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Abbreviations  

AP-1, adaptor protein-1; Arf1, ADP-ribosylation factor 1; AtCBL, Arabidopsis thaliana 

calcineurin B-like; BACE1, β-site amyloid precursor protein-cleaving enzyme 1; BARS, 

brefeldin A-dependent ADP-ribosylation substrate; CFP, cyan fluorescent protein; COF, CERT-

OSBP-FAPP; COP, coat protein; CPY, carboxypeptidase Y; CtBP, C-terminal binding protein; 

DAG, diacylglycerol; Dvl, Dishevelled; EGFR, epidermal growth factor receptor; EH, Eps15 

homology; EHD-1, Eps15 homology domain-1; EpsinR, Epsin-related; ER, endoplasmic 

reticulum; ERES, ER exit sites; ERGIC, ER-Golgi intermediate complex; ERK, extracellular 

signal-regulated kinase; F-actin, filamentous actin; FAPP, four-phosphate adaptor protein; FGF, 

fibroblast growth factor; FKBP12, FK506 binding protein 12; FRB, FKBP12- and rapamycin-

binding protein; Frq, Frequenin; Fz, Frizzled; GBA, β-glucocerebrosidase; GBF1, Golgi 

brefeldin A-resistant factor 1; GEF, guanine nucleotide exchange factor; GFP, green fluorescent 

protein; GGA, Golgi-localized, gamma-ear-containing, Arf-binding; GOLPH3, Golgi 

phosphoprotein 3; GPCR, G-protein coupled receptor; HCV, hepatitis C virus; Hh, Hedgehog; 

INPP5E, inositol polyphosphate-5-phosphatase E; IP3, inositol 1,4,5-trisphosphate; LAMP1, 

lysosomal-associated membrane protein 1; LCV, Legionella-containing vacuole; LIMP-2, 

lysosomal integral membrane protein type 2; LRP, low density lipoprotein receptor-related 

protein; MAPK, mitogen-activated protein kinase; MEF, mouse embryonic fibroblast; MVB, 

multivesicular body; NES, nuclear export signal; NLS, nuclear localization signal; ORP, OSBP-

related protein; OSBP, oxysterol binding protein; PAO, phenylarsine oxide; PDGF, platelet-

derived growth factor; PGC, post-Golgi carrier; PH, pleckstrin homology; PI, 

phosphatidylinositol; PI3K, phosphatidylinositol 3-kinase; PI4K, phosphatidylinositol 4-kinase; 

PI4P, phosphatidylinositol 4-phosphate; PI5P, phosphatidylinositol 5-phosphate; PIP, 
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phosphatidylinositol phosphate; PIP5K, phosphatidylinositol 4-phosphate 5-kinase; PIP2, 

phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PITP, 

phosphatidylinositol transfer protein; PKC, protein kinase C; PKD, protein kinase D; PLC, 

phospholipase C; PM, plasma membrane; RNAi, RNA interference; siRNA, short interfering 

RNA; SNARE, soluble n-ethylmaleimide sensitive factor adaptor protein receptor; STIM1, 

stromal interacting molecule 1; tER, transitional ER; TGN, trans-Golgi network; TIRF, total 

internal reflection fluorescence; TRP, transient receptor potential; ts, temperature-sensitive; VAP, 

vesicle-associated protein; VHS, Vps27-Hrs-STAM; VLDL, very low density lipoprotein; 

WASH, WASP and SCAR homologue; WHAMM, WASP homologue associated with actin, 

membranes, and microtubules; Wm, wortmannin; WNK1, With no lysine 1; YFP, yellow 

fluorescent protein
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Abstract 

Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular 

regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as 

one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin 

organization, cell migration, and signal transduction. However, progress over the last decade has 

brought to light independent roles of cellular PI4P in membrane trafficking and lipid homeostasis. 

Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the 

spectrum of PI4P effectors, and the mechanisms of spatiotemporal control of PI4P that 

coordinate crosstalk among cellular signaling pathways.  

 

Phosphoinositides  

Eukaryotic cells are compartmentalized into organelles that engage in specialized functions. 

These subcellular functions are coordinated by signaling proteins and phospholipids such as 

phosphatidylinositol (PI; Fig. 1A) and its derivatives. PI lipids are minor membrane components 

containing a cytosolic myo-inositol head group amenable to phosphorylation at the D-3, D-4 and 

D-5 positions to produce seven different PI phosphates (PIPs or phosphoinositides). Specific 

PIPs are enriched on particular organelles, contributing to their identity and function. In addition, 

the ability of PIPs to be rapidly interconverted through the action of lipid kinases and 

phosphatases means that PIPs can be precisely regulated in space and time. Moreover, PIPs can 

relay changes in membrane status by recruitment of cellular effectors that recognize newly 

synthesized PIPs, or by activation of signaling pathways that utilize PIPs as substrates.  

Generation of PI 4-phosphate (PI4P) by PI 4-kinases (PI4Ks) is the first reaction in 

forming PI 4,5-bisphosphate (PIP2) and PI 3,4,5-trisphosphate (PIP3), two phosphoinositides that 
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participate in well-studied signaling pathways, making PI4P a critical precursor in the PIP 

pathway (Fig. 1B). Cleavage of PIP2 by phospholipase C (PLC) produces the second messengers 

inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), initiating downstream signal 

transduction cascades through protein kinase C (PKC), thereby controlling growth factor 

signaling, cytokine induction, neurotransmitter release, muscle contraction and other responses. 

Phosphorylation of PIP2 by class I PI 3-kinases (PI3Ks) produces PIP3, which activates Akt and 

other signaling proteins to control cell proliferation and survival.  

Because of the importance of PIP2- and PIP3-dependent signaling pathways in animal 

cells, PI4P has mainly been regarded as essential only for its role as a precursor to these PIPs. 

However, the discovery of conserved roles for PI4P across plants, yeast and mammals suggests 

that the non-precursor, signaling roles of PI4P are ancient and fundamental. For this reason, it 

has been proposed that PI4P became essential in its own right, with PIP2 and PIP3 acquiring 

specialized roles (Delage et al., 2012a). This idea partly stems from the observations that PI4P is 

the most abundant cellular PIP (Lemmon, 2008). Indeed, PIP2 is 10 to 100 fold less abundant and 

PI4P 5-kinases (PIP5Ks) are much less active in plant cells compared to animal cells. Also, class 

I PI3Ks are absent from yeast and plants. Finally, the abundance and distribution of PI4P vary 

less than for PIP2 and PIP3 across species (Delage et al., 2012a) (Fig. 2).  

Importantly, studies of PI4Ks and the PI4P phosphatase Sac1, as well as tools to visualize 

and perturb cellular PI4P levels, have revealed prominent roles for PI4P in a wide range of basic 

cellular processes, most notably in membrane trafficking, sphingolipid metabolism and 

regulation of the cytoskeleton, as described below.  

 

 



Tan, J. and Brill, J.A. (2014) Crit Rev Biochem Mol Biol 49: 33-58. 

	 6	

PI-4 Kinases 

In the late 1960s-80s, biochemical studies identified PI4K activity in membrane fractions from 

animal tissues (Harwood and Hawthorne, 1969; Cooper and Hawthorne, 1976; Lefebvre et al., 

1976; Behar-Bannelier and Murray, 1980; Collins and Wells, 1983). It became apparent that 

there were two types of PI4K activity based on the repertoire of inhibitors to which they were 

sensitive, leading to characterization of type II and type III PI4Ks. Cloning of mammalian PI4Ks 

led to identification of two type II PI4Ks approximately 55 kDa in size, PI4KIIα and 

PI4KIIβ (Barylko et al., 2001; Minogue et al., 2001; Balla et al., 2002; Wei et al., 2002), and two 

type III PI4Ks, PI4KIIIα (230 kDa), and PI4KIIIβ (92 kDa) (Nakagawa et al., 1996a; Nakagawa 

et al., 1996b). The type II PI4Ks are inhibited by adenosine, micromolar calcium, submillimolar 

phenylarsine oxide (PAO) and the 4C5G monoclonal antibody, whereas type III PI4K activity is 

inhibited by low amounts of PAO, with PI4KIIIα being more sensitive (IC50=1-5 µM) than 

PI4KIIIβ (IC50=30 µM), and PI3K inhibitors such as wortmannin (Wm) and LY294002 

(Endemann et al., 1991; Balla and Balla, 2006). Cloning of PI4Ks from the budding yeast 

Saccharomyces cerevisiae revealed three conserved PI4Ks – the PI4KIIIα Stt4, the PI4KIIIβ 

Pik1, and a single type II PI4K, Lsb6 (Flanagan et al., 1993; Garcia-Bustos et al., 1994; Yoshida 

et al., 1994; Han et al., 2002). These same three enzymes are also found in the fruit fly 

Drosophila melanogaster. 

In addition to their different biochemical properties, PI4Ks affect discrete pools of 

cellular PI4P and have distinct cellular functions. In yeast, Stt4 and Pik1 play essential, non-

overlapping roles in the cell (Audhya et al., 2000). Stt4 localizes to cortical patches at the plasma 

membrane (PM) and regulates actin organization as well as cell wall integrity. In contrast, Pik1, 

which functions in secretion, localizes to the Golgi and nucleus. In mammalian cells and flies, 
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PI4KIIIα controls a PM pool of PI4P (Balla et al., 2008; Tan et al., submitted). Mammalian 

PI4KIIIα localizes to the endoplasmic reticulum (ER), dynamically to the PM (Nakatsu et al., 

2012), and has also been detected at the Golgi, nucleolus, multivesicular body (MVB), and outer 

mitochondrial membrane (Wong et al., 1997; Balla et al., 2000; Kakuk et al., 2006) (Fig. 3A). As 

with yeast Pik1, mammalian PI4KIIIβ primarily localizes to the Golgi and nucleus, and is 

required for anterograde trafficking (Godi et al., 1999; Weisz et al., 2000; de Graaf et al., 2002). 

PI4KIIIβ has also been reported on ER, outer mitochondrial membranes (Balla et al., 2000) and, 

recently, on lysosomes (Sridhar et al., 2013) (Fig. 3B). The Drosophila PI4KIIIβ Fwd localizes 

to the Golgi, where it is required for male germ cell cytokinesis (Brill et al., 2000; Polevoy et al., 

2009). Interestingly, unlike yeast Pik1, Drosophila Fwd is non-essential (Brill et al., 2000), 

suggesting it carries out a redundant function with another PI4K. 

The type II PI4Ks examined so far appear to be dispensable for viability in yeast, flies, 

and mice, yet carry out specific cellular functions. Yeast Lsb6 regulates endosome motility in a 

kinase-independent manner (Chang et al., 2005). In contrast, catalytic activity of Drosophila 

PI4KII is required for sorting of secretory granule and endosomal cargo in the larval salivary 

gland (Burgess et al., 2012). PI4KIIα mutant mice are viable, yet develop late onset 

neurodegenerative disease (Simons et al., 2009). In mammalian tissue culture cells, PI4KIIα is 

required for endosomal sorting (Craige et al., 2008; Jovic et al., 2012; Mossinger et al., 2012) 

and its catalytic activity is needed for post-Golgi trafficking at the trans-Golgi network (TGN) 

(Wang et al., 2003; Wang et al., 2007). In contrast, mammalian PI4KIIβ is found on endosomal 

populations that translocate to the PM upon Rac signaling (Balla et al., 2002; Wei et al., 2002).  
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Challenges of PI4P Biology 

Common methods to visualize cellular PI4P include antibody detection and expression of 

fluorescent proteins fused to PI4P-binding domains (Varnai and Balla, 2008; Hammond et al., 

2009). However, determining which pools of PI4P are produced by individual PI4Ks has been 

difficult due to the lack of fluorescent probes that bind only PI4P, and the lack of complete and 

isoform-specific PI4K pharmacological inhibitors. Pleckstrin homology (PH) domains from 

oxysterol binding protein (OSBP) and four-phosphate adaptor proteins (FAPPs) are frequently 

used to detect PI4P, but they also bind ADP-ribosylation factor 1 (Arf1). At high expression 

levels, these probes titrate the lipid away from its normal function. Existing enzyme inhibitors do 

not distinguish between type II PI4Ks and, at the concentration of PAO that is specific for 

PI4KIIIα, only 80% of its activity is reduced (Balla et al., 2008). Additionally, the essential 

functions of PI4Ks mean that treatment with short interfering RNA (siRNA) either eliminates 

cells entirely or only moderately affects PI4P levels because of incomplete knockdown in 

surviving cells.  

Nevertheless, cell biologists have found clever ways to overcome these obstacles in order 

to detect and perturb PI4P. Chief among these is a method to acutely deplete a specific 

phosphoinositide on a membrane of interest without caveats associated with enzyme inhibition or 

knockdown (Fili et al., 2006; Heo et al., 2006; Varnai et al., 2006). FRB (FK506 binding protein 

12 [FKBP12]- and rapamycin-binding protein) is tethered to a transmembrane protein on the 

membrane of interest. Recruitment of a PIP phosphatase fused to FKBP12 to this site is 

controlled by acute rapamycin-induced heterodimerization of FRB and FKBP12. This technique 

has been used successfully to deplete PI4P on the PM and Golgi by targeted recruitment of a PI 

4-phosphatase domain from Sac1 (Szentpetery et al., 2010; Hammond et al., 2012; Salcedo-
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Sicilia et al., 2013). Importantly, this technique is effective in identifying the subcellular location 

where PI4P is important, but does not identify the PI4K responsible for its production. Other 

efforts to disrupt specific pools of PI4P include the pursuit of new drugs to inhibit specific PI4Ks, 

which resulted in identification of PIK93, a panspecific PI3K p110 subunit inhibitor that also 

selectively targets PI4KIIIβ over PI4KIIIα (Knight et al., 2006). The search for compounds with 

anti-viral activity has led to the discovery of isoform-specific PI4K inhibitors such as AL-9 (for 

PI4KIIIα) and T-00127 HEV1 and GW5074 (for PI4KIIIβ) (Arita et al., 2011; Vaillancourt et al., 

2012). In addition, combinatorial evidence gathered from multiple inhibitors can provide 

valuable information. For example, a pool of PI4P that is dispersed by the application of Wm and 

<10 µM PAO, but not PIK93, is likely to be regulated by PI4KIIIα (Balla et al., 2008). Lastly, 

optimization and modification of earlier methods has helped overcome inconsistencies seen with 

PI4P antibody staining (Hammond et al., 2009), and revealed a previously undetected cyan 

fluorescent protein (CFP)-FAPP-PH signal at the PM (Wuttke et al., 2010). Our current 

understanding of the many cellular roles for PI4P is a direct result of these advances (Tables 1 

and 2).  

In this review, we present an overview of this current understanding of PI4P biology and 

the evidence from which it was derived. In the first half, we review the molecular roles and 

physiological goals that are accomplished with PI4P signaling. In the second half, we examine 

the mechanisms that fine-tune the production of PI4P in these contexts. We also emphasize the 

current gaps in our knowledge and suggest worthwhile directions to fuel the next chapter of 

discovery. 
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Cellular Roles of PI4P 

Signal Transduction  

Shortly after the discovery of phosphoinositides, it was observed that ligand stimulation can 

induce cellular phosphoinositide metabolism. Radiolabeled ATP and inositol were incorporated 

into the phosphoinositide lipid pool after incubation of guinea pig brain cortex slices with 

acetylcholine (Hokin and Hokin, 1955; Hokin and Hokin, 1958), a result termed ‘the 

phospholipid effect’. Through a series of agonist stimulation experiments where specific 

phosphoinositides were monitored (Berridge, 1983), the idea of a ‘phosphoinositide cycle’ 

emerged: ligand receptors and GTP stimulate hydrolysis of PIP2 by PLC, and the resulting 

second messenger products are recycled to regenerate PI and PIP2 (Akhtar and Abdel-Latif, 

1984; Dunlop and Larkins, 1986). Receptors that stimulate PLC include receptor tyrosine kinases 

and G-protein coupled receptors (GPCRs) such as rhodopsin, chemokine and ATP purinergic 

receptors, angiotensin II receptor, and the muscarinic acetylcholine receptor. Because PI4P is 

much more abundant than PI 5-phosphate (PI5P) (Lemmon, 2008), PIP2 is likely generated 

through phosphorylation of PI4P rather than PI5P. Support for the idea that PI4P is the major 

precursor of PIP2 comes from experiments in insulin-secreting MIN6 β-cells, which show PIP2 

levels closely following those of PI4P (Wuttke et al., 2010). Cells were permeabilized with 

Staphylococcus aureus α-toxin, which produces small pores, allowing depletion and re-addition 

of ATP to inhibit and activate PI4Ks. Using OSBP-PH-CFP to follow PI4P and the PIP2-binding 

PH domain of phospholipase C δ (PLCδ-PH) fused to yellow fluorescent protein (YFP) to 

monitor PIP2, re-addition of low concentrations of ATP induced the appearance of PM PI4P 

without a concomitant generation of PM PIP2 until higher concentrations of ATP were added. 

Inhibition of PI4K activity with 200 µM LY294002 then decreased PI4P, with PIP2 levels 
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following after a 25 second delay. This suggests that the majority of PM PIP2 undergoes 

substantial turnover which requires prior formation of PI4P, and that this route of PIP2 synthesis 

is more likely than others (Wuttke et al., 2010), such as synthesis from PI5P, trafficking of PIP2 

from intracellular membranes or dephosphorylation of PIP3. 

PI4P is thought to play a critical role in PLC signaling because of its function as a PIP2 

precursor. Indeed, PI4K activity is required for a sustained PLC response under signaling 

conditions (Creba et al., 1983; Balla et al., 2005). Continued second messenger production leads 

to prolonged binding of IP3 to ER-localized IP3 receptors, releasing intracellular calcium stores 

and promoting sustained PKC activity, which is also stimulated by DAG. PLC activation also 

leads to opening of transient receptor potential (TRP) cation channels, which aids in signal 

amplification (Montell, 2012). Activated PKC initiates downstream signal transduction pathways, 

including those propagated by MAPK/ERK.  

With some exceptions, PI4KIIIα is generally thought to produce the PI4P precursor for 

PIP2 that is consumed by PLC. Indeed, in mammalian cells, PI4KIIIα is needed to replenish PIP2 

during continued PLC, PKC and MAPK signaling (Balla et al., 2008; An et al., 2011; Hammond 

et al., 2012). In Arabidopsis thaliana, PI4KIIIβ1/2 contributes to PLC signaling induced by cold 

exposure, although the role of PI4KIIIα, which is essential, could not be directly assessed 

(Delage et al., 2012b). This role for PI4KIIIβ is surprising, given that it is not thought to 

contribute substantially to PM PIP2. However, it is unclear whether plant PLC uses PI4P as a 

substrate, in which case production of PIP2 would not be required. Yeast Stt4 is essential for 

PKC and MAPK signaling, although this is not mediated by PLC. Instead, Stt4-dependent 

production of PI4P, and subsequent production of PIP2 by the PIP5K Mss4, recruits protein 

effectors that stimulate PKC (Audhya and Emr, 2002). The Rho guanine nucleotide exchange 
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factor (GEF) Rom2 is recruited to the PM in part by its PIP2-binding PH domain. PM localized 

Rom2 activates Rho1, which in turn stimulates PKC in a MAPK pathway known as the ‘cell wall 

integrity pathway.’ Stt4 and Mss4 are also required for recruitment of the Ste5 scaffolding 

protein that induces MAPK signaling and cell polarization in response to mating pheromone 

(Garrenton et al., 2010).  

PI4P has also been implicated in PLC signaling as a direct substrate. Mammalian PLC 

has been shown to cleave PI4P in vitro (Wilson et al., 1984; Smrcka et al., 1991; Seifert et al., 

2004), but until recently this has not been demonstrated in cells. Activation of the Gq-coupled 

muscarinic receptor in tsA-201 (human embryonal kidney) cells leads to PIP2 depletion and a 

rise in DAG and IP3 levels (Falkenburger et al., 2013). Expression of a 5-phosphatase effectively 

depleted PIP2, and thus strongly inhibited IP3 formation by PLC during receptor activation. 

However, the level of DAG remained unchanged even with 80% depletion of PIP2, suggesting 

that PLC may cleave PI4P to produce DAG and IP2. Computational modeling using observed 

time courses and empirical rate constants supported this scenario. Indeed, when the authors 

attempted to model a scenario in which PLC does not cleave PI4P, no adjustment of parameters 

could reproduce the experimental data. In addition, strong evidence for PLCε cleavage of 

perinuclear PI4P comes from neonatal rat ventricular myocytes (Zhang et al., 2013). A 

perinuclear Golgi population of PI4P is depleted, and DAG signal is increased, when this 

specific PLC is activated. This effect is blocked by PLCε siRNA or disruption of the interaction 

of PLCε with muscle-specific A kinase anchoring protein, which anchors it to the nuclear 

envelope. The decrease in PI4P is unlikely to result from its conversion to PIP2 because 

fluorescent markers such as GFP-PLCδ-PH did not detect perinuclear PIP2 and because targeting 

of a 5-phosphatase to the Golgi did not restore PI4P levels following PLCε activation at the 
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nuclear envelope. In contrast, targeting of Sac1 to the Golgi during PLCε stimulation prevents 

nuclear protein kinase D (PKD) activation, an event that requires DAG production. Thus, in 

some contexts, PI4P is a PLC substrate, although how widespread this is remains to be seen. 

In animal cells, PI4P also contributes to other signaling pathways. A PI4KIIα-dependent 

surge in PI4P and PIP2 levels is required for aggregation and phosphorylation of the Wnt3a co-

receptor Lrp5/6 and for β-catenin stabilization during canonical Wnt signaling (Pan et al., 2008; 

see below). Hedgehog (Hh) signaling in Drosophila requires PI4P for translocation of the GPCR 

Smoothened to the PM (Yavari et al., 2010). In addition, PI4KIIIα is required for expression of 

target genes in the Hippo signaling pathway and for apical localization of the upstream signaling 

component Merlin (Yan et al., 2011). However, exactly how PI4P contributes to these pathways 

is currently unclear. 

A potential role for PI4KIIIα in generating the pool of PI4P that feeds into PIP3 signaling 

has not been widely explored. A study in zebrafish showed that PI4KIIIα knockdown by 

morpholino injection produced a pectoral fin development defect similar to that caused by 

treatment with a PI3K inhibitor (Ma et al., 2009). In addition, PI4KIIIα morphants showed 

reduced expression of the PI3K-Akt target genes fgf10 and mkp3, which are required for FGF 

signaling in limb bud development. Studies of PI4KIIα and PI4IIIβ in COS-7 cells suggested 

that kinase activity was dispensable for PI3K signaling and Akt phosphorylation (Chu et al., 

2010). However, PI4KIIIα was not tested, raising the possibility that this enzyme has a 

conserved role in PIP3 signaling. 

 

ER and Golgi Trafficking  

In addition to its role in PIP2- and PIP3-dependent cell signaling, a major function for PI4P lies in 
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its ability to recruit cytosolic signaling molecules that contain PI4P-binding motifs (D'Angelo et 

al., 2008; Vicinanza et al., 2008). Often, these proteins also require the presence of a coincident 

protein. Many membrane trafficking components have been identified as PI4P effectors, 

implicating PI4P as a key executor of events at multiple stages of trafficking. Indeed, depletion 

of PI4P by rapamycin recruitment of Sac1 to the Golgi virtually eliminated trafficking of cargo 

from the TGN to the PM and to endosomes (Szentpetery et al., 2010).  

 

Bud formation and cargo sorting 

Vesicle formation begins with extrusion of donor membrane to generate a bud. Bud formation is 

achieved either through a clathrin-mediated process, through processes dependent on other 

coatamer complexes, or through coat-independent pathways. At the ER and Golgi, PI4P plays a 

role in examples from each of these categories.  

Clathrin adaptors enriched at the TGN include the tetrameric adaptor protein-1 (AP-1) 

complex, the Epsin-related (EpsinR) protein, and the Golgi-localized, gamma-ear-containing, 

Arf-binding (GGA) family of proteins. These adaptors have clathrin and specific cargo 

recognition sites to promote formation of cargo-containing clathrin-coated vesicles. In addition, 

these adaptors all contain PI4P- and Arf1-binding motifs (Ren et al., 2013). AP-1 binds PI4P in 

vitro, likely through the γ-adaptin subunit (Wang et al., 2003; Heldwein et al., 2004). Kinase 

activity of PI4KIIα is required for AP-1 recruitment and for TGN to PM transport in mammalian 

cells (Wang et al., 2003). However, in Drosophila, PI4KII is dispensable for AP-1 and EpsinR 

localization (Burgess et al., 2012). In yeast, modulation of PI4P levels by Pik1 exerts control 

over AP-1 localization (Daboussi et al., 2012). EpsinR binds PI4P through its ENTH domain; 

aids in the assembly of AP-1 and soluble n-ethylmaleimide sensitive factor adaptor protein 
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receptor (SNARE) proteins into clathrin-coated vesicles (Hirst et al., 2003; Mills et al., 2003; 

Hirst et al., 2004; Miller et al., 2007); and regulates retrograde trafficking of clathrin-coated 

vesicles to the TGN independently of AP-1 (Saint-Pol et al., 2004).  

GGA proteins are recruited to the TGN by Arf1, the Arf1 GEF Golgi brefeldin A-

resistant factor 1 (GBF1), a ubiquitin sorting signal, and PI4P (Lefrancois and McCormick, 

2007; Wang et al., 2007), although each GGA varies in its reliance on each of these factors 

(Boman et al., 2002; Shiba et al., 2004; Wang et al., 2007). At the TGN, GGAs sort proteins 

through interaction with acidic-cluster dileucine sequences found in cytosolic tails of cargoes 

such as the mannose-6-phosphate receptor (Shiba et al., 2002). GGA proteins also promote 

trafficking of ubiquitinated cargoes to the endosomal pathway, including the yeast general amino 

acid transporter Gap1 and the human glucose transporter GLUT4 (Scott et al., 2004; Lamb et al., 

2010). In mammalian cells, GGA Golgi localization depends on PI4KIIα (Wang et al., 2007), 

and acute enzymatic depletion of Golgi PI4P leads to rapid dissociation of clathrin, GGA1 and 

GGA2, but curiously not GGA3, from the Golgi (Szentpetery et al., 2010). Knockdown of 

PI4KIIIα diminishes GGA3 presence at the Golgi (Dumaresq-Doiron et al., 2010). However, this 

is likely due to an indirect effect on GBF1 localization and Arf1 activation rather than a direct 

effect on PI4P-dependent recruitment of GGA to the Golgi (see below).  

In addition to binding PI4P, yeast GGAs control Golgi PI4P to mediate two waves of 

clathrin adaptor assembly. Using live imaging of clathrin adaptors fused to fluorescent proteins, 

appearance and disappearance of Gga2 puncta preceded AP-1 assembly and disassembly on the 

same TGN membrane by approximately 10 sec (Daboussi et al., 2012). Decreasing PI4P levels 

using a pik1 temperature-sensitive (ts) (pik1ts) mutant or increasing PI4P by overexpression of 

Pik1 had no effect on Gga2 bud formation but lengthened or shortened the time between GGA 
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and AP-1 assembly, respectively, suggesting that the level of Golgi PI4P dictates timing of 

progression from GGA- to AP-1-dependent trafficking. Proper timing is important because a 

shortened window between GGA and AP-1 adaptor assembly leads to TGN-endosome 

trafficking defects. Interestingly, adaptor progression is regulated by binding and recruitment of 

Pik1 to the VHS domain of Gga2, leading to local production of PI4P. In accordance with this, 

localization of Pik1 and the PI4P sensor Osh1-PH peak at the TGN approximately 5 seconds 

after the Gga2 peak, and depletion of GGA proteins delays Golgi association of Pik1, PI4P, and 

AP-1. 

Trafficking to and from the ER and Golgi is mediated by the conserved cytoplasmic coat 

protein (COP) complexes I and II. The COPII coat mediates budding of vesicles from the ER at 

specific locations termed ER exit sites (ERES), or transitional ER (tER), and begins with 

recruitment of the small GTPase Sar1 by its GEF Sec12. Activated Sar1 induces membrane 

curvature by insertion of a hydrophobic helix (Lee et al., 2005), and recruits the first coat of 

proteins, the Sec23-24 concave heterodimer, to further deform the membrane. Sec24 recognizes 

ER sorting signals while Sec23 recruits the Sec13-31 heterotetramer which forms a cage to 

stabilize the bud and promote fission (Bhattacharya et al., 2012). Additional contacts between the 

core COPII components and Sec16 are also important for ERES stabilization and fission 

(Yorimitsu and Sato, 2012).  

Sar1 stimulation of PI4P production at ERES is necessary for nucleation of COPII coats 

(Blumental-Perry et al., 2006). However, it is unclear which PI4K is responsible for regulating 

this process, or how multiple PI4K activities would be coordinated at these sites. In ER fractions 

from normal rat kidney cells, Sar1 induced a membrane-associated PI4K activity that is 

insensitive to Wm. Such an activity is more likely to represent a type II PI4K (Blumental-Perry 
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et al., 2006). Despite this, knockdown of PI4KIIIα significantly reduced ERES formation in 

HeLa cells (Farhan et al., 2008). This discrepancy may reflect cell-type specificity. Interestingly, 

PI4P does not appear to be required for COPII budding in yeast (Lorente-Rodriguez and Barlowe, 

2011), which may indicate that specific ERES are not used in yeast. In animal cells, specialized 

exit sites may facilitate clustering of specific cargo, lipids and proteins required for vesicle 

formation, or to spatially target released vesicles to the ER-Golgi intermediate complex (ERGIC), 

a compartment not present in yeast (Zanetti et al., 2012). 

In yeast and mammalian cells, the COPI complex traffics vesicles from the cis-Golgi 

back to ER or ERGIC membranes, and mediates retrograde transport within Golgi cisternae (Emr 

et al., 2009). Yeast COPI mutants show defects that resemble a block in anterograde trafficking, 

but this effect is restricted to specific cargo proteins and can be suppressed by overexpression of 

vesicle-associated SNAREs (v-SNAREs) that are known to be recycled (Gaynor et al., 1998). 

Hence, the block in anterograde trafficking may be due to defects in retrieving COPII machinery 

for recycled use at the ER. COPI-dependent tubule formation at the Golgi appears to be 

important for intra-Golgi anterograde transport (Yang et al., 2011). Assembly of COPI-coated 

vesicles involves simultaneous binding of COPI to activated Arf1 (Yu et al., 2012), GBF1 (Deng 

et al., 2009) and to dimers of the Golgi resident transmembrane proteins p23 and p24 (Popoff et 

al., 2011).  

Recently, the ER GTPase Rab1, PI4KIIIα, and PI4P were proposed to function together 

to recruit GBF1 to Golgi membranes (Dumaresq-Doiron et al., 2010). Activated Rab1b binds 

directly to GBF1 and promotes GBF1 and COPI localization to the Golgi (Monetta et al., 2007). 

Rab1a also recruits GBF1, and constitutively active Rab1a can co-immunoprecipitate PI4KIIIα 

and increase the amount of the GFP-FAPP1-PH PI4P marker at the Golgi (Dumaresq-Doiron et 



Tan, J. and Brill, J.A. (2014) Crit Rev Biochem Mol Biol 49: 33-58. 

	 18	

al., 2010). PI4KIIIα colocalizes significantly with GBF1. Inhibition of PI4KIIIα with Wm or 

PAO greatly reduces Golgi localization of GBF1 and GGA3, without affecting GBF1 or GGA3 

protein levels or Golgi morphology. Knockdown of PI4KIIIα has a slightly stronger effect on 

GBF1 localization, which may be due to dispersal of the cis-Golgi, as seen by staining for the 

marker gigantin. PI4P may affect COPI assembly through recruitment of GBF1 via a polybasic 

domain (Dumaresq-Doiron et al., 2010), or through recruitment of the PI4P-binding protein 

Golgi phosphoprotein 3 (GOLPH3), a COPI-binding partner (Tu et al., 2008; Tu et al., 2012). 

Importantly, none of these effects were seen in cells treated with PI4KIIIβ siRNA. Thus, 

PI4KIIIα may promote COPI assembly in response to Rab1 stimulation. This unexpected role 

for PI4KIIIα may explain its long-recognized localization to the ER in mammalian cells. It will 

be interesting to test this model by examining COPI localization and function in PI4KIIIα-

depleted cells, the effect of Rab1 on PI4K activity, and whether GBF1 is a bona fide PI4P 

effector. 

Additional evidence for involvement of PI4P in COPI trafficking comes from the 

observation that knockdown of PI transfer protein (PITP), which catalyzes non-vesicular 

transport of PI from the ER to the cis-Golgi, reduces overall PI4P levels and specifically affects 

COPI-mediated retrograde transport of the KDEL receptor, but not anterograde trafficking from 

the TGN in HeLa cells (Carvou et al., 2010). This is consistent with the idea that a unique pool 

of PI4P in the cis-Golgi is dedicated to retrograde trafficking. This pool may be generated 

specifically by PI4KIIIα because (1) PI4KIIIα affects COPI assembly proteins (Rab1 and GBF1), 

but does not impair overall levels of Golgi PI4P (Balla et al., 2005), and (2) despite its effect on 

GBF1 and GGA localization to the TGN (Dumaresq-Doiron et al., 2010), PI4KIIIα is not 

thought to regulate anterograde trafficking. Lack of an effect of PI4KIIIα on TGN trafficking 
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could be explained by the presence of PI4KIIIβ and PI4KIIα, which may help recruit sufficient 

populations of GGAs and other clathrin adaptors. Indeed, AP-1 distribution is normal in 

PI4KIIIα knockdown cells (Dumaresq-Doiron et al., 2010). Thus, the ER and cis-Golgi may be 

sensitive to PI4P produced by PI4KIIIα. 

Relatively little is known about formation of clathrin-independent vesicles at the TGN. 

The Arf1-binding glycolipid transfer protein FAPP2 generates PI4P-dependent membrane 

tubules in vitro, and has been suggested to mediate clathrin-independent trafficking (Cao et al., 

2009; Valente et al., 2012). In vivo, FAPP2 regulates apical cargo transport in polarized and non-

polarized cells (Godi et al., 2004; Vieira et al., 2005). Whether the lipid transfer activity of 

FAPP2 is connected to its role in membrane trafficking is not clear. However, it is possible that 

FAPP2-mediated flipping of glucosylceramide lipids to the inner leaflet of the TGN creates 

asymmetry across the membrane, leading to curvature (De Matteis and Luini, 2008). 

Alternatively, glycosphingolipid self-organization into liquid-ordered domains may facilitate 

sorting of lipid raft-containing carriers (Surma et al., 2012). FAPP2 may also initiate budding 

and tubulation through insertion of a hydrophobic wedge into the bilayer after it forms extensive 

contacts with PI4P (Lenoir et al., 2010). 

 While PI4P is clearly important for recruitment of proteins that initiate vesicle formation, 

it is also important for sorting of cargo destined for these vesicles, as evidenced by missorting of 

proteins under reduced PI4K activity (Burgess et al., 2012; Jovic et al., 2012). This makes sense, 

given that many adaptors localize through multiple low-affinity interactions with PI4P, ARF-1 

and cargo recognition sequences that act synergistically to target them to the correct membranes 

and increase cargo-binding affinity (Wang et al., 2007). Thus, the role of PI4P in sorting is part 

and parcel with adaptor recruitment. 
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Vesicle formation and structural integrity 

Filamentous (F-) actin facilitates vesicle trafficking by powering endosome motility and by 

remodeling the cell cortex during endo- and exocytosis (Lanzetti, 2007). For example, the F-

actin regulator WASP homologue associated with actin, membranes, and microtubules 

(WHAMM) (WASP homologue associated with actin, membranes, and microtubules) interacts 

with microtubules or Arp2/3 to promote membrane tubulation or elongation, respectively, 

thereby regulating Golgi structure and anterograde trafficking (Campellone et al., 2008; Shen et 

al., 2012). However, by and large, the role of F-actin in Golgi and post-Golgi trafficking has not 

been well defined. Only recently has Golgi PI4P been linked to actin and to myosin motors that 

pull newly formed vesicles away from the TGN. The highly conserved PI4P effector GOLPH3 

(Vps74 in budding yeast) binds PI4P with high affinity and specificity through its 34 kDa Golgi 

phosphoprotein (GPP34) domain (Dippold et al., 2009; Wood et al., 2009). In HeLa cells, 

GOLPH3 simultaneously binds PI4P and the unconventional myosin Myo18A, providing the 

tensile force necessary to separate vesicles from TGN. Interestingly, the vertebrate-specific 

GOLPH3 paralog GOLPH3L also binds PI4P, but counters forces exerted by GOLPH3 (Ng et al., 

2013). The action of both proteins needs to be regulated, as unchecked activity of either 

GOLPH3 or GOLPH3L impedes anterograde secretion and disrupts Golgi morphology. Indeed, 

GOLPH3L knockdown leads to excessive stretching and vesicle formation by GOLPH3 as well 

as Golgi fragmentation. In contrast, GOLPH3 knockdown leads to Golgi compaction and loss of 

its characteristic ribbon-like appearance. Thus, in mammalian cells, Golgi architecture depends 

on the balance between GOLPH3 and GOLPH3L. This may be particularly important in 

secretory tissues, where GOLPH3L is highly expressed. The mechanism by which GOLPH3L 

inhibits GOLPH3 is currently unknown. Moreover, it is unclear whether GOLPH3 is regulated in 
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an analogous manner in flies and yeast, which lack both GOLPH3L and the ribbon-like Golgi 

morphology found in vertebrate cells. 

In budding yeast, Pik1 is needed for proper localization of the GOLPH3 homologue 

Vps74, suggesting that PI4KIIIβ may regulate GOLPH3/GOLPH3L in mammalian cells. Indeed, 

PI4KIIIβ plays a critical role in regulating Golgi structure and function, since loss of this enzyme 

leads to Golgi fragmentation in a number of systems (Godi et al., 1999; Strahl et al., 2005; 

Polevoy et al., 2009; Daboussi et al., 2012). Golgi structure also relies on a continuous network 

of spectrin proteins that form a scaffold to shape and support the cell. PI4P and Arf1 jointly 

recruit βIII spectrin to the TGN, where it maintains the Golgi’s ribbon-like appearance and 

facilitates secretory trafficking (Salcedo-Sicilia et al., 2013). Knockdown of βIII spectrin or 

depletion of PI4P through rapamycin-mediated recruitment of FKBP12-Sac1 to the Golgi results 

in Golgi fragmentation. Thus, PI4P is essential for structural integrity of the Golgi complex. 

 

Vesicle Fission  

Since PI4P is important for multiple steps leading to generation of a post-Golgi vesicle, adding 

vesicle fission to its repertoire of functions would be an intuitive way to link all of the events in 

this process. Indeed, at the PM, PIP2 recruits the clathrin adaptor AP-2, actin remodeling factors, 

and the GTPase dynamin to promote endocytosis and vesicle scission (Rohde et al., 2002; Yarar 

et al., 2007; Ramachandran, 2011). However, there is currently little evidence for involvement of 

PI4P in procurement of fission machinery for coated vesicles at the Golgi. Although dynamin 

and dynamin-like proteins have been implicated in scission of clathrin-coated carriers at the 

TGN, they have been reported to bind PIP2, not PI4P (Bonekamp et al., 2010; Weller et al., 

2010). COPI and COPII vesicles, which require PI4P for their formation, do not require dynamin 
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(Campelo and Malhotra, 2012). Interestingly, PI3Kδ kinase activity is required in macrophages 

for recruitment of dynamin 2 and release of cytokine carriers from the TGN (Low et al., 2010), 

suggesting that PIP3, rather than PI4P, regulates fission of at least one class of vesicles at the 

Golgi.  

A role for PI4P, however, has been reported in fission of both lysosomal vesicles (Sridhar 

et al., 2013) and coat-independent vesicles termed post-Golgi carriers (PGCs) that traffic from 

the TGN to the basolateral cell surface (Valente et al., 2012). Formation of PGCs requires the 

brefeldin A-dependent ADP-ribosylation substrate (BARS) protein, also known as C-terminal 

binding protein (CtBP) 1-short, a cytosolic protein originally identified for its ability to regulate 

Golgi tubulation and fragmentation during mitosis (Corda et al., 2006). Other trafficking steps 

that do not require dynamin, such as COPI-mediated retrograde traffic and fluid-phase 

endocytosis, similarly utilize BARS (Bonazzi et al., 2005; Yang et al., 2005).   

Evidence suggests that PI4P is involved in BARS-mediated PGC fission. For example, in 

rat brain cells, BARS co-purifies with 14-3-3γ, a member of a PI4KIIIβ-interacting family of 

scaffolding proteins (Valente et al., 2012). In COS-7 cells, BARS also pulls down PI4KIIIβ itself, 

along with its activating kinase PKD. PKD-mediated phosphorylation of PI4KIIIβ triggers 

binding of 14-3-3γ, resulting in sustained PI4P generation (Hausser et al., 2006). The discovery 

that 14-3-3γ, PI4KIIIβ and PKD form a complex with BARS suggests that PI4KIIIβ is stabilized 

and activated at sites of vesicle fission. With no predicted role for BARS as an energy-coupled 

molecular motor, it is unclear how it is able to sever tubules growing from the TGN. However, 

since BARS acts as a scaffold for lipid-modifying enzymes such as PI4KIIIβ and PLD (Haga et 

al., 2009), it may help create a local lipid environment that is amenable to fission (Haga et al., 

2009; Valente et al., 2012). In addition, PKD phosphorylates the PI4P effectors CERT (ceramide 
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transfer protein) and OSBP (a sterol transferase) to remove them from the Golgi (Olayioye and 

Hausser, 2012). Although it seems contradictory that PKD-stimulated production of PI4P 

recruits these effectors only to have them phosphorylated and removed, this may represent a 

negative feedback loop to turn off PKD action, since CERT generates DAG, a PKD activator. 

This may also represent a mechanism to ensure optimal PI4P, ceramide and sterol levels for 

fission, or to eliminate proteins that sequester PI4P. With regard to the latter possibility, 

dephosphorylation of PIP2 to PI4P facilitates dynamin-mediated fission of endocytic vesicles in 

COS-7 cells (Chang-Ileto et al., 2011). This is thought to induce dynamin disassembly from the 

membrane, although it is also possible that electrostatic properties of concentrated PI4P are more 

amenable to the final stages of membrane separation. 

 

Vesicle fusion 

After liberation of vesicles from one organelle, they are transported to and fuse with target 

membranes at a different site. Vesicles are first tethered by landmark proteins such as the exocyst 

components Sec3 and Exo70 at the plasma membrane (He and Guo, 2009), or by vesicular 

mediators such as the TRAPPI complex (Sztul and Lupashin, 2006) at the cis-Golgi. This is 

followed by fusion through assembly of a trans complex of SNARE proteins derived from 

vesicular and target membranes. Recently, PI4P was shown to be dispensable for vesicle budding 

and tethering of COPII vesicles, but critical for SNARE complex formation in fusion with the 

cis-Golgi during ER-to-Golgi trafficking (Lorente-Rodriguez and Barlowe, 2011). In in vitro 

assays, pre-treatment of acceptor membranes with Sac1 prevented fusion of transport vesicles. 

Similarly, sequestration of Golgi PI4P with the PH domain of FAPP1 in vitro or depletion of 

PI4P using a pik1 mutant in vivo prevented transfer of radiolabeled cargo from ER-derived 
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COPII vesicles to Golgi acceptor membranes. Since overexpression of vesicle and cis-Golgi 

SNARE proteins can suppress these fusion defects, it was postulated that PI4P may interact 

directly with SNARE machinery. 

 

PI4P Gradient in Golgi trafficking and function 

Although GOLPH3 is a PI4P effector at the TGN, evidence from yeast suggests a reciprocal 

arrangement whereby GOLPH3/Vps74 also regulates PI4P levels at the Golgi. PI4P is enriched 

in the TGN, whereas Vps74 localizes primarily to early Golgi compartments (Schmitz et al., 

2008) and Sac1 resides at the ER and Golgi (Whitters et al., 1993). Interestingly, vps74 and sac1 

interact genetically and physically, and deletion of either gene results in greater colocalization of 

the PI4P marker FAPP-PH with the medial-Golgi marker Aur1 (Wood et al., 2012). Bimolecular 

fluorescence complementation experiments showed that Vps74 and Sac1 interact in vivo at the 

medial-Golgi, suggesting that Vps74 detects PI4P and recruits Sac1 to this compartment, thereby 

depleting PI4P in the early Golgi. Sac1 also localizes to the cis-Golgi in mammalian cells where 

it maintains a clear distinction between early and late compartments (Cheong et al., 2010). Here, 

knockdown of sac1 resulted in increased GFP-FAPP-PH-positive structures, mislocalization of 

medial-Golgi glycosylation enzymes to intracellular and cell surface membranes, and alterations 

in N- and O-linked glycosylation patterns. Thus, expansion of PI4P-rich domains in the Golgi 

leads to aberrant entrance of resident Golgi proteins into the secretory pathway. The authors of 

this study proposed that ectopic PI4P in early Golgi compartments may recruit trafficking 

machinery normally assembled at the TGN. Therefore, Sac1 serves a conserved role in confining 

PI4P enrichment to the TGN, which ensures proper Golgi organization and function. 

 A local requirement for high levels of PI4P suggests that PI4P-dependent functions in the 
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TGN would be more sensitive to PI4P disruption than those at the cis-Golgi. Evidence for this 

idea comes from examination of yeast carboxypeptidase Y (CPY), which is transported and 

modified through the secretory pathway and can be monitored along the way by differences in 

molecular weight at the ER, Golgi and vacuole. pik1ts mutants kept at the non-permissive 

temperature for a total of 25 minutes delayed transport of CPY only from the TGN to the vacuole 

(Audhya et al., 2000). In contrast, a temperature shift of 57 minutes led to a complete block of 

PI4P-dependent transfer of CPY from the ER to the cis-Golgi without significantly affecting 

Golgi structure or function (Lorente-Rodriguez and Barlowe, 2011). Collectively, these data 

indicate that a gradient of Golgi PI4P is integral to cisternae identity and function. 

 

Non-vesicular transport and lipid metabolism 

PI4P regulates lipid homeostasis through a number of PI4P effectors that have lipid binding 

and/or transferase activity that mobilizes substrates for biogenesis of complex modified lipids 

such as sphingomyelin and glycosphingolipids (Graham and Burd, 2011). These effectors 

include the COF family proteins CERT, OSBP and OSBP-related proteins (ORPs), and FAPP2, 

which transfer ceramide, oxysterol, and glucosylceramide, respectively (D'Angelo et al., 2008). 

CERT-mediated movement of ceramide from ER to Golgi requires PI4KIIIβ (Toth et al., 2006). 

OSBP stimulates CERT-dependent sphingomyelin synthesis through an unidentified mechanism 

that requires PI4P generated by PI4KIIα (Perry and Ridgway, 2006; Banerji et al., 2010). 

Importantly, CERT and FAPP2 transfer ceramide and glucosylceramide to the appropriate Golgi 

leaflet for sphingolipid biosynthesis in response to PI4P binding (Yamaji et al., 2008).  

CERT and OSBP are thought to promote ER-Golgi contact sites through interaction with 

ER integral VAP (vesicle-associated protein) proteins via their FFAT (two phenylalanines 
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followed by acidic tract) motifs, and through association with Golgi PI4P and Arf1 via their PH 

(De Matteis et al., 2007) or ORD domains (Li et al., 2002). ER-Golgi contact sites may allow 

non-vesicular lipid transfer between the two organelles. OSBP, yeast ORPs (Osh proteins), and 

several human ORPs transfer sterols between liposomes in vitro (Raychaudhuri et al., 2006; Ngo 

and Ridgway, 2009; Schulz et al., 2009; Du et al., 2011). Osh proteins lacking PH domains and 

FFAT motifs have been proposed to mediate sterol transfer by acting as diffusible sterol carriers 

(de Saint-Jean et al., 2011). Although Osh ORD domains alone can tether membranes (Schulz et 

al., 2009), this is somewhat controversial (de Saint-Jean et al., 2011), indicating that the 

mechanism of sterol transfer remains to be further defined.  

PI4P also modulates the activity of other lipid transfer proteins. The yeast integral 

membrane ATPase Drs2 requires Pik1-generated PI4P to stimulate its flippase activity, which 

transfers phosphatidylserine and phosphatidylethanolamine from the luminal to cytosolic leaflet 

of the TGN and endosomes (Natarajan et al., 2009; Jacquot et al., 2012). Localization of OSBP 

and CERT is also dependent on Nir2 (Peretti et al., 2008), a VAP-binding 

PI/phosphatidylcholine transfer protein that moves PI from the ER to the Golgi, providing 

substrate for PI4Ks. Indeed, knockdown of VAP proteins reduces Golgi PI4P and sphingomyelin 

synthesis.  

Unlike most PI4P effectors, Osh4 decreases PI4P levels and inhibits secretion (Li et al., 

2002; Fairn et al., 2007; LeBlanc and McMaster, 2010; Mousley et al., 2012). Indeed, sterol 

binding by Osh4 is required to keep PI4P levels in check (Stefan et al., 2011). Some insight was 

shed on this relationship with the demonstration that, in vitro, Osh4 can mediate rapid exchange 

of PI4P for ergosterol, transferring these lipids in opposite directions between liposomes (de 

Saint-Jean et al., 2011). Hence, in vivo, Osh4 may transfer PI4P from the Golgi to the ER, 
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exchanging it for ergosterol in the process. Interestingly, the authors note that Pik1 and Sac1 

would maintain this directionality of transfer by producing a gradient of PI4P that is high at the 

Golgi and low at the ER. Consequently, Osh4 enhances a sterol gradient that is low at the ER, 

where it is synthesized, and high at the TGN. This gradient may help drive anterograde 

membrane trafficking, as sterols and sphingolipids are selectively enriched in secretory vesicles 

that bud from the TGN (Klemm et al., 2009). Depletion of other ORPs in HeLa cells or in C. 

elegans leads to sorting and trafficking defects in the endo-lysosomal system (Kobuna et al., 

2010; Du et al., 2011), and overexpression of Osh4 induces autophagy (LeBlanc and McMaster, 

2010; Mousley et al., 2012). However, it remains to be seen whether functions of these ORPs are 

regulated by PI4P. 

Consistent with Osh4 mediating exchange of PI4P for sterols, sterol binding promotes 

dissociation of Osh4 from TGN and endosomes (Mousley et al., 2012). An Osh4 sterol-binding 

mutant showed increased membrane association in fractionation studies and, when fused to GFP, 

appeared more punctate than wild-type Osh4-GFP, which is both cytosolic and punctate. 

Enhanced recruitment of Osh4 to TGN and endosomes impairs secretory trafficking as well as 

endocytic trafficking to the vacuole, suggesting that sterol deficiency, or an inability to sense 

sterol, induces a brake on PI4P-dependent trafficking. Interestingly, Osh4 sterol-binding mutants 

fail to traffic amino acid permeases to the PM, which leads to disruption of the general amino 

acid control pathway governing amino acid homeostasis, and cell cycle arrest. Thus, the sterol 

regulatory functions of Osh4 are intimately related to PI4P-dependent trafficking and cell 

physiology. 

 

Trafficking at Endosomes and Lysosomes 
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PI4P is detected on membranes of the endo-lysosomal system and is required for various steps of 

endosomal trafficking. PI4P and PIP2 are found on tubules emanating from the endocytic 

recycling compartment, a compartment containing endocytosed material destined for return to 

the PM (Jovic et al., 2009). PI4P, but not PIP2, is instrumental in tubule localization of Eps15 

homology (EH) domain-1 (EHD-1), a protein known to regulate recycling of transmembrane 

cargo internalized by clathrin-dependent and -independent endocytosis. Indeed, mutation of a 

key lysine in the EH domain of EHD-1 that reduces binding to PI4P (K483E) renders it unable to 

associate with tubules and delays recycling (Jovic et al., 2009). PI4P may also regulate recycling 

endosomes through Rab11. PI4KIIIβ binds and recruits Rab11, a regulator of recycling 

endosomes, to the Golgi (de Graaf et al., 2004). Although Fwd/PI4KIIIβ kinase activity is 

dispensable for Rab11 binding, it is required for full rescue of spermatocyte cytokinesis, 

presumably because of the need for PI4P in restoring full secretory function (Polevoy et al., 

2009). 

Whereas PI4KIIIβ is localized predominantly at the Golgi, PI4KIIα has been detected at 

the PM, early and late endosomes, synaptic vesicles, immature secretory granules, as well as at 

the TGN, where it produces PI4P required for recruitment of the clathrin adaptors AP-1 and 

GGA1-3 (Fig. 3C; Wang et al., 2003; Wang et al., 2007). While it remains unclear how the pools 

of PI4P generated by PI4KIIIβ and PI4KIIα are partitioned at the Golgi such that each enzyme 

recruits specific PI4P effectors, the two PI4Ks clearly play separate, sequential roles at this 

organelle. This was shown recently for the trafficking of the lysosomal hydrolase β-

glucocerebrosidase (GBA) and its sorting receptor lysosomal integral membrane protein type 2 

(LIMP-2) (Jovic et al., 2012). Inhibition of PI4KIIIβ prevented exit of this cargo from the Golgi, 

a block that was mirrored by acute depletion of Golgi PI4P. In contrast, knockdown of PI4KIIα 
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resulted in accumulation of LIMP-2 in late endosomes and increased missorting of GBA to the 

extracellular medium. This latter effect was reversed by simultaneous inhibition of 

PI4KIIIβ, consistent with it acting at an earlier step. Thus, GBA/LIMP-2 transport relies on both 

PI4KIIIβ and PI4KIIα, albeit at different stages of trafficking.  

Studies in Drosophila, mice, and human cell lines have also given insight to a role for 

PI4KIIα at endosomes. In the Drosophila larval salivary gland, loss of PI4KII leads to 

mislocalization of secretory granule cargo to late endosomes as well as accumulation of the 

lysosomal enzyme sorting receptor (Lerp) in this compartment (Burgess et al., 2012). PI4KII 

mutants exhibit aberrant Retromer dynamics, indicating that PI4KII may regulate retrieval of 

cargo or membranes from late endosomes to the TGN. Interestingly, PI4KII localizes to tubules 

emanating from late endosomes. Although kinase-dead PI4KII also localizes to late endosomes 

in a wild-type background, catalytic activity is required for tubule formation, pointing to a key 

role for PI4P in this trafficking step. In HEK293 cells, PI4KIIα kinase activity is needed for 

assembly of clathrin adaptor AP-3 onto late endosomes. In addition, PI4KIIα, which is 

palmitoylated, acts as membrane cargo via a canonical dileucine AP-3 sorting motif (Craige et al., 

2008). Both catalytic activity and the dileucine motif are required for PI4KIIα localization to late 

endosomes as well as rescue of PI4KIIα knockdown endosomal phenotypes, indicating mutual 

regulation between PI4KIIα and AP-3. Moreover, biogenesis of lysosome-related organelle 

complex 1 (BLOC-1) mediates PI4KIIα-AP-3 interaction, and all three are needed for proper 

trafficking of the lysosomal-associated membrane protein 1 (LAMP1) receptor in HEK293 cells 

(Salazar et al., 2009). In mouse primary cortical neurons, AP-3 and BLOC-1 traffic synaptic 

vesicles carrying PI4KIIα from the cell body to the neurite tips (Larimore et al., 2011). 

Additionally, when PI4KIIα is not bound to AP-3, it can interact with BLOC-1 and the WASP 
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and SCAR homologue (WASH), an F-actin nucleation-promoting factor specifically associated 

with endosomes (Ryder et al., 2013). Knockdown of WASH produces long tubules containing 

PI4KIIα that emanate from normal size endosomes, whereas knockdown of the BLOC-1 subunit 

pallidin results in enlarged endosomes with no tubules. This suggests BLOC-1 may act 

downstream of PI4KIIα-AP-3 interaction to sort PI4KIIα into tubules, and that WASH may 

regulate scission of PI4KIIα-containing carriers. PI4KIIα may indirectly recruit WASH, given 

that the WASH subunit Fam21 binds PI4P in vitro (Jia et al., 2010; Ryder et al., 2013). 

An unexpected role for PI4KIIIβ at the lysosome was recently uncovered using siRNA in 

cultured cells. Small fractions of PI4KIIIβ and PI4P were detected at the lysosome, and the 

presence of wild-type, catalytically active PI4KIIIβ was required to prevent abnormal tubulation 

of this organelle as well as efflux of missorted resident lysosomal proteins such as LAMP1 into 

these tubules (Sridhar et al., 2013). This effect was unrelated to the role of PI4KIIIβ in the Golgi, 

as disruption of Golgi function by brefeldin A or nocodazole showed no effect on LAMP1 

dynamics. These data suggest PI4KIIIβ normally facilitates cargo sorting and fission of 

lysosomal vesicles, preventing tubule formation. Increased association of clathrin and the 

clathrin adaptor AP-2 with lysosomes was observed in the absence of PI4KIIIβ, leading to the 

suggestion that PI4KIIIβ may prevent ectopic recruitment of these proteins. Interestingly, this 

report followed another that identified PIP5K and PIP2 as being necessary for tubule formation to 

create de novo lysosomes from autolysosomes following starvation-induced autophagy (Rong et 

al., 2012). Since tubules form in PI4KIIIβ and PIP5K doubly-depleted cells, Sridhar et al. 

propose that PIP5K is not necessary for vesicle or tubule formation per se, but that in special 

circumstances, such as those surrounding regeneration of lysosomes, PIP5K is required to 

deplete PI4P through its conversion to PIP2 in order to inhibit vesicle fission and favor bulk 
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efflux through tubulation. However, important questions remain, such as what drives tubule 

formation in the absence of PI4P, and whether PI4P and PIP2 are coordinately regulated to 

recruit AP-2 and scission machinery.  

 

PI4P and Rabs Confer Compartment Identity 

Because PI4P is found in multiple intracellular membranes, additional factors must be required 

to recruit organelle-specific effectors. In addition to simultaneous detection of Arf1 by PI4P 

effectors such as FAPPs (Godi et al., 2004), Rab family proteins can help determine distribution 

of PI4P effectors. Similar to organelle-specific distribution of phosphoinositides, the secretory 

and endosomal systems are decorated with compartment-specific Rabs. Together, 

phosphoinositides and Rabs define compartment identity, and synergistically recruit downstream 

effectors to perform compartment- and stage-specific functions. This is important because proper 

trafficking requires sequential events, including disassembly of fission machinery, assembly of 

fusion machinery, and cargo-specific events such as protein processing. Evidence suggests PIPs 

and Rabs participate in a finely tuned assembly line for moving cargo through sequential steps in 

the secretory pathway. This “Rab cascade” unfolds through Rab-mediated recruitment of the 

GEF that activates the subsequent Rab, and in some cases, the GAP to inactivate the Rab that 

defines the current compartment (Mizuno-Yamasaki et al., 2010; Jean and Kiger, 2012). 

PI4P has been shown to play an integral role in this identity switch. Sec2, the yeast GEF 

that activates the Rab protein Sec4/Rab8 on secretory vesicles, is involved in both budding from 

the TGN and recruitment of the exocyst component Sec15 for docking at the plasma membrane. 

Interestingly, the level of PI4P on the membrane to which Sec2 is bound determines which role it 

plays at a given point during secretion (Mizuno-Yamasaki et al., 2010). Sec2 is recruited to the 
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trans-Golgi by binding to a yeast Rab11 ortholog (either Ypt31 or Ypt32) and PI4P via its 

Ypt31/32 binding site and three polybasic patches, respectively. During budding, the exocyst 

machinery is prevented from prematurely assembling because binding to Ypt32 occludes the 

Sec15-binding site on Sec2, and because PI4P itself inhibits Sec2-Sec15 interaction. Indeed, in 

vitro assays show that PI4P inhibits this association in a dose-dependent manner. However, once 

secretory vesicles are formed, Sec15 is able to outcompete Ypt32 for Sec2 binding. Since the 

PI4P probe mCherry-FAPP-PH colocalizes with Sec2 only at the Golgi and not at vesicular sites, 

it is proposed that low levels of PI4P on secretory vesicles allow assembly of docking proteins at 

the expense of budding machinery. Similarly, it has been proposed that Sac1 decreases PI4P on 

forming exocytic vesicles (Alfaro et al., 2011). Thus, PI4P regulates Sec2 binding partners and 

the switch in identity from TGN to secretory membrane. Whether other factors lead to a drop in 

PI4P, i.e., a sorting out of PI4P at the Golgi or enzymatic depletion on vesicles, remains to be 

determined. 

Although reduction in PI4P levels is necessary for progression along the secretory 

pathway, another report in yeast demonstrates that PI4P also plays an important role on secretory 

vesicles, and that modulating its levels can affect compartment identity and function (Santiago-

Tirado et al., 2011). The myosin V motor Myo2 transports Golgi membranes and secretory 

vesicles along actin cables into the nascent bud. Myo2 is recruited by Rabs of the late Golgi 

(Sec7), the trans-Golgi (Ypt31/32), and secretory vesicles (Sec4). GFP-FAPP-PH and mCherry-

Osh2-PH colocalize with Sec7 and Ypt31, respectively, and mCherry-Osh2-PH colocalizes with 

Sec4-containing vesicles that accumulate at the bud tip and neck of small budded cells. Sec4 and 

PI4P did not overlap in wild-type mother cells, but a small degree of overlap was seen in mother 

cells from myo2 transport mutants, which accumulate secretory vesicles. This suggests that PI4P 
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concentration is high on Golgi membranes and low on smaller Sec4-positive secretory vesicles, 

such that secretory vesicle PI4P is difficult to visualize without vesicle aggregation. These results 

are consistent with the hypothesis of Mizuno-Yamasaki et al. (2010) that a drop in PI4P levels 

occurs during the transition from Golgi to secretory vesicle. Sec4 polarization and Myo2 

transport of secretory organelles depends on PI4P (Santiago-Tirado et al., 2011). Increasing 

Golgi PI4P by Pik1 overexpression or sac1 deletion results in recruitment of Myo2 mutant 

proteins unable to bind either Ypt31/32 or Sec4, rescuing growth and transport defects. Likewise, 

fusion of mutant Myo2 proteins with a FAPP-PH domain also rescues Rab-binding myo2 

mutants, indicating that a bridge between Myo2 and PI4P is necessary for transport. This is 

thought to occur via an as yet unidentified factor. Hence, under normal conditions, PI4P and a 

Rab synergistically recruit Myo2, with PI4P acting as a general marker for secretory membranes, 

and Rabs further defining specific secretory stages. However, upon disruption of Myo2-Rab 

association, enhancement of Myo2-PI4P interaction can compensate, showcasing the regulatory 

power of modulating PI4P.  

 

Plasma membrane effectors 

While much has been learned about Golgi PI4P, roles for PI4P at the PM are only beginning to 

be revealed. This is because PIP2 and PIP3 are also found on this membrane, and traditional 

genetic or biochemical techniques to disrupt PI4P made it difficult to assess whether resulting 

phenotypes were due to loss of PI4P, or to loss of its downstream metabolic derivatives. With the 

advent of technologies to detect and manipulate specific pools of lipids (Heo et al., 2006; Varnai 

and Balla, 2008; Clark et al., 2011; van den Bogaart et al., 2011), new data suggest that despite 

its many essential roles at the Golgi, the majority of cellular PI4P is on the PM (Hammond et al., 
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2009). 

The classical view is that PM PI4P allows for rapid replenishment of PIP2 after acute 

signaling events. PI4KIIIα appears to be the isoform that generates this pool of PI4P, as 

pharmacological inhibition with Wm or 10 µM PAO abolished replenishment of both PM PI4P 

and PIP2 after hormone-activated PLC-coupled signaling in COS-7 cells (Balla et al., 2008; 

Hammond et al., 2012). Knockdown of the enzyme gave a less robust effect, presumably because 

of incomplete silencing. Further, in permeabilized β-cells, parallel changes in PIP2 levels in 

response to decreases or increases in PI4P depend on a type III PI4K (Wuttke et al., 2010).  

Independent roles for PM PI4P are beginning to be defined, although the extent to which 

PI4P influences PIP2 and PIP3 levels remain unknown. New data suggest that, in some cells, 

PI4P and PIP2 may be less intimately coupled than previously thought. Stimulation of β-cells 

through Gq-protein-coupled receptors leads to opposite changes in PM PI4P and PIP2 levels: PIP2 

decreases as expected after activation of PLC; however, PM PI4P levels increase, suggesting that 

the two lipids may be independently regulated in this cell type (Wuttke et al., 2010). More 

strikingly, in COS-7 cells, acute depletion of all PM PI4P by rapamycin recruitment of the Sac1 

phosphatase domain to the PM had no effect on PIP2 resynthesis after PLC activation (Hammond 

et al., 2012). Since previous results on PI4KIIIα inhibition and knockdown differ from those 

obtained through acute PI4P depletion, this suggests that PI4KIIIα produces a small but essential 

pool of PI4P at specific PM sites that is not susceptible to acute PI4P depletion. For example, 

PI4KIIIα and its associated proteins may protect this pool through steric hindrance (see below). 

Alternatively, PI4KIIIα may replenish a pool of PI4P that is used immediately for PIP2 

resynthesis. Indeed, kinetic studies suggest PIP2 replenishment occurs so quickly that both PI4K 

and PIP5K activity need to be stimulated to satisfy the observed concentration response and time 
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course (Falkenburger et al., 2010; Falkenburger et al., 2013). Additionally, PIPs may be 

replenished from other membranes. On this front, it is noteworthy that Golgi-specific depletion 

of PI4P moderately affects PM PIP2 replenishment, suggesting that Golgi PI4P can contribute to 

PM PIP2 (Szentpetery et al., 2010). In either case, although PI4KIIIα appears to play a critical 

role in PIP2 replenishment after signaling, it is unclear whether it has a major role in regulating 

steady state PIP2 levels in mammalian cells. While inhibition of PI4KIIIα in COS-7 cells under 

normal growth conditions did decrease steady state PM PI4P, it had little to no effect on steady 

state PIP2, suggesting that PIP2 normally experiences low turnover in these cells, or that it is 

made from a distinct or redundant pool of PI4P (Balla et al., 2008; Hammond et al., 2009).  

On the other hand, genetic ablation of PI4KIIIα in yeast and in animal models suggests 

that this pool of PI4P is tightly linked to the functions of PM PIP2 and PM identity (Audhya and 

Emr, 2002; Murray et al., 2012; Nakatsu et al., 2012). Indeed, in Drosophila, PI4KIIIα mutant 

female germ cells exhibit defects similar to those depleted for PIP2 (Tan et al., in press.), and 

mouse embryonic fibroblasts (MEFs) mutant for PI4KIIIα upregulate expression of the PIP2-

generating enzyme PIP5K as a compensatory mechanism. Perhaps this reflects differential 

requirements for PI4KIIIα-dependent synthesis of PM PI4P in different cell types or in cells 

within living tissues.  

Although previous studies identified few specific functions for PM PI4P aside from its 

role as a precursor to PIP2, Hammond et al. (2012) found that PI4P makes a substantial 

contribution to the total negative charge that defines the inner leaflet of the PM. Seven 

membrane-targeting protein domains fused to GFP were monitored before and after dynamic 

depletion of PM PI4P or PIP2. Rapamycin was used to recruit the phosphatase domains of Sac1 

and inositol polyphosphate-5-phosphatase E (INPP5E) to deplete PI4P and PIP2, respectively. Of 



Tan, J. and Brill, J.A. (2014) Crit Rev Biochem Mol Biol 49: 33-58. 

	 36	

those proteins that were predicted to localize via non-specific polyanionic lipid interaction 

through a polybasic domain, elimination of both PM PI4P and PIP2 was required to abolish PM 

localization, whereas depletion of either lipid alone had minimal effect. For example, while 

stimulation of the heat and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) 

cation channel was previously associated with binding to PIP2, activation was achieved in the 

presence of either PM PI4P or PIP2, with channel activity being inhibited only when both lipids 

were absent. However, not all cation channels operate on a general requirement for polyanionic 

lipids, as activation of the menthol-activated transient receptor potential melatastatin 8 (TRPM8) 

channel specifically required PIP2. Therefore, PM PI4P functions in processes that require a 

general polyanionic lipid pool. With this in mind, it is possible that PI4P fulfillment of this 

function is especially important when PIP2 is rapidly consumed, which may explain why PI4P 

levels increase during PLC signaling in some cells (Wuttke et al., 2010), although this would not 

be the case in cell types where PI4P and PIP2 react in parallel (Balla et al., 2008). Whether PI4P 

specifically targets any protein for PM localization or activation remains to be seen. With new 

methods for perturbing membrane-specific pools of PI4P, analysis of lipids in sub-membrane 

microdomains (van den Bogaart et al., 2011), and imaging of PM dynamics (Wuttke et al., 2010; 

Nakatsu et al., 2012), it is an exciting time for this avenue of research. 

 

 

Dynamic Regulation of PI4P Signaling: Mechanisms of Spatiotemporal Control 

Thus far, we have discussed steady-state roles for PI4P in replenishing other signaling 

phosphoinositides, and in recruiting organelle-specific effector proteins, for which little 

phosphoinositide turnover is apparently required. However, the ability of phosphoinositides to be 
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rapidly phosphorylated and dephosphorylated makes them ideal candidates to regulate dynamic 

processes in time and space. Therefore, it is not surprising that physiological cues requiring rapid 

cellular responses, such as nutrient availability and cell signaling, invoke pathways that regulate 

PI4P. 

 

Response to Nutrients 

An early report describes modulation of PI4K activity in response to nutrients. Secretion of 

insulin granules by pancreatic β cells in response to increased glucose concentration requires 

type III PI4K activity, and is stimulated by injection of PI4P (Olsen et al., 2003). Given the 

relatively low concentration of the pharmacological inhibitor PAO required to inhibit insulin 

exocytosis (Balla and Balla, 2006), the bulk of this PI4K activity is likely provided by PI4KIIIα. 

Indeed, PI4Ks were proposed to act as metabolic sensors because reduced levels of cellular ADP, 

which mimic what occurs upon glucose stimulation, correspond with increased PI4K activity. 

Indeed, addition of ATP to permeabilized β cells stimulates PI4P production in a dose-dependent 

manner, consistent with a mechanism for activating PI4Ks by increasing substrate availability 

(Wuttke et al., 2010). In these cells, stimulation with glucose also provoked an increase in PM 

PI4P that was dependent on increased cytoplasmic Ca2+, although the exact mechanism by which 

energy status stimulates PI4Ks is still unclear. 

Another example of regulation of PI4P signaling in response to nutrients involves Sac1. 

In yeast and mammalian cells, the largely ER-localized Sac1 reversibly localizes to the Golgi 

during periods of glucose deprivation (Faulhammer et al., 2007), or when cell growth is slowed 

in late log phase yeast cultures (Faulhammer et al., 2005). The benefit of this relocation during 

starvation appears to be twofold. First, ER-localized Sac1 is required for biosynthesis of 
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oligosaccharides for N-glycosylation. Removal of Sac1 from the ER when nutrients are scarce 

limits the use of these resources and slows passage of glycosylated proteins through the secretory 

pathway. Second, Sac1-dependent depletion of Golgi PI4P halts global secretion, thereby 

conserving cellular material. Nutrient status also appears to regulate Pik1, since it dissociates 

from the Golgi during glucose starvation, coinciding with Sac1 relocation to the Golgi and a 

decrease in Golgi PI4P (Faulhammer et al., 2007). In late log phase or with nutrient deprivation, 

Pik1 shifts from the TGN to the nucleolus or to cytoplasmic puncta, where it forms a complex 

with 14-3-3 proteins (Demmel et al., 2008). 

Sac1 retention in the ER depends on its interaction with the ER transmembrane protein 

dolichol phosphate mannosyltransferase (Dpm1). Sac1 translocation to the Golgi upon starvation 

requires COPII-mediated exit, and in mammalian cells, also requires prior oligomerization of 

Sac1 in the ER (Blagoveshchenskaya et al., 2008). Retrieval of Sac1 back to the ER upon 

addition of glucose requires COPI, and in mammalian cells, requires prior dissociation of Sac1 

oligomers in the Golgi. Curiously, in yeast, the Rer1 adaptor for COPI retrograde transport is 

also required for ER exit of Sac1, although its role in this context is in disruption of the Sac1-

Dpm1 interaction (Faulhammer et al., 2007).  

This effect of nutrient status on PI4P changes in the ER and Golgi appears to be mediated 

by MAPK signaling. Treating NIH3T3 mouse embryonic fibroblasts with FGF and PDGF 

simulates nutrient addition and promotes relocation of Sac1 from the Golgi to the ER, an effect 

eliminated by addition of a p38 MAPK inhibitor (Blagoveshchenskaya et al., 2008). In yeast, 

retrieval of Sac1 from the Golgi to the ER upon glucose stimulation of starved cells requires the 

AMP-activated kinase Snf1 and the MAPK Hog1 (Piao et al., 2012). 

PKC-mediated MAPK pathway activation in yeast occurs in response to nutrient 
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deprivation and other stresses. Recently, inositol starvation was shown to induce MAPK pathway 

activation and an increase in PM PI4P, revealing an interesting link between inositol-containing 

sphingolipid biosynthesis and PI4P signaling (Jesch et al., 2010). This was dependent on Stt4. 

Intriguingly, perturbation of inositol-containing sphingolipid production by other means, even in 

the presence of inositol, also led to Stt4 and PKC pathway stimulation. This suggests that Stt4 

responds to cellular levels of inositol-containing sphingolipids, perhaps PM sphingolipid 

composition. In this context, changes in sphingolipid composition may facilitate formation of 

active Stt4 signaling complexes (PIK patches) (Baird et al., 2008), restrict access of PI4P 

effectors to PM PI4P, or directly alter the activity of Stt4. Interestingly, PI4KIIα is also regulated 

by lipid composition, with membrane cholesterol increasing the mobile fraction of laterally-

diffusing PI4KIIα in the TGN, thereby leading to increased PI4P production (Minogue et al., 

2010). The interdependency of sphingolipid homeostasis and Stt4-regulated PKC pathway 

activation, and of cholesterol metabolism and PI4KIIα activity, remain to be examined. 

 

Type II PI4Ks and communication with other signaling pathways 

PI4P participates in signal transduction not only by providing precursors for PLC and PI3K 

pathways, but also by regulating endosomal trafficking in response to receptor-stimulated 

endocytosis. Type II PI4K activity has long been detected in microsomal membrane fractions 

(Harwood and Hawthorne, 1969; Collins and Wells, 1983; Balla et al., 2002). The finding that 

PI4KIIα is present on vesicles that are secreted in response to external cues, such as synaptic 

vesicles (Guo et al., 2003) and chromaffin granules (Barylko et al., 2001), led to the idea that this 

enzyme plays a role in regulated secretion downstream of receptor activation. However, the 

finding that PI4KIIα also localizes specifically to a pool of insulin-nonresponsive vesicles 
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carrying the glucose transporter GLUT4 suggested a more general role in trafficking that 

supports signaling (Xu et al., 2006). 

Such a role for PI4KIIα can affect the trafficking of many cell surface receptors as well 

as signaling outcomes, as some ligand-receptor complexes continue to signal until they are sent 

to multivesicular bodies (Futter et al., 1996). In mammalian cells, the EGF, transferrin, and 

Angiotensin II receptors were all found to pass through PI4KIIα-positive vesicles. In addition, 

PI4KIIα activity is upregulated upon EGFR activation (Kauffmann-Zeh et al., 1994). 

Knockdown of PI4KIIα in human cell lines leads to accumulation of ligand-bound EGFR in 

small cytoplasmic vesicles, as well as to decreased degradation of EGFR over a two hour period 

(Minogue et al., 2006). The concomitant loss of late endosomes, which are large LAMP1-

positive perinuclear structures, suggested that EGFR signaling complexes fail to traffic along the 

endocytic pathway in the absence of PI4KIIα. Thus, PI4KIIα regulates trafficking downstream 

of early endosomes. The yeast homologue Lsb6 has similarly been implicated in actin-based 

endosome motility. Unlike in mammals, however, its PI4K activity is not required and it is still 

unclear whether Lsb6 facilitates early endosome movement away from sites of endocytosis or 

later stages of endosome motility (Chang et al., 2005; Kim et al., 2006). 

Much less is known about PI4KIIβ, whose properties differ significantly from PI4KIIα in 

that approximately 75% of the enzyme is unpalmitoylated and shows either cytoplasmic or 

peripheral membrane-association (Jung et al., 2008). Only palmitoylated, membrane-bound 

PI4KIIβ is catalytically active and only 25-30% of type II PI4K activity is contributed by this 

enzyme in resting cells (Balla et al., 2002; Jung et al., 2008). The cytosolic pool of PI4KIIβ is 

sensitive to proteasome degradation and is stabilized by binding Hsp90 (Jung et al., 2011). This 

sequestration is released upon stimulation by EGF or PDGF, which results in palmitoylation of a 
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subset of cytosolic PI4KIIβ. This membrane-bound PI4KIIβ subsequently translocates to the PM, 

where it becomes active (Wei et al., 2002; Jung et al., 2011). Relocation of cytosolic PI4KIIβ to 

plasma membrane ruffles was also seen with overexpression of constitutively active Rac. The 

pool of PI4P stimulated by growth factor may regulate early steps of endocytic trafficking since 

PI4KIIβ can be detected on clathrin- and AP-2-containing vesicles (Li et al., 2012b). Thus, it is 

tempting to speculate that PI4P synthesis in early trafficking of some receptors is subject to 

dynamic regulation by PI4KIIβ and that, as endosomes mature, their cargo is sorted in a manner 

that depends on PI4KIIα. 

 PI4KIIα has also been implicated in Wnt signaling in HEK293 cells and in Xenopus 

laevis embryos (Pan et al., 2008; Qin et al., 2009). Activation of the canonical Wnt signaling 

pathway by Wnt3a leads to Dishevelled (Dvl) binding to PI4KIIα and PIP5KI, and increased 

cellular PI4P and PIP2. The rise in PIP2 is required for phosphorylation of the Wnt co-receptor, 

low density lipoprotein receptor-related protein (Lrp) 5/6; co-aggregation of Wnt3a and Lrp5/6 

into signalsomes; and recruitment of clathrin and AP-2 for receptor endocytosis (Kim et al., 

2013). Importantly, knockdown of type IIα PI4K prevented PI4P and PIP2 elevation, Lrp5/6 

phosphorylation, and β-catenin stabilization (Pan et al., 2008). Dvl itself can stimulate PI4KIIα 

activity in vitro, suggesting that PI4KIIα may produce the PI4P precursor to PIP2 in this context. 

Indeed, kinase-dead PI4KIIα greatly reduced endocytosis of the Wnt receptor Frizzled 4 (Fz4) 

(Mossinger et al., 2012). However, PI4KIIα undergoes ubiquitination at multiple sites, and 

expression of PI4KIIα that is unable to bind the E3 ubiquitin ligase Itch only moderately restored 

Fz4 colocalization with early endosome markers. This suggests that PI4KIIα has a ubiquitin-

mediated, non-catalytic role in Fz4 internalization or sorting into early endosomes. Furthermore, 
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siRNA of either PI4KIIα or itch delays lysosomal degradation of Fz4, suggesting that these 

proteins act together in late endosome trafficking. Itch also inhibits PI4KIIα kinase activity 

independently of ubiquitination, which may help to limit Wnt signaling at the cell surface; 

indeed, itch knockdown increases Lrp6 phosphorylation. It would be interesting to know whether 

PI4KIIα kinase activity is required for PIP2 elevation and/or Lrp5/6 phosphorylation. 

The small size of type II PI4Ks and their membrane association by palmitoylation allow 

for dynamic regulation of their localization. Indeed, PI4KIIα may act as a spatial landmark 

connecting Wnt signaling, PIP5KI activity, and PI4P-dependent trafficking, rather than directly 

providing PI4P for PIP2 synthesis. Alternatively, complex formation between PI4KIIα and a 

PIP5K facilitated by a core signaling pathway component such as Dvl may allow for production 

of a pool of PM PIP2 reserved for Wnt signaling, thereby mediating crosstalk between the Wnt 

and PIP signaling pathways. A similar mechanism occurs at the Golgi, where PKD forms a 

complex with PI4KIIIβ and PIP5KI (Nishikawa et al., 1998) that may be important for producing 

a Golgi-specific pool of PIP2, which is known to be present at low levels at this organelle (Watt 

et al., 2002). Monitoring where PIP increases occur in response to signaling in vivo would prove 

useful in deciphering the precise involvement of PI4KIIα in this pathway, and will add to our 

understanding of spatiotemporal control of PI4P.  

 

PI4P regulation by enzyme localization 

In addition to PI4KIIβ, other phosphoinositide enzymes have also been found to shuttle between 

sites. For example, Sac1 is ER-localized during periods of cell growth, but relocalizes to the 

Golgi during periods of starvation where it halts PI4P-dependent secretion (Faulhammer et al., 

2005; see above). The C-terminus of Sac1 is responsible for its ER localization, whereas its N-
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terminus localizes Sac1 to the Golgi. Both type II and type III PI4K activities have been detected 

in the nucleus (Fiume et al., 2012), although little is known about the nuclear type II enzymes. 

Budding yeast Pik1 contains a nuclear localization signal (NLS) and a nuclear export signal 

(NES). Pik1 cycles through three different locales. Phosphorylation at S396 during times of 

nutrient limitation decreases Golgi localization and increases its association with 14-3-3 proteins 

in the cytoplasm, as well as its accumulation in the nucleolus (Demmel et al., 2008). A S396D 

phosphomimetic mutant accumulates to a greater extent in the nucleus, suggesting that 

dephosphorylation may be required for nuclear exit. The Golgi and nuclear functions of Pik1 are 

both essential, since restriction of the enzyme to either the Golgi (by addition of a CAAX box) or 

the nucleus (by deletion of the NES) results in lethality that can be rescued by expression of the 

reciprocal mutant (Strahl et al., 2005). Mammalian PI4KIIIβ and PI4KIIIα have also been found 

in the nucleus. Nucleolar localization of endogenous PI4KIIIα was abolished with DNase or 

RNase treatment of permeabilized rat B50 cells, suggesting that PI4KIIIα complexes with 

nucleic acids (Kakuk et al., 2006). The targets of nuclear PI4P are unknown, although 

undoubtedly a proportion is used to produce nuclear PIP2. The budding yeast PIP5K Mss4 

(Audhya and Emr, 2003) and its mammalian and Drosophila homologues undergo 

nucleocytoplasmic shuttling and have nuclear functions (Cheng and Shearn, 2004; Schill and 

Anderson, 2009). PIP2 has been implicated in a number of nuclear processes, including RNA 

processing, nuclear export, regulation of nuclear actin and chromatin remodeling (Barlow et al., 

2010). In mammals, PIP2 and PIP5Ks are detected in so-called nuclear speckles, interchromatin 

granule clusters that are enriched for pre-mRNA splicing machinery (Boronenkov et al., 1998). 

Notably, the PI4Ks involved in these processes have yet to be identified. 

A requirement for some phosphoinositide kinases in multiple organelles can be explained 
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by shuttling. However, in the case of PI4KIIIα, until recently, there has been a disconnect 

between its apparent location and its site of action. As described above, experiments in yeast and 

mammals point to PI4KIIIα controlling PM PI4P (Audhya and Emr, 2002; Balla et al., 2008). In 

yeast, localization of the PM PI4P marker GFP-Osh2-PH is dependent on Stt4 (Roy and Levine, 

2004). In mammalian cells, PI4KIIIα is required for replenishment of PM PI4P and PIP2 in 

response to PLC activation. In yeast, consistent with its PM role, Stt4 localizes to PM PIK 

patches, which are stable complexes of Stt4 molecules with the accessory proteins Ypp1 and 

Efr3 (Baird et al., 2008). Nonetheless, epitope tagging and immunoelectron microscopy 

indicated that mammalian PI4KIIIα localizes to the Golgi, nucleolus, vacuoles, and 

pericentriolar regions, but not the PM (Balla and Balla, 2006). Immunocytochemistry and cell 

fractionation experiments consistently identified endogenous PI4KIIIα at the ER (Wong et al., 

1997; Balla et al., 2000), but it was still unclear how an enzyme at this location could mediate 

acute responses to signaling at the PM. These discrepancies were recently resolved when a 

conserved ~50 amino acid sequence upstream of the reported translational start site was shown to 

confer targeting of mammalian PI4KIIIα to the PM (Nakatsu et al., 2012). Total internal 

reflection fluorescence (TIRF) microscopy revealed that full length GFP-PI4KIIIα exhibits 

dynamic localization at the cell surface, with abundant puncta transiently appearing at the PM. 

Consistent with a role for PI4KIIIα at the PM, ER-PM contact sites known to be dependent on 

PI4P and the ER protein stromal interacting molecule 1 (STIM1) were greatly reduced in 

PI4KIIIα-knockout MEFs. In addition, pre-association of mouse Ypp1 (TTC7B) and Efr3 

(EFR3B) at the PM was necessary for targeting of PI4KIIIα to this site.  

In mammals, regulation of PI4P signaling at the PM is shaping up to be more dynamic 

than expected, requiring continuous recruitment of PI4KIIIα, perhaps from the ER (see below). 
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One potential moderator of PI4KIIIα dynamics is With no lysine 1 (WNK1), a serine/threonine 

protein kinase that regulates many ion transporters. WNK1 was shown to stimulate DAG-

activated TRPC6 channels in a kinase-independent but PLC- and PI4KIIIα-dependent manner 

(An et al., 2011). Interestingly, WNK1 promoted PI4P production as well as association of 

PI4KIIIα with membrane, suggesting that WNK1 regulates PI4KIIIα localization.  

Mammalian PI4KIIIα localization is reminiscent of findings for PI synthase (PIS), the 

enzyme that catalyzes addition of myo-inositol to CDP-DAG to generate PI as part of the 

phosphoinositide cycle. Although its synthesis is associated with the ER, PI must be made 

available for PI4Ks in different cellular compartments. Recently, the Balla laboratory discovered 

that the vast majority of enzymatically active PIS is found on a novel system of highly mobile 

vesicles, the formation of which is dependent on the ER membrane remodeling GTPase and 

COPII nucleator Sar1 (Kim et al., 2011). This population of vesicles can be separated from 

heavier ER membranes using a shallow fractionation gradient. In addition, by cell imaging, the 

vesicles did not colocalize with typical ER, Golgi or endosomal markers. Photoactivation of PIS 

fused to photoactivatable GFP in the perinuclear ER generates a similar highly mobile pool of 

vesicles emanating from this compartment. In addition, PIS-positive vesicles were seen to make 

contact with STIM1-positive ER-PM sites, although no fusion events were detected. 

Interestingly, this dynamic PIS pool is also associated with CEPT1, an enzyme that converts 

DAG to phosphatidylethanolamine or phosphatidylcholine (English and Voeltz, 2013). PIS and 

CEPT1 colocalize with Rab10 at the tip of ER tubules, which are reduced upon treatment with 

Rab10 siRNA or expression of GDP-locked Rab10. Thus, phospholipid synthesis may be 

coordinated on a common, dynamic membrane platform. Colocalization of PI and PI4KIIIα on 

ER-derived vesicles has yet to be demonstrated, but it is possible that synthesis and delivery of 
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PI may be coupled to the provision of PI4KIIIα in a common mobile compartment. It is currently 

unknown how PI, or PI4P, would be transferred from these vesicles into the PM, or whether as 

yet unidentified PITPs are required for this process. 

ER-PM contact sites are emerging as important locales for PI4P metabolism. Research 

from fission yeast suggests that the iconic, reticular nature of ER results from the necessity of 

ER-PM contacts (Zhang et al., 2012a). At these sites in mammalian cells, PI4P regulates calcium 

entry through the STIM1/Orai1 complex when intracellular stores are depleted (Korzeniowski et 

al., 2009; Walsh et al., 2010). Recent data in budding yeast suggest Sac1 is involved in forming 

ER-PM contact sites. Sac1 is associated with the ER and Golgi and, similar to the conundrum for 

PI4KIIIα, it was not clear how it controls PM PI4P (Foti et al., 2001). Osh proteins are thought 

to mediate this process by detecting PM PI4P, either via PH domains (for Osh1-3) or ORD 

domains, and tethering peripheral ER membranes to these PI4P patches through interaction of 

their FFAT motifs with ER VAP proteins Scs2/22 (Stefan et al., 2011). Yeast cells mutant for 

Osh proteins or Scs2/22 accumulate excess PM PI4P, suggesting these proteins may promote 

Sac1 activity at ER-PM contact sites, where it could potentially act in trans on PM PI4P. A 

possible role for Sac1 in dephosphorylating PI4P in trans has also been postulated for ER-early 

Golgi contact sites (Wood et al., 2012). In support of this idea, the ORD domains of Osh3 and 

Osh4 stimulate Sac1 turnover of PI4P in trans when incubated with PI4P-containing liposomes 

(Stefan et al., 2011). However, since Osh4 transfers PI4P between liposomes (de Saint-Jean et al., 

2011), an alternative possibility is that in vivo, Osh3/4 could deliver PI4P to the ER, where it 

could be consumed by Sac1 in cis. In any case, PI4P-binding by Osh3/4 is a prerequisite for 

ORD stimulation of Sac1, suggesting that a key role for Osh proteins is to mediate substrate 

presentation to Sac1 (Stefan et al., 2011). Importantly, the Sac1-containing ER-PM sites form in 
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response to high PM PI4P. Hence, these interactions constitute feedback regulation. A functional 

relationship between Drosophila Sac1 and DVAP in modulating PI4P levels was also identified 

in the control of neuromuscular morphology and neurotransmission (Forrest et al., 2013). It will 

be interesting to see if this interaction requires Drosophila OSBP.  

As it turns out, mechanisms regulating PM PI4P may have more in common than 

originally anticipated. Although Stt4 is stably localized to PIK patches on the yeast PM, it 

contains an FFAT motif (Nakatsu et al., 2012) that could potentially bind to ER VAP proteins, 

thereby regulating ER-PM junctions. Indeed, Stt4 co-precipitates with Scs2 (Gavin et al., 2002). 

Mammalian PI4KIIIα contains a partially conserved FFAT motif, leaving open the question of 

whether its access to the PM is similar to ER-PM contact sites in yeast, involving tethering of 

tubular ER, or more similar to that of mammalian PIS, via delivery by a highly mobile ER-

derived vesicular population. 

These developments highlight the regulation of PM PI4P at specific organelle contact 

sites and suggest that organelle-specific enrichment of phosphoinositides is not simply achieved 

by restricted localization of phosphoinositide-generating enzymes. A dynamic method of PM 

PI4P accumulation holds important implications for PI4P signaling. Whether the sites of PI/PI4P 

deposition are regulated and how this regulation is coordinated with PI4P effectors remain to be 

seen.  

 

Regulation by Calcium 

Support for the idea of dynamic regulation of PI4P production comes from the ancient and 

conserved physical interaction between homologues of PI4KIIIβ and members of the neuronal 

calcium sensor (NCS) family of proteins, Frequenin (Frq)/NCS-1. Intracellular calcium levels 
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frequently rise in response to signaling downstream of receptor stimulation. Thus, coupling PI4K 

activity with calcium suggests a mechanism to control PI4P production in response to 

physiological changes. In yeast and mammalian cells, this interaction is required for many types 

of PI4P-dependent secretion.  

Frq was first identified in Drosophila due to its ability to increase neurotransmitter 

release when overexpressed (Pongs et al., 1993). This effect was also demonstrated in frogs 

(Olafsson et al., 1995) and mammals (McFerran et al., 1998; Pan et al., 2002). The high level of 

conservation between Frq/NCS-1 homologues was shown in rescue experiments, where yeast 

frq1 mutants could be suppressed through expression of frog or human NCS-1 (Hendricks et al., 

1999; Strahl et al., 2003). NCS family proteins are less than 30 kDa in size and contain four 

calcium-binding EF-hand motifs. Direct binding and stimulation of PI4KIIIβ activity by 

Frq1/NCS-1 has been demonstrated in yeast and mammalian cells (Hendricks et al., 1999; Weisz 

et al., 2000; Zhao et al., 2001; Haynes et al., 2005). Overexpression of Pik1 rescues frq1ts 

mutants at restrictive temperature and vice versa, whereas pik1ts and frq1ts show synthetic 

lethality (Hendricks et al., 1999; Huttner et al., 2003). Removing elements required for optimal 

binding to each other (myristoylation of Frq1 or the N-terminal LKU domain of Pik1) reduced 

the ability of one protein to rescue a temperature-sensitive mutant of the other.  

In mammalian cells, the NCS-1- PI4KIIIβ interaction has been studied in models of 

regulated and constitutive exocytosis. One model is the ATP-dependent activation of purinergic 

receptor signaling that results in release of dense core granules in PC12 neuroendocrine cells. 

The purinergic receptor is coupled to PLC, which, through hydrolysis of PIP2 and formation of 

second messengers following stimulation, leads to a rise in intracellular calcium. In these cells, 

NCS-1 normally binds and stimulates PI4KIIIβ activity to promote secretion when intracellular 
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calcium levels rise. Overexpression of NCS-1 that cannot be myristoylated prevented the 

stimulatory effect of overexpressed PI4KIIIβ on secretion, and siRNA knockdown of PI4KIIIβ 

prevented NCS-1-stimulated exocytosis in evoked cells (de Barry et al., 2006). In addition, the 

PI4K inhibitor PAO prevented ATP-evoked exocytosis, but overexpression of NCS-1 overcame 

this effect (Rajebhosale et al., 2003). Indeed, PI4KIIIβ has been suggested to act downstream of 

NCS-1 in both regulated and constitutive exocytosis in a variety of cell types (Weisz et al., 2000; 

Koizumi et al., 2002; Kapp-Barnea et al., 2003; Gromada et al., 2005; de Barry et al., 2006). 

Calcium regulation of PI4KIIIβ-dependent secretion by Frq1/NCS-1 is thought to occur 

via a calcium-to-myristoyl switch, as initially proposed for the related NCS family protein 

recoverin (Ames et al., 1997; Ames and Lim, 2012). Ca2+ binding to NCS-1 induces a large 

conformational shift in the protein (Cox et al., 1994; McFerran et al., 1999), allowing for 

increased membrane association via a more extruded N-terminal myristoyl group (Ames et al., 

2000). The conformational shift also exposes two large hydrophobic crevices that interact with 

PI4KIIIβ (Lim et al., 2011), thus making membrane-bound NCS-1 more efficient in anchoring 

PI4KIIIβ. Indeed, PI4KIIIβ activity was stimulated by Frq1/NCS-1 three- to ten-fold in yeast 

(Hendricks et al., 1999), and in a dose-dependent manner in COS-7 cells (Zhao et al., 2001). 

Oddly, in contrast to what is predicted by the calcium-to-myristoyl switch, localization of 

myristoylated NCS-1 and its interaction with PI4KIIIβ does not depend on Ca2+ binding in vivo 

(Hendricks et al., 1999; Zhao et al., 2001). However, Ca2+ binding does enhance PI4K activity 

(Zhao et al., 2001; Haynes et al., 2005), possibly by forcing a conformational change in PI4KIIIβ 

(Strahl et al., 2007).  

Additional roles for calcium in fine-tuning PI4P accumulation and localization come 

from identification of Arf1, a PI4KIIIβ interactor, as an NCS-1 binding partner in bovine brain 
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cells (Haynes et al., 2005). Although both proteins partially colocalize with PI4KIIIβ at the TGN, 

a complex of all three could not be detected under conditions that allow Arf1-NCS-1 binding, 

which occurs with or without Ca2+. Curiously, although Arf1 increases PI4KIIIβ activity by 

125% above basal levels in in vitro kinase assays, and NCS-1 increases PI4KIIIβ activity by 

70%, when both regulators are incubated in the presence of Ca2+, kinase activity was reduced 

below the level elicited with either protein alone. This suggests a regulatory network in which 

PI4KIIIβ is efficient at producing PI4P only in the presence of either Arf1 or Ca2+-bound NCS-1, 

but not both. Therefore, membrane sites occupied by both regulators serve as PI4KIIIβ-inactive 

zones so that Arf1- and Ca2+-dependent pathways do not interfere with each other, and these 

zones act as boundaries demarcating pools of PI4P dedicated to either Arf1-mediated secretion 

or Ca2+-dependent NCS-1 signaling. In support of this, overexpressed NCS-1 interferes with 

formation of the activated Arf1Q71L tubular Golgi phenotype, and overexpression of Arf1 

abolishes Ca2+-dependent NCS-1 stimulation of secretion in PC12 cells (Haynes et al., 2005). 

Thus, precise and dynamic regulation of separate pools of PI4P is crucial even within the same 

organelle and when produced by the same PI4K. Importantly, effective mechanisms exist to link 

spatial regulation of PI4P to different signaling pathways. 

 Adding another layer of regulation to Ca2+-induced PI4P-mediated secretion is the 

inhibitory effect of calcium sensor proteins calneuron-1 and calneuron-2 on PI4KIIIβ activity 

(Mikhaylova et al., 2009). Under low Ca2+ conditions, the calneurons outcompete NCS-1 for 

binding to PI4KIIIβ and strongly inhibit PI4P production. At high Ca2+ concentrations, 

calneurons relinquish PI4KIIIβ to NCS-1, possibly due to unfolding of calneurons upon Ca2+ 

binding. Calneuron-1 affects secretory traffic in a manner consistent with its effects on PI4P 

levels because in primary cortical neurons, RNA interference (RNAi) mediated knockdown of 
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calneuron-1 increases Golgi to axonal PM trafficking of the synaptic vesicle marker mCherry-

Synaptophysin in fluorescence recovery after photobleaching experiments. Overexpression of 

Calneuron-1 has the opposite effect. Interestingly, the related protein Caldendron has no effect 

on PI4KIIIβ activity, indicating that the enzyme is regulated by a specific set of calcium sensors. 

In Arabidopsis, interaction between the Pik1 homologue and calcium sensors plays a role 

in root hair tip development. Members of the calcineurin B-like (AtCBL) family of proteins 

detect changes in intracellular calcium and their expression is either induced or repressed in 

response to various environmental stresses to regulate downstream gene expression (Albrecht et 

al., 2003; Cheong et al., 2003). In addition, a tip-focused calcium gradient is essential for growth 

of root hair cells and pollen tubes (Li et al., 1999; Akimana et al., 2009; Cardenas, 2009), 

processes that depend on polarized membrane trafficking of Golgi-derived vesicles (Samaj et al., 

2006). These two requirements for root hair tip growth were integrated with the discovery that 

AtCBL1 binds to an amino-terminal domain of AtPI4KIIIβ1 (Preuss et al., 2006). Abolishing the 

calcium gradient with an ionophore led to inhibition of tip growth and dispersal of tip-localized 

RabA4b/Rab11-positive post-Golgi compartments. PI4KIIIβ1 colocalizes with and physically 

binds EYFP-RabA4b, similar to their mammalian counterparts. PI4KIIIβ1/β2 double mutant 

plants have short and aberrant root hairs and fewer distinct TGN budding profiles visualized by 

transmission electron microscopy. Thus, a model emerges whereby the tip-focused calcium 

gradient, via AtCBL1, directs PI4KIIIβ1 to sites of membrane growth, where it produces PI4P 

required for directed post-Golgi trafficking.  

 

Extracellular PI4P 

Curiously, in plants, treatment with fungal xylanase, a potent activator of plant defenses, induces 
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a rise in extracellular PI4P in tomato cell suspensions, which is then responsible for an 

intracellular burst of reactive oxygen species (Gonorazky et al., 2008). Oxidative burst is an 

early response to pathogen recognition and is thwarted with a PLC inhibitor (Gonorazky et al., 

2010). Uptake of this extracellular PI4P was observed, although instead of conversion to PIP2, 

metabolism to PI was detected, leading the authors to suggest that PLC may hydrolyze PI4P in 

this system. Extracellular PI4P, along with several other phospholipids, was also found in the 

intercellular space of tomato plants under basal conditions (Gonorazky et al., 2012). Microarray 

analysis showed that application of extracellular PI4P to Arabidopsis induced expression of 

genes required for environmental defense responses (Alvarez-Venegas et al., 2006), together 

suggesting that PI4P may function in cell-to-cell communication in plants under both normal and 

stress conditions.  

 

PI4P in Health and Disease 

Phosphoinositide regulation is involved in numerous aspects of human health and disease 

(McCrea and De Camilli, 2009; Skwarek and Boulianne, 2009). PI4KIIIα is situated at 

chromosomal 22q11.2, deletion of which has been associated with higher susceptibility to 

psychiatric conditions such as bipolar disorder, autism, and schizophrenia (Clayton et al., 2013). 

Reduced PI4KIIα activity has been correlated with Alzheimer’s disease (Zubenko et al., 1999; 

Wu et al., 2004). Various PI4Ks are upregulated in polycystic kidney disease (Cuozzo et al., 

2002), malignant melanoma, breast ductal carcinoma, pancreatic cancer and others (Waugh, 

2012). Also, the PI4P effector GOLPH3 is an oncogene (Scott et al., 2009; Kunigou et al., 2011; 

Li et al., 2011; Zeng et al., 2012) associated with poor clinical outcome (Hua et al., 2012; Li et 

al., 2012a; Wang et al., 2012; Hu et al., 2013). Thus, an optimal balance of PI4K activity is of 
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great physiological importance. 

 PI4P regulation and membrane trafficking are key targets in pathogen invasion. PI4P 

metabolism is subverted during bacterial infections. Type II PI4Ks and AP-1 are required for 

Listeria monocytogenes phagocytosis, and PI4P is found at the entry site in HeLa cells (Pizarro-

Cerda et al., 2007). Formation of intracellular vacuolar replication complexes by various 

Chlamydia species requires PI4KIIα and Arf1, which are detected on the vacuole along with 

GFP-OSBP-PH (Moorhead et al., 2010). Upon infection, Legionella pneumophila establishes a 

replication vacuole, the Legionella-containing vacuole (LCV), and avoids fusion with lysosomes 

by intercepting and fusing with ER-derived vesicles, disguising the LCV with host markers. The 

Legionella proteins SidC and DrrA/SidM are released into the host cytoplasm via the type IV 

Icm/Dot secretion system. Once cytoplasmic, these proteins bind PI4KIIIβ-dependent PI4P on 

the LCV (Brombacher et al., 2009). The Rab1 GEF domain of DrrA and the N-terminal region of 

SidC are then able to misdirect ER vesicles en route to the Golgi by binding to Rab1 and 

calnexin, respectively (Ragaz et al., 2008; Brombacher et al., 2009). 

 Cellular PI4Ks and PI4P are also co-opted by positive-sense RNA viruses, including 

hepatitis C virus (HCV), coxsackievirus, and poliovirus (Alvisi et al., 2011; Altan-Bonnet and 

Balla, 2012; Bishe et al., 2012a; Delang et al., 2012). These viruses induce formation of PI4P-

enriched ‘membranous webs’ derived of ER and other cellular membranes, which serve as 

platforms for viral replication. In genome-wide and targeted siRNA screens, PI4KIIIα was 

identified as a host factor required for HCV replication and membranous web formation (Berger 

et al., 2009; Borawski et al., 2009; Vaillancourt et al., 2009; Reiss et al., 2011). The HCV 

nonstructural protein 5a (NS5A) interacts with and stimulates PI4KIIIα activity at replication 

sites (Berger et al., 2011; Lim and Hwang, 2011; Reiss et al., 2011). Knockdown of PI4KIIIα 
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abrogates replication and leads to clusters of NS5A instead of the reticular distribution seen 

during competent infections.  

 Involvement of PI4KIIIβ in HCV replication is debated, with some groups reporting that 

it is required (Borawski et al., 2009; Zhang et al., 2012b) and others that it is not (Arita et al., 

2011; Berger et al., 2011). This inconsistency may be due to the study of distinct HCV genotypes 

and the use of different assays in each case (Bishe et al., 2012a). PI4KIIIβ may be hijacked at 

other time-points in the virus life cycle (Tai and Salloum, 2011). Assembled and infectious viral 

particles are thought to be released via the very low density lipoprotein (VLDL) secretion 

pathway, and HCV transit through the Golgi, tightly coupled with Apolipoprotein E, has been 

visualized in live cells (Coller et al., 2012). Knockdown of PI4KIIIβ, Rab11a, GOLPH3, or 

MYO18A leads to retention of HCV particles in the cell, as does expression of Golgi-targeted 

Sac1, suggesting that Golgi PI4P and its effectors are required for virus secretion (Bishe et al., 

2012b; Coller et al., 2012). It has also been suggested that PI4KIIIβ is required for clathrin-

mediated endocytosis of some HCV strains, although PI4KIIIα was similarly implicated in this 

process (Trotard et al., 2009). Compounds that inhibit PI4KIIIα and HCV web formation show 

promise as potential therapeutics (Bianco et al., 2012; Vaillancourt et al., 2012), as do those 

targeting PI4KIIIβ to halt poliovirus and coxsackievirus replication (Hsu et al., 2010; van der 

Schaar et al., 2012). However, viruses were still able to evolve resistance to compounds targeting 

these host factors (Arita et al., 2011; Vaillancourt et al., 2012; van der Schaar et al., 2012), which 

remains a current challenge in deploying PI4K inhibitors as antiviral therapeutic agents. 

 

Concluding Remarks and Future Perspectives 

The wealth of new information regarding the versatile roles of PI4P has brought us a long way 
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from the notion that this lipid functions mainly as a precursor to higher phosphorylated inositides. 

Certainly, PI4P conversion to PIP2 is essential for PLC signaling, and likely also for PIP3 

signaling; however, the bona fide independent roles for PI4P are more numerous than previously 

suspected, involving many aspects of membrane trafficking, including budding, tubulation, 

scission, linkage to motors, docking, fusing, sorting, and establishing membrane identity. These 

discoveries bring new questions, and the next wave of research will focus on regulators that 

govern specific PI4P-dependent processes. Furthermore, whereas many of the cellular roles for 

PI4P have been identified at the ER and Golgi, independent roles for PI4P on other membranes, 

such as endosomes, lysosomes and the PM, are emerging.  

A broad but important question is what determines functional specificity of PI4P pools 

derived from different PI4Ks at the same organelle. Aside from the catalytic commonality of 

their kinase domains, the N-termini of PI4K isoforms are unique, and a non-overlapping set of 

PI4K binding partners may preclude compensation by other isoforms. Unique partnerships with 

Rabs present ways to turn PI4P signaling on or off, as do interactions with activators that are 

mutually exclusive and jointly inhibiting, as in the case of Arf1, NCS-1, and PI4KIIIβ. In 

addition, because recent developments illustrate the interdependencies of phosphoinositide and 

sphingolipid metabolism, PI4K isoform-specific control of cholesterol and sphingolipid 

composition may be relevant in feedback mechanisms defining compartments for PI4K-specific 

signaling events and regulation of PI4K activity. Uncovering the full web of proteomic and lipid 

interactions for each PI4K will help elucidate isoform-specific mechanisms and provide insight 

for the development and treatment of diseases resulting from their dysfunction. 

Future studies on PI4P regulation in animal systems will be valuable to this end, as roles 

for PIP enzymes revealed by RNAi approaches in tissue culture do not always predict the 
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phenotypes revealed by knockout in cells or organisms. The phenotypes can be either milder or 

stronger than predicted. For example, whereas essential trafficking roles at the TGN were 

reported for PI4KIIα in cultured cells, PI4KIIα mutant mice are born healthy and survive 

without obvious phenotypes prior to developing late-onset neurodegeneration. In contrast, a 

crucial role for PI4KIIIα in PM integrity and steady state PIP2 (similar to what was observed in 

PI4KIIIα mutant flies) was discovered using a knockout approach in the MEF cell line, after 

treatment of other cell lines with PI4KIIIα siRNA had little effect. The observed differences are 

likely due to off-target effects or incomplete knockdown associated with siRNA. Studies in 

whole organisms will be of critical importance as new roles for PI4P and PI4Ks in human 

diseases continue to be revealed, and as drug candidates targeting these pathways need to be 

validated in physiologically relevant contexts.  

Although PI4P regulation is known to affect many signaling pathways, including Wnt, 

FGF, EGF, Hh, and Hippo signaling, we are only beginning to uncover mechanisms governing 

crosstalk and regulation. Recent discoveries of dynamic regulation of PI4P levels, including 

frequent transient contacts of PI4KIIIα with the PM, hint that this system may be more 

complicated than expected. Future research focusing on intersection of pathways regulating PI4P 

will lead to greater mechanistic understanding of a multitude of specific cellular processes, as 

well as a greater understanding of the molecular role for PI4P in cell homeostasis and organismal 

health. 
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