DNA linking number by ∼ 1400.
The estimated B-to-P-DNA transition boundary at ∼ 35-
40 pN·nm is consistent with previous experimental obser-
vations [4, 7].

At larger torques (> 35-40 pN·nm) where P-DNA
structure is stable, our calculations predict that super-
coiling of P-DNA occurs when the applied force drops
below ∼ 20 pN, resulting in further DNA linking number
increase. Both the value of the B-P base-pairing energy
difference (µP = 17.8 kBT ) and the transition boundary
of P-DNA from the extended to a supercoiling conforma-
tion estimated by our transfer-matrix method are similar
to those obtained by Marko and Neukirch using a differ-
ent theoretical approach [19].

Figure 5(b) shows the torque-extension curves, zf0(τ),
and the torque-linking number change curves, ∆Lkf0(τ),
under various force constraints (f = f0). It can be seen
that in the case of f0 < 0.5 pN, all zf0(τ) curves have
symmetric profiles with respect to both positive and neg-
ative torques. However, as soon as the applied force
increases above f0 ∼ 0.5-0.7 pN, this symmetry breaks
due to B-DNA switching into L-DNA state at sufficiently
large negative torques. Further increase of the applied
force beyond f0 ∼ 15 pN results in appearance of B-to-P
transition, which takes place at ∼ 35-40 pN·nm torque.

Using the above theoretical data, we plotted the DNA
phase diagram showing the transition boundaries be-
tween different DNA states (see Figure 6). The super-
coiling transition boundary for each DNA structure was
assumed to pass through the points on the force-torque
diagram where the DNA extension experiences ∼ 50%
drop with respect to the value predicted by the worm-like
chain model for the corresponding DNA structure. As for
the boundaries between alternative DNA forms (B, L or
P), they were defined as the set of points (f0, τ0) at which
∼ 50% of the DNA segments are in L- or P-DNA states,
respectively. For this purpose, the total number of DNA
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segments, Nu, in state u = L or P at various values of the
applied force (f = f0) and torque (τ = τ0) was calculated

as (Nu)f0,τ0 = − 1
q
∂ ln(Zf,τ )
∂µu

|f=f0
τ=τ0 .

As can be seen from Figure 6, the resulting phase di-
agram demonstrates good agreement with the existing
experimental data [4, 5, 7–9, 12, 28] as well as with the
previously reported theoretical studies [17–19].

Here we emphasize again that although the transfer-
matrix calculations can predict the onset of the B-, L-
and P-DNA supercoiling transition boundaries, the con-
formations of the collapsed DNA structures do not neces-
sarily correspond to experimentally observed DNA plec-
tonemes due to the use of the Fuller’s formula approxi-
mation.

C. DNA with structural heterogeneity

In the above sections, it was shown how the transfer-
matrix method can be applied to describe the behaviour
of DNA with homogeneous physical properties under
force and torque constraints. It is clear that the con-
structed formalism can be also used to take into consider-
ation any mechanical and structural heterogeneity along
DNA. Indeed, according to eq. (16) the DNA partition
function is determined by the product of transfer matri-
ces defined for individual DNA segments. Therefore, any
local deformation or non-uniformity of physical proper-
ties of DNA changes only the elements of the transfer
matrix corresponding to the respective DNA segment. It
is then straightforward to extend the developed formal-
ism to the general case through site-dependent transfer

matrices, Ŝj , by replacing the matrices product Ŝ
N−1

with
∏N−1
j=1 Ŝj in eq. (16).

To demonstrate how such approach can be utilized to
predict the behaviour of DNA with local inhomogeneity,
we performed a number of calculations for 5.1 kbp DNA
that has a small insert of 24 bp, or 51 bp, or 102 bp
in the middle part. This insert is characterized by a
lower energy cost of the B-to-L transition (µL = 2.0 kBT )
comparing to that of the rest of the DNA (µL = 5.0
kBT ). This way, a local structural inhomogeneity was
introduced into the DNA. The values of the other model
parameters, au, bu, cu and λu (where u = B, L or P),
were kept unchanged in the computations.

Figure 7 shows the results of the transfer-matrix calcu-
lations, demonstrating how the linking number of a me-
chanically stretched DNA having the above mentioned
local structural inhomogeneity changes with the applied
torque. As can be seen from the figure, in the absence of
the insert, the B-to-L transition of the DNA takes place
at a negative torque of ∼ −11 pN·nm; whereas, in the
case of the structural inhomogeneity, the DNA experi-
ences a sequence of two B-to-L transitions - the first one
at a small torque, which is then followed by the second
at ∼ −11 pN·nm. The first transition corresponds to the
insert switching from B- to L-DNA form, while the sec-

ond transition indicates the B-to-L transformation of the
rest of the DNA.

Interestingly, very similar torque-linking number
change curves were reported in a recent single-molecule
study [9], where the behaviour of 4.6 kbp DNA molecules
containing various small inserts in the middle part prone
to L-DNA formation was studied at different force and
torque constraints. Such similarity between our model
predictions and the reported experimental data suggests
that the transfer-matrix formalism constructed in our
study correctly describes the effect of local DNA inho-
mogeneities. This makes it possible to employ in future
the transfer-matrix calculations to extract the values of
the parameters describing the physical properties of dif-
ferent DNA structures based on the results of single-DNA
manipulation experiments.

IV. DISCUSSION

In summary, we have developed a new method based
on the transfer-matrix technique to evaluate the confor-
mational changes of DNA subjected to force and torque
constraints.

Although the transfer-matrix calculations has been
previously used in theoretical studies of DNA, those the-
ories either did not explicitly consider local DNA defor-
mations [17] or were mainly focused on the behavior of
a torsionally relaxed DNA [29–31], accurately describing
the DNA behaviour only at high forces or at zero torque.
In contrast, the major advantage of our method is that it
explicitly takes into account local orientational and struc-
tural fluctuations of DNA, thereby allowing us to predict
the DNA behaviour in a wide range of applied mechanical
constraints. In spite of the need to introduce a new model
parameter (i.e., λ parameter in eq. (3)), this advantage
makes it a unique and useful approach that provides de-
scription of the DNA mechanical response with minimal
modifications to the polymer model of DNA.

It should be noted that λ parameter has a simple phys-
ical interpretation. Metropolis-Monte-Carlo simulations
show that while the Fuller’s formula correctly estimates
the DNA writhe number of extended DNA configura-
tions, it provides wrong results for supercoiled DNA con-
formations, leading to a wrong statistical sampling of the
latter in the partition function integral (eq. (7)). This in
turn leads to disbalance between the extended and super-
coiled DNA configurations, resulting in the DNA buck-
ling transition taking place at forces higher than those
measured in single-DNA manipulation studies. Thus, on
the one hand, introduction of λ parameter into the model
is intended to correct the disbalance between extended
and supercoiled DNA conformations caused by the usage
of the Fuller’s formula. On the other hand, the energy
term corresponding to λ parameter also accounts for the
contribution of the electrostatic repulsive interaction en-
ergy between remote DNA sites brought into a close con-
tact by the DNA writhing, which has a profound effect
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on the DNA supercoiling transition [19].
Here we again would like to stress that while the pa-

rameter λ is used in the model to shift the transition
boundary between extended and supercoiled DNA con-
formations to the experimentally measured position on
the phase diagram, it does not affect the behaviour of
extended or nearly-extended DNA because the writhe
number of such DNA configurations is typically very
small. Furthermore, λ parameter neither affects the
phase boundaries between B-, L- and P-DNA structures,
as these transitions are mainly governed by the param-

eters µu and ∆lk
(u)
0 (u = B, L or P). Thus, λ can be

thought of as a parameter responsible solely for the po-
sitioning of the DNA supercoiling transition boundaries
on the DNA phase diagram.

A recent work by Marko and Neukirch [19] adopts a dif-
ferent strategy to tackle this problem by modeling DNA
as a homogeneous polymer comprised of extended and
supercoiled regions, which are treated as topologically
separated but mechanically coupled domains. The sim-
plicity of such approach has made it possible to obtain
many important insights into the structural stability of
DNA at various mechanical constraints. However, the
requirement of the DNA homogeneity makes it difficult
to apply this type of model to situations where DNA in-

homogeneities naturally arise as a result of the sequence
dependent properties of DNA or due to binding of pro-
teins. Our transfer-matrix method fills this gap since it is
built based on local DNA deformations, without the need
to separate the DNA into different topological domains.
Because of these advantages, the formalism developed in
our study may provide a wide scope of potential applica-
tions, such as investigation of sequence-dependent DNA
mechanical response and exploration of interactions be-
tween DNA and architectural proteins [9, 32–38]. As
such, the theory developed in this work can be conve-
niently applied to cases involving excited or permanent
DNA heterogeneities caused by sequence-dependent vari-
ations of the DNA physical properties or local structural
transitions of DNA as well as site-specific protein binding
or DNA damage.
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Appendix A: Orthogonal D-functions

To calculate the partition function of DNA, we use a semiflexible polymer chain model in which DNA is represented
by a discretized polygonal chain consisting of short segments of equal length, b. The global DNA conformation is then
uniquely determined by the orientations of all of the DNA segments, which can be described in terms of Euler rotation
matrices, (R1, ..,RN ), where N is the total number of segments in the polygonal chain. Here each matrix Rj shows
the orientation of the local Cartesian coordinate system,

(
xj ,yj , zj

)
, attached to the jth DNA segment relative to

the fixed lab coordinate frame (x0,y0, z0). Thus, collection (R1, ..,RN ) of all of the DNA segments rotation matrices
completely specifies the global DNA conformation.

As was shown in the main text, using the Fuller’s approximation for the DNA writhe number, the total energy of
DNA can be represented as a sum of local energies Ej(Rj ,Rj+1) associated with the vertices connecting neighbouring
DNA segments. In this case, calculation of the DNA partition function can be greatly simplified by reducing the
numerous repetitive integrations of the product of e−Ej(Rj ,Rj+1) functions to a mere multiplication of the respective
transfer matrices, see eq. (8), (13) and (16) in the main text. To prove these formulas and to find out the expression
for the transfer matrix elements (eq. (10) and (15)), we will use several famous results from the group theory.

First of all, it should be noted that every Euler matrix, R, corresponds to a unique element from SO(3) group of
all rotations about the origin of three-dimensional Euclidean space. It is convenient to parametrize SO(3) group by
the three Euler angles α, β and γ (see Figure 1(b)), in which case every rotation matrix, R, is determined by the
respective set (α, β, γ) of Euler angles (α, γ ∈ [0, 2π] and β ∈ [0, π]).

Second, from the group theory it is known that any square-integrable function defined on SO(3) group can be
expanded into a series of orthogonal functions Dn

m,l, which have the following canonical form, see p. 101 in [25]:

Dn
m,l(α, β, γ) = e−imαPnm,l(cosβ) e−ilγ (A1)

Where n, m, l are integers such that n ≥ 0 and −n ≤ m, l ≤ n; α, β and γ are Euler angles, parametrizing
SO(3) group; and Pnm,l are polynomials, which relate to the elements of so-called small Wigner d-matrix, dnm,l, as

Pnm,l(cosβ) = im−ldnm,l(β).
Functions Dn

m,l and polynomials Pnm,l possess a number of important properties, which we will extensively use below
to derive the formulas for the transfer matrix elements and DNA partition function.

First, by substituting (α, β, γ) = (0, 0, 0) into eq. (A1) and taking into account that dnm,l(0) = δml, we get:

Dn
m,l(0, 0, 0) = Pnm,l(1) = im−ldnm,l(0) = δml (A2)

Here δml is the Kronecker delta (δml = 1 if m = l and δml = 0, otherwise).
Furthermore, since for any indexes n ≥ 0 and −n ≤ m, l ≤ n: dnm,l(β) are real functions obeying the following

symmetric relations dnm,l(β) = (−1)
l−m

dnl,m(β) = dn−l,−m(β), it is not very hard to see that:

(−1)
l−m

P
n

m,l(x) = Pnm,l(x) = Pnl,m(x) = Pn−m,−l(x) (A3)

Where the bar over the function denotes the complex conjugate.
Combining together eq. (A1) and (A3), we obtain:

D
n

m,l(R) = (−1)
m−l

Dn
−m,−l(R) (A4)

http://nar.oxfordjournals.org/content/40/18/8942
http://dx.doi.org/10.1074/jbc.M113.545954
http://dx.doi.org/10.1016/j.bpj.2015.08.016
http://dx.doi.org/10.1016/j.bpj.2015.08.016
http://www.nature.com/articles/srep03508
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.82.051906
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.82.051906
http://pubs.acs.org/doi/abs/10.1021/ma00130a008
http://pubs.acs.org/doi/abs/10.1021/ma00130a008
http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://www.sciencedirect.com/science/article/pii/S0022283683801296
http://onlinelibrary.wiley.com/doi/10.1002/1097-0282(20001015)54:5%3C307::AID-BIP20%3E3.0.CO;2-Y/abstract
http://www.cell.com/biophysj/abstract/S0006-3495(97)78053-6
http://www.cell.com/biophysj/abstract/S0006-3495(97)78053-6
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Here and below for the sake of formulas simplicity we use Dn
m,l(R) notation to address functions Dn

m,l(α, β, γ), where

R is the Euler rotation matrix corresponding to angles (α, β, γ).
Using eq. (A1), (A3) and (A4), it is straightforward to show that:

Dn
m,l

(
R−1

)
= D

n

l,m(R) (A5)

Here matrix R−1 corresponding to Euler angles (π−γ, β, π−α) is the inverse of matrix R (i.e., R−1R = RR−1 = I,
where I is the 3× 3 identity matrix: Iml = δml).

Next, functions Dn
m,l obey the following important multiplication rules [25]:

Dn
m,l(R1R2) =

n∑
k=−n

Dn
m,k(R1)Dn

k,l(R2) (A6)

and

Dn1

m1,l1
(R)Dn2

m2,l2
(R) =

∑
n

〈n1n2m1m2|n(m1+m2)〉 〈n1n2l1l2|n(l1+l2)〉Dn
m1+m2,l1+l2(R) (A7)

Where 〈n1n2m1m2|n3m3〉 are Clebsh-Gordan coefficients. For the sake of the formulas simplicity and compactness,
below we will use Winger 3-j symbols instead of Clebsh-Gordan coefficients, which relate to each other as:(

n1 n2 n3

m1 m2 m3

)
=

(−1)
n1−n2−m3

√
2n3+1

〈n1n2m1m2|n3(−m3)〉 (A8)

The final important property of Dn
m,l functions required for the DNA transfer matrix derivation is their orthogo-

nality, which was mentioned in the beginning of this appendix. Namely, it can be shown that [25]:∫
dRD

n1

m1,l1(R)Dn2

m2,l2
(R) =

8π2

2n1+1
δn1n2δm1m2δl1l2 (A9)

Where the integration in the above formula is carried out over all of the possible combinations of the Euler angles
(α, β, γ): ∫

dR =

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

sinβ dβ (A10)

Orthogonality and completeness of Dn
m,l functions makes it possible to use them as a Hilbert basis in the space of

square-integrable functions, F (α, β, γ) = F (R), defined on SO(3) group [25]. Therefore, any such function, F (R),
can be expanded into the following series:

F (R) =

∞∑
n=0

n∑
m,l=−n

Fmln Dn
m,l(R) (A11)

Where the expansion coefficients Fmln are:

Fmln =
2n+1

8π2

∫
dRD

n

m,l(R)F (R) (A12)

Analogously, for any square-integrable function F
(
R,R′

)
, where R and R′ are two rotation matrices, we have:

F
(
R,R′

)
=

∞∑
n,n′=0

n∑
m,l=−n

n′∑
m′,l′=−n′

Fmm
′ll′

nn′ Dn
m,l(R)D

n′

m′,l′
(
R′
)

(A13)

Where the expansion coefficients Fmm
′ll′

nn′ are:

Fmm
′ll′

nn′ =
(2n+1)(2n′+1)

(8π2)
2

∫
dRdR′D

n

m,l(R)F
(
R,R′

)
Dn′

m′,l′
(
R′
)

(A14)

With all of the above formulas at hand, it is now straightforward to deduct the expressions for the DNA partition
function and the transfer matrix elements discussed in the main text.
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Appendix B: Elements of the DNA transfer matrix

Let’s now apply eq. (A11)-(A14) to obtain expansion formulas for a couple of functions that will be later used to
derive the transfer matrix for the DNA partition function calculations.

First of all, we will find the expansion series of the exponential function containing the potential energy
terms corresponding to the DNA mechanical stretching and twisting under the applied load, f , and torque, τ :

ebf(z0·Rz0)+τ(2π−λ)∆LkF(R,R′). Here R and R′ are two Euler matrices describing the orientations of neighbour
DNA segments (DNA segment corresponding to matrix R is followed by one corresponding to matrix R′); and
∆LkF

(
R,R′

)
= 1

2π (α̃′+γ̃′−α̃−γ̃) is the local contribution of the two DNA segments to the total change in the DNA
linking number based on the Fuller’s formula approximation, see more details in ref. [13, 14]. In the latter expression,
α̃, γ̃, α̃′, γ̃′ are the Euler angles from the extended range of (−∞,∞) corresponding to matrices R and R′, which
relate to usual Euler angles (α, β, γ) and (α′, β′, γ′) as:

α = α̃ mod 2π, γ = γ̃ mod 2π, α′ = α̃′ mod 2π, γ′ = γ̃′ mod 2π (B1)

Since β is the angle between z0-axis of the lab coordinate system and z-axis of the system generated by Euler
rotations (α, β, γ) it is obvious that (z0 ·Rz0) = (z0 · z) = cosβ, see Figure 1(b). Furthermore, since the size of the
DNA segments, b, is chosen to be much smaller than the bending, A, and twisting, C, persistence lengths of DNA
(b� A and b� C) it is clear that the coordinate frame corresponding to matrix R′ is only slightly rotated relative
to the coordinate frame corresponding to matrix R. In this case:

2π∆LkF
(
R,R′

)
= α̃′+γ̃′−α̃−γ̃ ≈ sin(α′+γ′−α−γ) (B2)

Taking into account the above notes, it is easy to see that:

ebf(z0·Rz0)+τ(2π−λ)∆LkF(R,R′) = ebfcos β+τ(1− λ
2π ) sin(α′+γ′−α−γ) (B3)

To find the expansion formula for the above function, it is convenient to use Jacobi-Anger equation (p. 687, [39]):

eiq cosϕ =

+∞∑
n=−∞

inJn(q) einϕ (B4)

Where Jn(x) are Bessel functions of the first kind; i is imaginary unit and q is an arbitrary constant. Substituting
ψ = π

2−ϕ and ρ = iq into eq. (B4), we get:

eρ sinψ =

+∞∑
n=−∞

i−nIn(ρ) einψ (B5)

Where In(x) = i−nJn(ix) are modified Bessel functions of the first kind, which have the following properties: I−n(x) =
In(x) and In(−x) = (−1)

n
In(x), see p. 714 in ref. [39]. By using functions In(x), it also is possible to re-write eq. (B4)

in another more convenient form:

eρ cosϕ =

+∞∑
n=−∞

In(ρ) einϕ (B6)

From eq. (A14), (B3) and (B5) we have:

Fmm
′ll′

nn′ =
(2n+1)(2n′+1)

(8π2)
2

∫
dRdR′D

n

m,l(R) ebf(z0·Rz0)+τ(2π−λ)∆LkF(R,R′)Dn′

m′,l′
(
R′
)

=
(2n+1)(2n′+1)

(8π2)
2 ×

×
∫

dRdR′ P
n

m,l(cosβ) ebfcos β×Pn
′

m′,l′(cosβ′)×
+∞∑

k=−∞

i−kIk
(
τ
(
1− λ

2π

))
ei(m−k)α+i(l−k)γ−i(m′−k)α′−i(l′−k)γ′ =

= δmm′δll′δml×
1

4
(2n+1)(2n′+1) i−mIm

(
τ
(
1− λ

2π

))
L n
m(−bf) L n′

m (0) (B7)

Here functions L n
m(s) are bilateral Laplace transforms of Pnm,m polynomials / elements of small Wigner d-matrix:

L n
m(s) =

∫ 1

−1

Pnm,m(x) e−sxdx =

∫ 1

−1

dnm,m
(
cos−1 x

)
e−sxdx (B8)
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Substituting eq. (B7) into eq. (A13), we finally get the desired expansion formula:

ebf(z0·Rz0)+τ(2π−λ)∆LkF(R,R′) =

=
1

4

∑
n,n′,m

(2n+1)(2n′+1) i−mIm
(
τ
(
1− λ

2π

))
L n
m(−bf) L n′

m (0)Dn
m,m(R)D

n′

m,m

(
R′
)

(B9)

The second function, e−
a
2 (Rz0−R′z0)

2− c2 (2π∆Tw(R,R′))
2
+τλ∆Tw(R,R′), which we want to expand, contains the re-

maining energy terms from eq. (6) in the main manuscript text corresponding to the local elastic deformation of
DNA taking place between neighbour DNA segments, whose orientations in space are described by Euler matrices R
and R′. Here ∆Tw

(
R,R′

)
is the local contribution of the two DNA segments to the DNA total twist number (i.e.,

∆Tw
(
R,R′

)
is the twist angle between the coordinate systems corresponding to Euler matrices R and R′ normalized

to 2π radians).
Before proceeding to the expansion series derivation it should be first noted that the above function depends

only on the product R−1R′ of Euler matrices. Indeed, from the definition of rotation matrices it follows that(
Rz0−R′z0

)2
= 2− 2

(
Rz0 ·R′z0

)
= 2− 2

(
z0 ·R−1R′z0

)
and ∆Tw

(
R,R′

)
= ∆Tw

(
I,R−1R′

)
, where I is the

identity rotation matrix corresponding to the lab coordinate system (α0, β0, γ0 = 0). In other words, the twisting
angle between the coordinate systems corresponding to Euler matrices R and R′ as well as the bending angle between
their z-axes depend only on the relative orientation of the two coordinate systems in space and is independent from
their exact alignment with respect to the lab coordinate frame (x0,y0, z0). Thus, the expansion series of the above
exponential function can be found in two steps. First, we will consider the special case in which the coordinate system
corresponding to matrix R is identical to the lab coordinate system (R = I), and the coordinate frame corresponding
to matrix R′ is only slightly rotated relative to it. Second, by substituting R′ → R−1R′ into the formula obtained
for the special case and using eq. (A6), we will get the desired expansion series for the general case.

Let again (α′, β′, γ′) be the Euler angles corresponding to matrix R′. Then taking into account the above notes, for

the special case of R = I we have:
(
Rz0−R′z0

)2
= 2−2

(
z0 ·R′z0

)
= 2−2 cosβ′ and ∆Tw

(
R,R′

)
= ∆Tw

(
I,R′

)
.

Furthermore, since the coordinate frame corresponding to matrix R′ is only slightly rotated relative to the lab
coordinate system because b� A and b� C, it is clear that:

2π∆Tw
(
I,R′

)
≈ α′+γ′ ≈ sin(α′+γ′) and

(
2π∆Tw

(
I,R′

))2 ≈ 2−2 cos(α′+γ′) (B10)

Thus, in the special case of R = I:

e−
a
2 (Rz0−R′z0)

2− c2 (2π∆Tw(R,R′))
2
+τλ∆Tw(R,R′) = e−

a
2 (z0−R′z0)

2− c2 (2π∆Tw(I,R′))
2
+τλ∆Tw(I,R′) =

= e−a−cea cos β′+c cos(α′+γ′)+ τλ
2π sin(α′+γ′) (B11)

Applying eq. (A12) and (B6) to the above expression, it is rather straightforward to show that:

Fm
′l′

n′ =
2n′+1

8π2

∫
dR′D

n′

m′,l′
(
R′
)
e−

a
2 (z0−R′z0)

2− c2 (2π∆Tw(I,R′))
2
+τλ∆Tw(I,R′) =

=
2n′+1

8π2
e−a−c

∫
dR′ P

n′

m′,l′(cosβ′) ea cos β′×
+∞∑

k=−∞

Ik

(
c
√

1+χ2
)
ei(m

′+k)α′+i(l′+k)γ′−ikω =

= δm′l′ ×
1

2
(2n′+1) e−a−ceim

′ωIm′
(
c
√

1+χ2
)

L n′

m′(−a) (B12)

Where χ = τλ
2πc and ω = tan−1(χ).

Substituting eq. (B12) into eq. (A11), we obtain the desired expansion formula for the special case of R = I:

e−
a
2 (z0−R′z0)

2− c2 (2π∆Tw(I,R′))
2
+τλ∆Tw(I,R′) =

=
1

2
e−a−c

∑
n′,m′

(2n′+1) eim
′ωIm′

(
c
√

1+χ2
)

L n′

m′(−a)Dn′

m′,m′
(
R′
)

(B13)

To extend this formula to the general case, we simply need to put R′ → R−1R′ and use the previously mentioned
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multiplication property of Dn
m,l functions (eq. (A6)). By doing so, we get:

e−
a
2 (Rz0−R′z0)

2− c2 (2π∆Tw(R,R′))
2
+τλ∆Tw(R,R′) =

=
1

2
e−a−c

∑
n,m,l

(2n+1) e−imωIm

(
c
√

1+χ2
)

L n
m(−a)Dn

l,m(R)D
n

l,m

(
R′
)

(B14)

Here, in addition to the indexes change n′ → n and m′ → −m, we also used eq. (A4) and (A5) to re-write the
expansion formula in the form of eq. (A13).

Having the expansion series for the exponential functions containing both the global and local energy terms, it
is now simple enough to obtain the general formula for the DNA transfer matrix. Namely, multiplying eq. (B9) by
eq. (B14), and using twice the multiplication rule for Dn

m,l functions (eq. (A7)) together with eq. (A8), we have:

e−E(R,R′) = e−
a
2 (Rz0−R′z0)

2− c2 (2π∆Tw(R,R′))
2
+bf(z0·Rz0)+τ(2π−λ)∆LkF(R,R′)+τλ∆Tw(R,R′) =

=
1

8
e−a−c

∑
n,m,l,k,k′,r

(2n+1)(2k+1)(2k′+1) i−re−imωIm

(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×

×L n
m(−a) L k

r (−bf) L k′

r (0)×Dn
l,m(R)Dk

r,r(R)×Dn

l,m

(
R′
)
D
k′

r,r

(
R′
)

=

=
1

8
e−a−c

∑
n,m,l,k,k′,r,p,p′

(2n+1)(2k+1)(2k′+1)(2p+1)(2p′+1) i−re−imωIm

(
c
√

1+χ2
)
×

×Ir
(
τ
(
1− λ

2π

))
×L n

m(−a) L k
r (−bf) L k′

r (0)×
(
n k p
l r −l−r

)(
n k p
m r −m−r

)
×

×
(
n k′ p′

l r −l−r

)(
n k′ p′

m r −m−r

)
×Dp

l+r,m+r(R)D
p′

l+r,m+r

(
R′
)

(B15)

Here E
(
R,R′

)
is the local DNA energy term defined by eq. (6) in the main text, which is determined by the

orientations of neighbour DNA segments described by rotation matrices R and R′, respectively.
By introducing new indexes s = l + r and t = m + r and switching the order of summation in eq. (B15), it is not

very hard to obtain the following expansion formula:

e−E(R,R′) =
∑
p,p′,s,t

F stpp′D
p
s,t(R)D

p′

s,t

(
R′
)

(B16)

Where the expansion coefficients F stpp′ are:

F stpp′ =
1

8
(2p+1)(2p′+1) e−a−c

∑
n,k,k′,r

(2n+1)(2k+1)(2k′+1) i−re−i(t−r)ωIt−r

(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×

×L n
t−r(−a) L k

r (−bf) L k′

r (0)×
(

n k p
s−r r −s

)(
n k p
t−r r −t

)(
n k′ p′

s−r r −s

)(
n k′ p′

t−r r −t

)
(B17)

To simplify the DNA partition function calculations, it will be more convenient to slightly re-organize eq. (B16) and

(B17). First, it should be noted that from eq. (A9) it follows that functions Dn
m,l have the L2-norm ‖Dn

m,l‖2 =
√

8π2

2n+1 :

‖Dn
m,l‖22 =

∫
dRD

n

m,l(R)Dn
m,l(R) =

8π2

2n+1
(B18)

Thus, while being orthogonal, the basis formed by Dn
m,l functions is not orthonormal. Using eq. (B18), we can

easily normalize it by switching from Dn
m,l to

√
2n+1
8π2 D

n
m,l functions. By doing this, the earlier obtained expansion

formula turns into:

e−E(R,R′) =
1

8π2

∑
p,p′,s,s′,t,t′

√
(2p+1)(2p′+1)× T s

′,t′,p′

s,t,p Dp
s,t(R)D

p′

s′,t′
(
R′
)

(B19)
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Where the expansion coefficients T s
′,t′,p′

s,t,p are:

T s
′,t′,p′

s,t,p = δss′δtt′ × π2
√

(2p+1)(2p′+1) e−a−c
∑

n,k,k′,r

(2n+1)(2k+1)(2k′+1) i−re−i(t−r)ω×

× It−r
(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×L n

t−r(−a) L k
r (−bf) L k′

r (0)×

×
(

n k p
s−r r −s

)(
n k p
t−r r −t

)(
n k′ p′

s−r r −s

)(
n k′ p′

t−r r −t

)
(B20)

By putting s = s′ = t = t′ = 0 in the above expression, we finally obtain eq. (10) from the main text describing the
elements of the DNA transfer matrix in the case when the DNA boundary condition function has a symmetry about
z0-axis of the lab coordinate system (see more details in Appendix C):

Spp′ = T 0,0,p′

0,0,p = π2
√

(2p+1)(2p′+1) e−a−c
∑

n,k,k′,r

(2n+1)(2k+1)(2k′+1) eir(ω−
π
2 )×

× Ir
(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×L n

r (−a) L k
r (−bf) L k′

r (0)×
(

n k p
−r r 0

)2(
n k′ p′

−r r 0

)2
(B21)

Appendix C: DNA partition function

In this section, we will derive an analytic formula for the partition function of a mechanically stretched and twisted
DNA using a semiflexible polymer model introduced in the main text. Representing DNA by a discretized polygonal
chain consisting of short segments of equal length, b, and applying the Fuller’s formula, the total conformational
energy of the DNA, Etot(R1, ..,RN ), can be found as a sum of local energies Ej(Rj ,Rj+1) associated with the
vertices connecting neighbouring DNA segments (eq. (5) in the main text):

Etot(R1, ..,RN ) =

N−1∑
j=1

Ej(Rj ,Rj+1)− bf(z0 ·RNz0) (C1)

As before, (R1, ..,Rj , ..,RN ) are Euler rotation matrices describing the orientations of individual DNA segments;
N is the total number of DNA segments in the polygonal chain; and f = F/kBT , where F is the stretching force
applied to the DNA. Here and below all of the energies are in kBT units. The rightmost term in eq. (C1) is the
potential energy of the last DNA segment under load f , which is not accounted for by any of the local energies terms
Ej(Rj ,Rj+1) defined as (eq. (6), main text):

Ej(Rj ,Rj+1) =
a

2
(Rjz0−Rj+1z0)

2
+
c

2
(2π∆Twj(Rj ,Rj+1))

2 − bf(z0 ·Rjz0)−

− τ(2π−λ) ∆LkFj (Rj ,Rj+1)− τλ∆Twj(Rj ,Rj+1) (C2)

Here a = A/b and c = C/b are the effective bending and twisting rigidities of the segments in the discretized model of
DNA; τ is the torque applied to DNA in kBT units; ∆LkFj (Rj ,Rj+1) and ∆Twj(Rj ,Rj+1) are the local contributions

of the jth and (j + 1)
th

DNA segments to the total change in the DNA linking and twist numbers, respectively; λ is
the model parameter accounting for the repulsion energy associated with the DNA writhe formation [19].

Using eq. (C1)-(C2), the partition function of DNA under applied tension f and torque τ can be found as:

Zf,τ =

∫
dR1..dRN e

−Etot(R1,..,RN ) ξ(RN ,R1) (C3)

Here ξ(RN ,R1) is a function that imposes specific boundary conditions on the orientations of the DNA ends. To
simplify eq. (C3), it is convenient to introduce the following notation:

T
(
R,R′

)
= e−E(R,R′) (C4)

Where E
(
R,R′

)
is the local energy contribution defined by eq. (C2) to the total energy of DNA by two neighbouring

DNA segments, whose orientations in space are described by Euler matrices R and R′ (i.e., in the case of R = Rj

and R′ = Rj+1: E
(
R,R′

)
= Ej(Rj ,Rj+1)). Substituting eq. (C4) and (C1) into eq. (C3), it is then easy to see that:

Zf,τ =

∫
dR1..dRN

N−1∏
j=1

T (Rj ,Rj+1)× σ(RN ,R1) (C5)
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Where

σ(RN ,R1) = ebf(z0·RNz0) ξ(RN ,R1) (C6)

Using eq. (B19)-(B20), it is possible to simplify eq. (C5), reducing all of the integrals to mere summations. Indeed,
as was shown in Appendix B, each T

(
R,R′

)
function in eq. (C5) can be expanded into the series of Dn

m,l functions
as:

T
(
R,R′

)
=

1

8π2

∑
n,n′,m,m′,l,l′

√
(2n+1)(2n′+1)× Tm

′,l′,n′

m,l,n Dn
m,l(R)D

n′

m′,l′
(
R′
)

(C7)

Where the expansion coefficients Tm
′,l′,n′

m,l,n are (eq. (B20)):

Tm
′,l′,n′

m,l,n = δmm′δll′ × π2
√

(2n+1)(2n′+1) e−a−c
∑

p,k,k′,r

(2p+1)(2k+1)(2k′+1) i−re−i(l−r)ω×

× Il−r
(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×L p

l−r(−a) L k
r (−bf) L k′

r (0)×

×
(

p k n
m−r r −m

)(
p k n
l−r r −l

)(
p k′ n′

m−r r −m

)(
p k′ n′

l−r r −l

)
(C8)

Here, as before, χ = τλ
2πc and ω = tan−1(χ).

Analogously, the boundary condition function σ(RN ,R1) can be represented via Dn
m,l-series as:

σ(RN ,R1) =
1

8π2

∑
n1,m1,l1
nN ,mN ,lN

√
(2n1+1)(2nN+1)× σm1,l1,n1

mN ,lN ,nN
DnN
mN ,lN

(RN )D
n1

m1,l1(R1) (C9)

Where the expansion coefficients σm1,l1,n1

mN ,lN ,nN
can be found using the following expression:

σm1,l1,n1

mN ,lN ,nN
=

√
(2n1+1)(2nN+1)

8π2

∫
dR1dRN D

nN
mN ,lN(RN )σ(RN ,R1)Dn1

m1,l1
(R1) (C10)

Substituting eq. (C7) and (C9) into eq. (C5) and using the orthogonality property of Dn
m,l functions (eq. (A9)), it

is straightforward to show that:

Zf,τ =
∑

m1 ,..,mN
l1,..,lN
n1 ,..,nN

N−1∏
j=1

T
mj+1,lj+1,nj+1

mj ,lj ,nj
× σm1,l1,n1

mN ,lN ,nN

 (C11)

All that remains is to find the expansion coefficients σm1,l1,n1

mN ,lN ,nN
in the above expression. While eq. (C9)-(C10) can

be used to obtain the expansion series for any boundary condition function, here we will consider only two examples.
First boundary condition function is obtained by assuming that the first and the last segments of DNA always stay
collinear to the lab z0-axis during the DNA mechanical stretching and twisting. In this case, without loss of generality
we can assume that the first DNA segment is fixed and has the same orientation as the lab coordinate system (R1 = I),
while the last (N th) DNA segment can freely rotate about its zN -axis which always stays parallel to z0-axis of the
fixed lab coordinate system (zN = RNz0 = z0). Thus, we have:

ξ(RN ,R1) = δ(R1−I) δ(RNz0−z0) =
δ(α1) δ(β1) δ(γ1) δ(βN )

2π sinβ1 sinβN
(C12)

Here δ(x) is the Dirac delta function.
From eq. (A1)-(A2), (A10), (C6), (C10) and (C12) it then follows that:

σm1,l1,n1

mN ,lN ,nN
=

√
(2n1+1)(2nN+1)

8π2

∫
dR1dRN D

nN
mN ,lN(RN ) ebf(z0·RNz0)δ(R1−I) δ(RNz0−z0)Dn1

m1,l1
(R1) =

= δmN0δlN0×
√

(2n1+1)(2nN+1)

4π
ebf×Pn1

m1,l1
(1)P

nN
mN ,lN(1) = δmN0δlN0δm1l1×

√
(2n1+1)(2nN+1)

4π
ebf (C13)
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Another boundary condition function can be obtained by assuming that there is no constraint on the DNA ends’
orientations (i.e., DNA ends can freely rotate). In this case:

ξ(RN ,R1) = 1 (C14)

Then using eq. (A1), (A10), (B8), (C6) and (C10), we obtain the following expression for the expansion coefficients
of the DNA ends free orientation boundary condition function:

σm1,l1,n1

mN ,lN ,nN
=

√
(2n1+1)(2nN+1)

8π2

∫
dR1dRN D

nN
mN ,lN(RN ) ebf(z0·RNz0)Dn1

m1,l1
(R1) =

= δm10δl10δmN0δlN0 × 2π2
√

(2n1+1)(2nN+1)×L n1
0 (0) L nN

0 (−bf) (C15)

From eq. (C13) and (C15) it can be seen that, despite slightly different forms, the expansion coefficients of the two
boundary condition functions considered here have the same term: δmN0δlN0. Together with δmm′δll′ term in eq. (C8)
it leads to a peculiar domino-like effect resulting in nullification of all of the tesseral harmonics in the final expression
for the DNA partition function (nullification of all of the terms with non-zero indexes m and l). I.e., by substituting
eq. (C13) or (C15) into eq. (C11), we have:

Zf,τ =
∑

n1,..,nN

N−1∏
j=1

T
0,0,nj+1

0,0,nj
× σ0,0,n1

0,0,nN

 (C16)

In fact, it can be proved that eq. (C16) holds in a much more general case when the boundary condition function,
ξ(RN ,R1), possesses a symmetry about z0-axis of the lab coordinate system with respect to either the first or the
last DNA segments’ orientations, i.e., when rotation of one of these DNA segments about z0-axis does not change the
value of the boundary condition function. It is clear that the above two examples of the DNA boundary condition
function, namely, eq. (C12) and (C14), fall into this category.

To streamline eq. (C16), it is convenient to introduce two square matrices, S and V, whose elements are defined as:

Snn′ = T 0,0,n′

0,0,n and Vnn′ = σ0,0,n′

0,0,n (C17)

Then eq. (C16) takes a very simple and compact form:

Zf,τ = Tr
(
SN−1V

)
(C18)

It should be noted that while in the above expression square matrices S and V in the general case have infinite sizes,
calculations show that the value of the DNA partition function is typically determined by first M ≈ 10-15 harmonics
[29, 40]. Thus, in real computations it makes sense to use finite M ×M square matrices S and V in eq. (C18), which
include only first M rows and columns.

In conclusion, to obtain the partition function of a mechanically stretched and twisted DNA, one has to:

1) calculate the elements Snn′ and Vnn′ of matrices S and V for 0 ≤ n, n′ ≤M−1:

Snn′ = π2
√

(2n+1)(2n′+1) e−a−c
∑

p,k,k′,r

(2p+1)(2k+1)(2k′+1) eir(ω−
π
2 )×

× Ir
(
c
√

1+χ2
)
Ir
(
τ
(
1− λ

2π

))
×L p

r (−a) L k
r (−bf) L k′

r (0)×
(

p k n
−r r 0

)2(
p k′ n′

−r r 0

)2
(C19)

and
Vnn′ = 1

4π e
bf
√

(2n+1)(2n′+1) - the DNA ends z0-axis collinear boundary condition

Vnn′ = 2π2L n′

0 (0) L n
0 (−bf)

√
(2n+1)(2n′+1) = - the DNA ends free orientation boundary condition,

= 8π2δn′0in(bf)
√

2n+1 see formula (D3) for L n
0 functions in Appendix D

2) compute the trace of S and V matrices product according to eq. (C18) to get the value of the DNA partition
function.
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Appendix D: Consistency of the semiflexible polymer model with the worm-like chain model of DNA

In order to show that the semiflexible polymer model described in Appendix C is consistent with the classical
worm-like chain model of a torsionally relaxed DNA (when τ = 0) [41] we will require several simple relations between
the special functions introduced in Appendix A.

First, from the definition of polynomials Pnm,l it can be shown that in the special case of m = l = 0 they converge
to very well-known Legendre polynomials, Pn:

Pn0,0(x) = Pn(x) (D1)

Furthermore, by applying inverse Fourier transform to Legendre polynomials, we get (p. 770, ref. [39]):

jn(x) =
1

2in

∫ 1

−1

Pn(ω) eiωxdω (D2)

Where jn(x) are spherical Bessel functions of the first kind and i is imaginary unit.
Substituting eq. (D1)-(D2) into eq. (B8), it is then easy to find that:

L n
0 (s) =

∫ 1

−1

Pn0,0(x) e−sxdx =

∫ 1

−1

Pn(x) e−sxdx = 2injn(is) = 2in(−s) (D3)

Where in(x) = i−njn(ix) is the modified spherical Bessel function of the first kind, which has the parity of (−1)
n

(i.e., in(−x) = (−1)
n
in(x), see p. 735-736 in ref. [39]).

The values of modified Bessel functions of the first kind, In(x), as well as spherical modified Bessel functions of the
first kind, in(x), at point x = 0 are (p. 714 and p. 735, ref. [39]):

In(0) = in(0) = δn0 (D4)

Finally, it can be shown that in the case of n2 = m1 = m2 = m3 = 0 Wigner 3-j symbols equal to (p. 1059,
ref. [42]): (

n1 0 n3

0 0 0

)
=

(−1)
n1

√
2n1+1

δn1n3
(D5)

Let’s now use the above formulas to find out the values of the transfer matrix elements, Snn′ , for a torsionally
relaxed DNA (τ = 0). From eq. (C19), we have:

Snn′ |τ=0 =

[
τ = 0⇒ χ =

τλ

2πc
= 0, ω = tan−1(χ) = 0

]
=

= π2
√

(2n+1)(2n′+1) e−a−c
∑

p,k,k′,r

(2p+1)(2k+1)(2k′+1) i−rIr(c) Ir(0) L p
r (−a) L k

r (−bf) L k′

r (0)×

×
(

p k n
−r r 0

)2(
p k′ n′

−r r 0

)2
= [eq. (D4)⇒ r = 0] =

= π2
√

(2n+1)(2n′+1) e−a−cI0(c)
∑
p,k,k′

(2p+1)(2k+1)(2k′+1) L p
0 (−a) L k

0 (−bf) L k′

0 (0)×

×
(
p k n
0 0 0

)2(
p k′ n′

0 0 0

)2
= [eq. (D3) and (D4)⇒ k′ = 0] =

= 2π2
√

(2n+1)(2n′+1) e−a−cI0(c)
∑
p,k

(2p+1)(2k+1) L p
0 (−a) L k

0 (−bf)

(
p k n
0 0 0

)2(
p 0 n′

0 0 0

)2
=

= [eq. (D5)⇒ p = n′] = 2π2
√

(2n+1)(2n′+1) e−a−cI0(c) L n′

0 (−a)
∑
k

(2k+1) L k
0 (−bf)

(
n′ k n
0 0 0

)2
=

= [eq. (D3)] = 2πe−cI0(c)× 4π
√

(2n+1)(2n′+1)e−ain′(a)
∑
k

(2k+1) ik(bf)

(
n′ k n
0 0 0

)2
(D6)
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Comparing the final result of eq. (D6) to the elements of the DNA transfer matrix in the WLC model (eq. 7 from
ref. [30] where m = m′ = 0), we see that the only difference between the two models is the coefficient 2πe−cI0(c).
This term, however, does not have any influence on the equilibrium DNA behaviour since it simply results in the
DNA free energy offset by a fixed constant (namely, by (N−1)× ln[2πe−cI0(c)] ). Thus, it can be concluded that the
semiflexible polymer model of DNA indeed converges to the WLC model in the case of a torsionally relaxed DNA.

Appendix E: DNA structural transitions

Experimental studies show that depending on the value of the applied force and torque DNA can experience tran-
sitions between several alternative structural states named B-DNA, L-DNA, P-DNA, etc., which have very different
geometric and elastic characteristics. During recent years most of these DNA states were studied and described in
great details in a number of single-molecule experiments. However, despite all of the gained knowledge, it is still an
open question how the physical properties of different DNA structures and their sensitivity to the nucleotide sequence
determine the probability to find various DNA segments in one or the other structural state, and how this probability
is modulated by the mechanical constraints applied to DNA as well as other environmental factors, such as solution
ionic strength or presence of DNA-binding proteins.

To address these questions, in this section we are going to extend the semiflexible polymer model and transfer-
matrix technique developed in the preceding Appendices by taking into account that DNA segments can transit
between several alternative structural states (B-DNA, L-DNA, P-DNA). For this purpose, we will first consider a
simpler abstract case when each DNA segment can switch between only two alternative states and then generalize
the obtained formulas for an arbitrary number of possible DNA segments’ structures.

Let’s consider a DNA polymer whose segments can transit between two alternative structures, which we enumerate
by 0 and 1. In this case, the global configuration of the DNA is completely determined by the two sets: 1) collection of
Euler rotation matrices, (R1, ..,RN ), describing the orientation of each DNA segment; and 2) set (k1, .., kN ) indicating
the structural state of each of the DNA segments (for any segment j : kj = 0 or 1). The total energy of the DNA,
Etot, then can be found as:

Etot(k1, .., kN ,R1, ..,RN ) =

N−1∑
j=1

E
(kj)
j (Rj ,Rj+1) + q

(
µ−2πτ∆lk

(1)
0

) N∑
j=1

δkj1 − bkN f(z0 ·RNz0) (E1)

Where bkj is the length of the jth DNA segment in the respective state (i.e., bkj = b0 or bkj = b1); q is the number
of base-pairs in each of the DNA segments (assumed to be the same for both states 0 and 1); µ is the free energy
difference between the two DNA states calculated per single base-pair (i.e., energy price per single base-pair required

for the DNA transition from state 0 to state 1), and ∆lk
(1)
0 = lk0,1− lk0,0 is the difference between the relaxed linking

numbers of DNA in state 1 (lk0,1) and state 0 (lk0,0) calculated per single DNA base-pair. As before, E
(kj)
j (Rj ,Rj+1)

is the local contribution of the vertex connecting neighbour segments to the total DNA energy in the case when the
jth DNA segment is in state kj :

E
(kj)
j (Rj ,Rj+1) =

akj
2

(Rjz0−Rj+1z0)
2

+
ckj
2

(2π∆Twj(Rj ,Rj+1))
2 − bkjf(z0 ·Rjz0)−

− τ
(
2π−λkj

)
∆LkFj (Rj ,Rj+1)− τλkj∆Twj(Rj ,Rj+1) (E2)

Here akj , ckj and λkj are the model parameters describing the bending and twisting rigidities of the jth DNA segment
as well as the DNA writhe repulsion energy (λ parameter) in the respective states (i.e., akj = a0 or akj = a1, ckj = c0
or ckj = c1, and λkj = λ0 or λkj = λ1).

Using eq. (E1), the partition function of DNA can be calculated as:

Zf,τ =

1∑
k1,..,kN= 0

∫
dR1..dRN e

−Etot(k1,..,kN ,R1,..,RN ) ξ(RN ,R1) (E3)

Where, as before, ξ(RN ,R1) is a function that imposes specific boundary conditions on the orientations of the DNA
first and last segments. Similarly to Appendix C, eq. (E3) can be simplified by introducing the following notation:

Tk
(
R,R′

)
= e
−E(k)(R,R′)−q

(
µ−2πτ∆lk

(1)
0

)
δk1 (E4)
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Substituting eq. (E4) and (E1) into eq. (E3) we get:

Zf,τ =

1∑
k1,..,kN= 0

∫
dR1..dRN

N−1∏
j=1

Tkj (Rj ,Rj+1)× σkN (RN ,R1) (E5)

Where

σkN (RN ,R1) = e
−q

(
µ−2πτ∆lk

(1)
0

)
δkN1+bkNf(z0·RNz0)

ξ(RN ,R1) (E6)

It should be noted that the DNA partition function defined by eq. (E5) obeys a set of important recurrence relations,
which can be used to further simplify it. To derive them, let’s first define intermediary partition functions as:

Zs(ks,Rs,R1) =

1∑
ks+1,..,kN= 0

∫
dRs+1..dRN

N−1∏
j=s

Tkj (Rj ,Rj+1)× σkN (RN ,R1) (E7)

Here 1 ≤ s ≤ N−1. Then from eq. (E5) and (E7) it is not hard to see that:

Zf,τ =

∫
dR1 [Z1(0,R1,R1)+Z1(1,R1,R1)] =

∫
dR1

(
1 1

)
×
(
Z1(0,R1,R1)

Z1(1,R1,R1)

)
(E8)

Furthermore, from the definition of the intermediary partition functions it follows that obey the following recurrence
relation:

Zs−1(ks−1,Rs−1,R1) =

∫
dRs

(
Tks−1

(Rs−1,Rs) Tks−1
(Rs−1,Rs)

)
×
(
Zs(0,Rs,R1)

Zs(1,Rs,R1)

)
(E9)

By using the vector-valued integration technique (see Appendix F for more details), eq. (E9) can be re-written as:(
Zs−1(0,Rs−1,R1)

Zs−1(1,Rs−1,R1)

)
=

∫
dRsT(Rs−1,Rs)×

(
Zs(0,Rs,R1)

Zs(1,Rs,R1)

)
(E10)

Where the transfer matrix T(Rs−1,Rs) is:

T(Rs−1,Rs) =

(
T0(Rs−1,Rs) T0(Rs−1,Rs)

T1(Rs−1,Rs) T1(Rs−1,Rs)

)
(E11)

Combining eq. (E7)-(E8) and (E10), we obtain the following expression for the DNA partition function:

Zf,τ =
(

1 1
) ∫

dR1..dRN

N−1∏
j=1

T(Rj ,Rj+1)× σσσ(RN ,R1) (E12)

Where σσσ(RN ,R1) matrix is defined as:

σσσ(RN ,R1) =

(
σ0(RN ,R1)

σ1(RN ,R1)

)
= ξ(RN ,R1)

(
eb0f(z0·RNz0)

e
−q

(
µ−2πτ∆lk

(1)
0

)
+b1f(z0·RNz0)

)
(E13)

It is interesting to note that eq. (E12) determining the partition function of DNA has the same functional form
as eq. (C5) obtained for a simpler case when all of the DNA segments have a fixed structural state. The rest of
the equations in this section practically follow the steps from Appendix C. Indeed, from eq. (E2) and (E4) it is
not hard to see that functions Tk

(
R,R′

)
(k = 0, 1) have the same form as in eq. (C4) (up to a constant multiplier

e−q(µ−2πτ∆lk
(1)
0 )δk1). Therefore, they can be expanded into the Dn

m,l-series using the formulas, which are similar to

eq. (C7)-(C8):

Tk
(
R,R′

)
=

1

8π2

∑
n,n′,m,m′,l,l′

√
(2n+1)(2n′+1)× (Tk)

m′,l′,n′

m,l,n Dn
m,l(R)D

n′

m′,l′
(
R′
)

(E14)
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Where the expansion coefficients (Tk)
m′,l′,n′

m,l,n are:

(Tk)
m′,l′,n′

m,l,n = δmm′δll′ × e−q(µ−2πτ∆lk
(1)
0 )δk1 × π2

√
(2n+1)(2n′+1) e−ak−ck

∑
p,s,s′,r

(2p+1)(2s+1)(2s′+1)×

× i−re−i(l−r)ωk × Il−r
(
ck

√
1+χ2

k

)
Ir
(
τ
(
1− λk

2π

))
×L p

l−r(−ak) L s
r (−bkf) L s′

r (0)×

×
(

p s n
m−r r −m

)(
p s n
l−r r −l

)(
p s′ n′

m−r r −m

)(
p s′ n′

l−r r −l

)
(E15)

Here χk = τλk
2πck

and ωk = tan−1(χk).

Taking into account the linear property of matrices, it is then clear that the transfer matrix T
(
R,R′

)
defined by

eq. (E11) can be expanded into the Dn
m,l-series as well:

T
(
R,R′

)
=

1

8π2

∑
n,n′,m,m′,l,l′

√
(2n+1)(2n′+1)×Tm′,l′,n′

m,l,n Dn
m,l(R)D

n′

m′,l′
(
R′
)

(E16)

Where

Tm′,l′,n′

m,l,n =

 (T0)
m′,l′,n′

m,l,n (T0)
m′,l′,n′

m,l,n

(T1)
m′,l′,n′

m,l,n (T1)
m′,l′,n′

m,l,n

 (E17)

Analogously, for the boundary condition vector we have:

σσσ(RN ,R1) =
1

8π2

∑
n1,m1,l1
nN ,mN ,lN

√
(2n1+1)(2nN+1)× σσσm1,l1,n1

mN ,lN ,nN
DnN
mN ,lN

(RN )D
n1

m1,l1(R1) (E18)

Where the vector σσσm1,l1,n1

mN ,lN ,nN
of the expansion coefficients is defined as:

σσσm1,l1,n1

mN ,lN ,nN
=

(
(σ0)

m1,l1,n1

mN ,lN ,nN

(σ1)
m1,l1,n1

mN ,lN ,nN

)
(E19)

Comparing eq. (E13) and (E18)-(E19) to eq. (C9)-(C10), (C12)-(C15), and taking into account eq. (D3)-(D4), it is
easy to see that in the case of the DNA ends z0-axis collinear boundary condition:

(σ0)
m1,l1,n1

mN ,lN ,nN

eb0f
=

(σ1)
m1,l1,n1

mN ,lN ,nN

e
−q

(
µ−2πτ∆lk

(1)
0

)
+b1f

= δmN0δlN0δm1l1 ×
√

(2n1+1)(2nN+1)

4π
(E20)

While for the DNA ends free orientation boundary condition we have:

(σ0)
m1,l1,n1

mN ,lN ,nN

in
N

(b0f)
=

(σ1)
m1,l1,n1

mN ,lN ,nN

e
−q

(
µ−2πτ∆lk

(1)
0

)
in
N

(b1f)

= δn10δm10δl10δmN0δlN0 × 8π2
√

2nN+1 (E21)

Substituting eq. (E16) and (E18) into eq. (E12), and applying the orthogonality property of Dn
m,l functions

(eq. (A9)), we can reduce all of the integrals in eq. (E12) to mere summations over the indexes of the expansion
coefficients’ matrices:

Zf,τ =
(

1 1
) ∑
m

1
,..,m

N
l1,..,lN
n1 ,..,nN

N−1∏
j=1

T
mj+1,lj+1,nj+1

mj ,lj ,nj
× σσσm1,l1,n1

mN ,lN ,nN

 (E22)

Similarly to Appendix C, the presence of δ-terms in eq. (E15) and (E20)-(E21) leads to complete disappearance of
all tesseral harmonics in the expression for the DNA partition function:

Zf,τ =
(

1 1
)∑
n1,..,nN

N−1∏
j=1

T
0,0,nj+1

0,0,nj
× σσσ0,0,n1

0,0,nN

 (E23)
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To further simplify eq. (E23), we note that while the above matrices T
0,0,nj+1

0,0,nj
and σσσ0,0,n1

0,0,nN
have an infinite size,

calculations show that the value of the DNA partition function is mainly determined only by first M ≈ 10-15
harmonics [29, 40]. Thus, to compute the DNA partition function, it makes sense to introduce finite square matrices
S0, S1, V0 and V1 of M ×M size comprising only the first M rows/columns of the expansion coefficients defined by
eq. (E14)-(E21), i.e.:

(S0)nn′ = (T0)
0,0,n′

0,0,n , (S1)nn′ = (T1)
0,0,n′

0,0,n , (V0)nn′ = (σ0)
0,0,n′

0,0,n , and (V1)nn′ = (σ1)
0,0,n′

0,0,n (E24)

Substituting eq. (E17), (E19) and (E24) into eq. (E23), it is not hard to see that all of the sums over indexes
n2, .., nN−1 have the following form:∑

t

(
(S0)st (S0)st
(S1)st (S1)st

)(
(S0)tp (S0)tp
(S1)tp (S1)tp

)
=

((
S2

0 + S0S1

)
sp

(
S2

0 + S0S1

)
sp(

S2
1 + S1S0

)
sp

(
S2

1 + S1S0

)
sp

)
(E25)

For the sake of the formulas simplicity, let’s introduce a new notation:(
A B

C D

)∣∣∣∣
st

=

(
Ast Bst
Cst Dst

)
and

(
A

B

)∣∣∣∣
st

=

(
Ast
Bst

)
(E26)

Where A, B, C and D are arbitrary square matrices of the same size. Then eq. (E25) can be re-written as:∑
t

(
(S0)st (S0)st
(S1)st (S1)st

)(
(S0)tp (S0)tp
(S1)tp (S1)tp

)
=
∑
t

[(
S0 S0

S1 S1

)∣∣∣∣
st

×
(
S0 S0

S1 S1

)∣∣∣∣
tp

]
=

(
S0 S0

S1 S1

)2 ∣∣∣∣∣
sp

(E27)

I.e., eq. (E27) in some sense is a generalization of the matrices multiplication formula. Applying it to eq. (E23) (N−2)
times, it can be shown that the expression for the DNA partition function reduces to:

Zf,τ =
(

1 1
)∑
n1,nN

[
Ŝ
N−1
∣∣∣
n1nN

× V̂
∣∣∣
nNn1

]
(E28)

Where block-matrices Ŝ and V̂ are:

Ŝ =

(
S0 S0

S1 S1

)
and V̂ =

(
V0

V1

)
(E29)

Finally, after a few simple algebraic re-arrangements, eq. (E28) can be presented in the following form:

Zf,τ = Tr
(
UŜ

N−1
V̂
)

(E30)

Where block-matrix U =
(
I I
)
, and I is the square M ×M identity matrix (Iml = δml).

While eq. (E24)-(E30) were obtained under the assumption of the finiteness of matrices S0, S1, V0 and V1, for
experienced readers it will not take too much efforts to show validity of these formulas in the general case of infinite
matrices albeit with slightly different definitions of matrices Ŝ and V̂ (for example, they can be represented as
alternating sequences of S0, S1 and V0, V1 matrices’ rows and columns).

With the help of the methodology described above it is then not very hard to prove very similar results for the
general case when the DNA segments can switch between an arbitrary number, K, of structural states. It can be
shown that in this case the DNA partition function still can be calculated via eq. (E30). However, this time the

transfer block-matrix, Ŝ, will have the following form:

Ŝ =


S0 S0 · · · S0

S1 S1 · · · S1

...
...

...

SK−1 SK−1 · · · SK−1

 (E31)

Where the elements of matrices Su are defined as:

(Su)nn′ = π2
√

(2n+1)(2n′+1) e
−au−cu−q

(
µu−2πτ∆lk

(u)
0

)∑
p,k,k′,r

(2p+1)(2k+1)(2k′+1) eir(ωu−
π
2 )×

× Ir
(
cu
√

1+χ2
u

)
Ir
(
τ
(
1− λu

2π

))
×L p

r (−au) L k
r (−buf) L k′

r (0)×
(

p k n
−r r 0

)2(
p k′ n′

−r r 0

)2
(E32)
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Here parameters au, bu, cu and λu have the same meaning as before, describing the geometric and elastic properties
of the DNA segments in the respective structural states (0 ≤ u ≤ K−1); χu = τλu

2πcu
and ωu = tan−1(χu); µu is the

free energy difference between the uth and 0th structural states of a torsionally relaxed DNA calculated per single

base-pair (i.e., energy price required for the DNA transition from state 0 to state u), and ∆lk
(u)
0 = lk0,u− lk0,0 is the

difference between the relaxed linking numbers of DNA in states u (lk0,u) and 0 (lk0,0) calculated per single DNA
base-pair.

As for the boundary condition block-matrix, V̂, it has the following form:

V̂ =



V0

e
−q

(
µ1−2πτ∆lk

(1)
0

)
V1

...

e
−q

(
µu−2πτ∆lk

(u)
0

)
Vu

...

e
−q

(
µK−1−2πτ∆lk

(K−1)
0

)
VK−1


(E33)

Where in the case of the DNA ends z0-axis collinear boundary condition we have:

(Vu)nn′ = ebuf
√

(2n+1)(2n′+1)

4π
(E34)

And for the DNA ends free orientation boundary condition:

(Vu)nn′ = δn′0 × 8π2in(buf)
√

2n+1 (E35)

Finally, block-matrix U still has the same form as before only this time the identity matrix I being repeated K
times in a row:

U =
(
I I · · · I

)
(E36)

Thus, the partition function of a mechanically stretched and twisted DNA in the general case can be calculated via
the following 4 simple steps:

1) compute elements (Su)nn′ and (Vu)nn′ of matrices Su and Vu for 0 ≤ n, n′ ≤M−1 and 0 ≤ u ≤ K−1 by using
eq. (E32) and eq. (E34) or (E35);

2) form square M ×M identity matrix I;

3) compose matrices Ŝ, V̂ and U from the above blocks (eq. (E31), (E33) and (E36));

4) calculate the trace of the matrices product according to eq. (E30) to obtain the value of the DNA partition
function.

Appendix F: Vector-valued integration

In Appendix E, we have used the notion of vector-valued integration to derive eq. (E30) for the DNA partition
function in the case when its segments can transit from one structural state to another. Namely, during one of the
stages we have constructed the transfer matrix of DNA by utilizing the following two properties of the vector-valued
integration: 1) the integration procedure can be factored out from a vector resulting in a vector-valued integral; 2)
any linear functional defined on n-dimensional real space, IRn, can be factored out from an integral as well, again
resulting in a vector-valued integration. This section provides references to the literature, where interested readers can
find useful information about the vector-valued integration technique, and gives additional insights into the properties
mentioned above. For the sake of formulas simplicity, here we consider only the case of real 2-dimensional vectors
and linear functionals defined on IR2 space. However, it should be noted that all of the equations described below
can be easily extended to the general case of n-dimensional vectors and linear functionals using absolutely the same
mathematical logic.
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First, from the definition of the real 2D-plane (IR2) topology it immediately follows that IR2 is a Frechet topological
vector space (i.e., it is a locally convex space, whose topology is induced by complete invariant metric [43]). Therefore,
by the corollary of the Hahn-Banach separation theorem (see sec. 3.4 in ref. [43]) the dual space, IR2∗, of all of the
continuous linear functionals separates points on the real 2D-plane, IR2.

Second, SO(3) rotation group is a compact Lie group possessing a Borel probability measure, ρ, defined as (see sec.
51-54, 57-60 in ref. [44] and sec. I.3 in ref. [25]):

ρ(G) =
1

8π2

∫
G

dR =
1

8π2

∫
G

sinβ dα dβ dγ (F1)

Where G is an arbitrary Borel subset of SO(3) group.
Finally, based on the definition of the product topology it can be shown that if g(R) and h(R), R ∈ SO(3), are

any two continuous mappings of SO(3) group into the real space (i.e., SO(3)→ IR), then the following SO(3)→ IR2

function is also continuous:

R→
(
g(R)

h(R)

)
(F2)

Using the above properties of SO(3) and IR2 spaces, it is then possible to correctly define the vector-valued inte-
gration on SO(3) group (see sec. 3.26 and 3.27 in ref. [43]):(

x

y

)
=

∫
dR

(
g(R)

h(R)

)
(F3)

such that for any linear functional Λ ∈ IR2∗:

Λ

(
x

y

)
=

∫
dR Λ

(
g(R)

h(R)

)
(F4)

Here x and y are real numbers (x, y ∈ IR).
It should be noted that for any Λ ∈ IR2∗ there exist a unique one-form

(
u v

)
, where u and v ∈ IR, such that:

Λ

(
x

y

)
=
(
u v

)
×
(
x

y

)
= ux+ vy (F5)

Substituting eq. (F5) into eq. (F4), we get:

Λ

(
x

y

)
=

∫
dR Λ

(
g(R)

h(R)

)
= u

∫
dR g(R) + v

∫
dRh(R) =

(
u v

)
×
(∫

dR g(R)∫
dRh(R)

)
= Λ

(∫
dR g(R)∫
dRh(R)

)
(F6)

Since eq. (F6) is valid for any Λ ∈ IR2∗ and since IR2∗ separates points on IR2 space it immediately follows that:

x =

∫
dR g(R) and y =

∫
dRh(R) (F7)

Substituting eq. (F7) into eq. (F3), it is then easy to see that:∫
dR

(
g(R)

h(R)

)
=

(∫
dR g(R)∫
dRh(R)

)
(F8)

Although eq. (F8) is the result of sophisticated topological properties of SO(3) and IR2 spaces, its meaning is rather
simple. Since every integral in some sense is a limit of sum and vectors are additive mathematical objects it seems
intuitively clear that the integration procedure can be factored out from the vector. Here we used theorems from
functional analysis to formulate and prove this statement for SO(3) group in a mathematically rigorous way.

Finally, it should be noted that while eq. (F8) was derived for the case of IR2 space, it can be shown that a very
similar formula holds in the general case for arbitrary n-dimensional real space, IRn (n ≥ 2), as well:

∫
dR

 g1(R)
...

gn(R)

 =


∫
dR g1(R)

...∫
dR gn(R)

 (F9)
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Where g1(R) , .., gn(R) are real-valued continuous functions defined on SO(3) group.
In addition, from the definition of the vector-valued integration similarly to eq. (F4), (F5) and (F7) we have:

∫
dR

(
u1 · · · un

)
×

 g1(R)
...

gn(R)

 =
(
u1 · · · un

)
×
∫

dR

 g1(R)
...

gn(R)

 (F10)

Where u1, .., un are arbitrary real numbers.

Appendix G: Metropolis-Monte-Carlo calculations

To generate supercoiled DNA conformations, we used the aforementioned semiflexible polymer chain model in which
DNA is represented by a discretized polygonal chain consisting of N = 3400 short segments of equal length, b = 0.5
nm. In order to simulate the typical magnetic tweezers setup of DNA stretching / twisting experiments, the polymer
chain was restricted by an impenetrable wall representing the surface of a glass coverslip at one end (parallel to the
x0y0-plane) and an impenetrable bead with diameter of 3 µm at the other end (see Figure 8).

A set of equilibrium DNA conformations was sampled using the Metropolis-Monte-Carlo procedure [45]. In these
calculations, the DNA chain segments were allowed to pass through each other to generate conformations that corre-
spond to DNA states appearing in the transfer-matrix computations.

At each iteration, the total energy of the DNA was estimated using eq. (1) and (3) as described in the main
text. The DNA writhe number (WrF ) was calculated using the Fuller’s approximation [22] by first evaluating the
total DNA linking number change (∆LkF ) via eq. (4) and then subtracting the DNA twist number (∆Tw) from the
obtained value of ∆LkF (WrF = ∆LkF−∆Tw). We also examined how much WrF deviates from the writhe number
Wr = WrG estimated using a numerical approximation of the Gauss double integral, see ref. [46, 47]:

Wr = WrG =
1

4π

∫ L

0

∫ L

0

([
dr(s)

ds
× dr(s′)

ds′

]
· r(s)− r(s′)

| r(s)− r(s′) |3

)
dsds′ (G1)

Where r(s) and r(s′) are the position vectors of points situating on the DNA contour that correspond to the arc
lengths s and s′, respectively.

Because WrG is not defined for an open contour, we virtually closed the DNA chain by adding a complementing
loop (see Figure 8, dashed line). WrG was then calculated by summing up the evaluations of the Gauss double integral
over all segments composing the closed DNA chain [46]:

WrG =
1

4π

N∑
j,j′=1

Ωjj′ (G2)

Here j and j′ are indexes enumerating the DNA chain segments; N is the total number of these segments, and Ωjj′
is the solid angle corresponding to the quadrangle formed by segments j and j′ [46].

To evaluate the contribution of each DNA subchain shown on Figure 4(b) to the writhe number (WrF and WrG),
we used the following formulas:

(
WrF

)
kl

=

l∑
j=k

(
∆LkFj −∆Twj

)
and

(
WrG

)
kl

=
1

4π

l∑
j=k

N∑
j′=1

Ωjj′ (G3)

where k and l are indices of the vertices bounding the DNA subchain; ∆Twj(Rj ,Rj+1) and ∆LkFj =
1

2π (α̃j+1+γ̃j+1−α̃j−γ̃j) are the local contributions to the DNA twist and linking number change by the jth and

(j + 1)
th

DNA segments.
In all of our calculations, the bending and twisting persistence lengths of DNA were taken to be AB = 50 nm and

CB = 95 nm, the environmental temperature was set to 300 K, and λB = 4.3.
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FIG. 1. Discretized model of DNA. (a) In the model, DNA is represented by a polygonal chain comprised of straight
segments of equal length, b. Each DNA segment is considered as a rigid body with attached local Cartesian coordinate
frame (xj ,yj , zj), whose 3D-orientation is described by rotation matrix Rj with respect to the fixed global coordinate system

(x0,y0, z0). (b) Three Euler rotation angles (αj , βj , γj) corresponding to matrix Rj determine the orientation of the jth DNA
segment.
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FIG. 2. Supercoiling of B-DNA. In the absence of B-DNA transitions into alternative structural states, the DNA phase
diagram is symmetric with respect to negative and positive torques. At large forces, DNA preferentially stays in the extended
conformation; whereas, at low forces it collapses into a supercoilied configuration via development of either positive (+sc-DNA)
or negative (−sc-DNA) writhes, depending on the direction (i.e., sign) of the applied torque. On the plot, solid curves show the
transition boundaries between the extended and supercoiled DNA states for different values of the scaling parameter λ, which
increases from 0 to 5 from the top to the bottom curve. It can be seen from the figure that the semiflexible polymer model of
DNA described in the main text accurately fits the experimentally measured transition boundary between the extended and
supercoiled B-DNA states (circles), assuming that λ = 4.3 (dashed curve). The experimental data points presented on the
graph were digitized from ref. [5, 7, 9].
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FIG. 3. Mechanical response of B-DNA to the applied force and torque constraints. (a, b) B-DNA force-extension
curves, zτ0(f), and force-linking number change curves, ∆Lkτ0(f), calculated at various values of the applied torque (τ = τ0).
DNA transition into a supercoiled conformation is indicated by a steep DNA extension drop and simultaneous drastic change in
the DNA linking number. The torque magnitude increases from the left to the right curve in panel (a) and from the bottom to
the top curve in panel (b). (c, d) B-DNA torque-extension curves, zf0(τ), and torque-linking number change curves, ∆Lkf0(τ),
obtained at different values of the applied force (f = f0). The force magnitude increases from the bottom to the top curve in
panel (c) and from the inner to the outer curve in panel (d). On panels (a) and (c), the DNA extension is normalized to the
total DNA contour length.
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FIG. 4. Numeric simulation of supercoiled B-DNA conformations. (a, b) Typical configurations of B-DNA at f = 0.2
pN and τ = 30 pN·nm generated using the Metropolis-Monte-Carlo algorithm [48] based on the Fuller’s formula approximation.
It can be seen from the figure that upon application of sufficiently large torques DNA molecule predominantly collapses into
conformations in which the DNA duplex changes its orientation in alternating up-and-down manner. On panel (a), WrG and
WrF are the DNA writhe numbers of the corresponding DNA polymers estimated using the double Gauss integral and the
Fuller’s formula, respectively. Similarly, on panel (b), WrGn and WrF n show the contribution of labelled DNA subchains
indexed by n = 1-4 to the total DNA writhe number.
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FIG. 5. Structural stability of DNA under various mechanical constraints. (a) DNA force-extension curves, zτ0(f),
and force-linking number change curves, ∆Lkτ0(f), calculated at different values of the applied torque (τ = τ0). Left and right
panels show results obtained for negative and positive torques, respectively. The torque magnitude increases from the left to
the right curve on the top panels, from the top to the bottom curve on the left-bottom panel, and from the bottom to the
top curve on the right-bottom panel. Abrupt change in the DNA force-extension curves’ pattern at large negative (τ0 < −10
pN·nm) or positive (τ0 > 35 pN·nm) torques indicated by a longer DNA extension at high forces marks the DNA transitions
from B-form into alternative L- and P-DNA structures. The bottom graphs show that these transitions are accompanied by
a drastic DNA linking number change due to the large difference in the relaxed linking numbers of the corresponding DNA
forms. (b) DNA torque-extension curves, zf0(τ), and torque-linking number change curves, ∆Lkf0(τ), at different values of
the applied force (f = f0). The force magnitude increases from the bottom to the top curve on the top panel and from the
inner to the outer curve on the bottom panel. At f0 < 0.5 pN all torque-extension curves have symmetric profiles with respect
to both positive and negative torques, while at larger forces (f0 ≥ 0.5-0.7 pN) this symmetry breaks due to B-DNA switching
into alternative L- and P-DNA structures. On panels (a) and (b), the DNA extension is normalized to the total contour length
of DNA in B-form.
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FIG. 6. DNA phase diagram. Solid curves indicate transition boundaries between extended (B, L and P) and supercoiled
(sc-B, sc-L and sc-P) states of DNA predicted by the transfer-matrix calculations. As can be seen from the figure, the resulting
phase diagram demonstrates good agreement with the existing experimental data (circles), which were digitized from ref.
[4, 5, 7–9, 12, 28].
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FIG. 7. Response of a mechanically stretched heterogeneous DNA to the applied torque. The figure demonstrates
the torque-dependent change in the linking number of DNA that contains a small insert (of 24 bp, 51 bp, or 102 bp size), which
is characterized by a lower energy cost of the B-to-L transition (µL = 2.0 kBT ) comparing to that of the rest of the DNA
(µL = 5.0 kBT ). In the calculations, the DNA was stretched by a constant force of 1.6 pN.
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FIG. 8. Schematic diagram of the computational setup used in the Metropolis-Monte-Carlo simulations. In
these calculations, the discretized DNA polymer chain was restricted by an impenetrable bead at one end and a wall in the
x0y0-plane at the other end. Stretching force, F , was applied to the bead along the z0-axis direction. The dashed line shows a
loop that was added to the DNA chain in order to form a closed contour for the writhe number (WrG) evaluation.
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