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Zernike–Bessel representation and its
application to Hankel transforms
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The duality between the well-known Zernike polynomial basis set and the Fourier–Bessel expansion of suit-
able functions on the radial unit interval is exploited to calculate Hankel transforms. In particular, the Hankel
transform of simple truncated radial functions is observed to be exact, whereas more complicated functions
may be evaluated with high numerical accuracy. The formulation also provides some general insight into the
limitations of the Fourier–Bessel representation, especially for infinite-range Hankel transform pairs. © 2007
Optical Society of America
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. INTRODUCTION
ankel transforms naturally arise from the evaluation of
two-dimensional Fourier transform with radial symme-

ry. Since the imposition of exact or approximate radial
eometry is ubiquitous in Fourier-transform-based optical
ropagation, Hankel transform techniques remain an im-
ortant analytical and numerical tool in these investiga-
ions. More specifically, the integral pth-order Hankel
ransforms are the coefficients in the radial Fourier de-
omposition of a given function

f̂�u,v� = �
p=−�

�

ipf̂p���exp�ip��, �1�

here u=� cos��� ,v=� sin��� are radial coordinates,
�u ,v� is the Fourier transform of the given function
�x ,y�, and

f̂p��� = 2��
0

�

fp�r�Jp�2�r��rdr, �2�

ith the usual notation for the integral pth-order Bessel
unctions, Jp�z�.1 The inverse transform is of course sym-

etric:

fp�r� = 2��
0

�

f̂p���Jp�2��r��d�. �3�

Some of the most demanding applications of the Han-
el transform occur in computational optical sectioning
icroscopy, where rapidly varying sweep signals and pu-

il functions pose severe accuracy and timing challenges
or existing numerical techniques. These approaches have
een recently reviewed, applied, and, in some cases,
xtended.2 As emphasized in this earlier work, consider-
ble care is required to obtain numerical accuracy from
ny of the many competing algorithms. The difficulties
hat remain with the evaluation of this class of highly os-
illatory functions, though, motivate the present investi-
ation.
1084-7529/07/061609-8/$15.00 © 2
In the method proposed here, the duality between the
ell-known Zernike polynomials3 and the Bessel func-

ions on the radial unit interval is exploited to produce
ighly accurate expressions for the Hankel transforms of
unctions truncated on this interval. The duality arises
rom the observation that a series expansion of suitable
unctions in terms of Zernike polynomials is simply re-
ated to the corresponding Fourier–Bessel series. Since
oth basis sets are complete, a given function may be ex-
anded in terms of either series and, in particular, a
pecified-order Bessel function has a convergent series
epresentation in terms of Zernike polynomials that pro-
ides an alternate form of the associated Hankel trans-
orm. Conversely, the Hankel transform of a polynomial
unction restricted to the unit interval is represented ex-
ctly by the corresponding Bessel function. An interesting
umerical aspect of the Zernike and Fourier–Bessel se-
ies duality is the utility of the often rediscovered discrete
ersion of the Fourier–Bessel series.4–8 In this expansion,
he roots of a given-order Bessel function become the
uadrature points of the integral evaluation, which has
he important numerical property of preserving the in-
erse Hankel transform to the same accuracy as the di-
ect transform.

In the following section, the general formalism is
riefly described. The subsequent sections detail applica-
ions of this formalism to the evaluation of Hankel trans-
orms of finite-range functions such as the generalized
op-hat functions and their inverses; the highly oscilla-
ory sweep signal and pupil function Hankel transforms
n Markham2; and the infinite-range Hankel transforms,
uch as the sinc function. The final section concludes the
resentation with a discussion of the limitations of the
eneral formalism, especially with respect to the intrinsi-
ally infinite -range Hankel transform.

. ZERNIKE–BESSEL REPRESENTATION
he Zernike polynomials are important in optical physics
ue to their convenient representation of the various lens-
007 Optical Society of America
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iffractive aberration terms. This set of polynomials is
pecifically constructed to be a complete, orthogonal set
n the unit radial interval3

�
0

1

Rn
l ���Rn�

l ����d� =
1

2�n + 1�
�nn�, �4�

here Rn
l ��� denotes the Zernike polynomial of integer or-

er n and integer degree l as a function of the radial vari-
ble �. The Zernike polynomials are a special case of the
acobi polynomials,3,9

Pn�
��,���x� = �− 1�n�

Rn
l ���

��
, �5�

here Pn�
��,���x� are the standard Jacobi polynomials10

ith x=1−2�2 ,�=0,�= l, and n�= �n− l� /2. Since the
ernike polynomials are related directly to the Jacobi
olynomials, they possess both three-term recurrence re-
ationships for both degree and order and may be numeri-
ally integrated with Gaussian quadrature points and
eights. Their oscillatory behavior for large order, how-
ver, often complicates their numerical application.9

Recall that the Fourier–Bessel series expansion ex-
resses some suitable function, f���, on the radial unit in-
erval in terms of a Bessel function of fixed order, Jl���,
hose argument is scaled by the positive zeros of that
essel function, �lm,

f��� = �
m=1

� 2cm

Jl+1
2 ��lm�

Jl��lm��, �6�

here the coefficients, cm, are determined by the overlap
ntegrals

cm =�
0

1

f���Jl��lm���d�. �7�

hese coefficients are recognizable as the Hankel trans-
orm of order l for the function f��� evaluated at the Bessel
unction roots. Applying the Fourier–Bessel expansion to
fixed-degree Zernike polynomial produces

Rn
l ��� = 2�− 1��n−l�/2 �

m=1

� Jn+1��lm�

�lmJl+1
2 ��lm�

Jl��lm��, �8�

sing the explicit form of the overlap integral in Eq. (7)
etween Zernike and Bessel functions3

�
0

1

Rn
l ���Jl�k���d� = �− 1��n−l�/2

Jn+1�k�

k
. �9�

onversely, using the completeness of the Zernike polyno-
ials, any suitable function may be expanded on this in-

erval as

f��� = �
n=l

�

2�n + 1�bnRn
l ���, �10�

here the necessary overlap coefficients are

bn =�
0

1

f���Rn
l ����d�. �11�
Summarizing this development, two expansions, Eqs.
6) and (7), express the function f��� in terms of either the
essel functions or the Zernike polynomials. The two co-
fficient sets, bn and cm, may be expressed in terms of
ach other by using the respective orthogonality of the ba-
is sets. That is, starting from

f��� = �
n=l

�

2�n + 1�bnRn
l ��� = �

m=1

� 2cm

Jl+1
2 ��lm�

J1��lm��,

�12�

ultiplying by Rn�
l ���, and integrating over the radial unit

nterval, the coefficients bn are

bn = �− 1��n−l�/2 �
m=1

�

cm

Jn+1��lm�

�lm
, �13�

here the coefficients cm are the Hankel transforms
valuated at the Bessel zeros. Correspondingly, the coef-
cients cm may be expressed in the form

cm = Jl+1
2 ��lm��

n=l

�

�− 1��n−l�/22�n + 1�bn

Jn+1�2��lm�

2��lm
.

�14�

For example, specializing to the case of f���=Jl�k�� pro-
uces an interpolation formula for a given Bessel function
n terms of Zernike polynomials

Jl�k�� = �
n=l

�

�− 1��n−l�/22�n + 1�
Jn+1�k�

k
Rn����, �15�

ith the specific choice k=�lm yielding

Jl��lm�� = �
n=l

�

�− 1��n−l�/22�n + 1�
Jn+1��lm�

�lm
Rn����. �16�

his last series expansion displays the expected duality
etween the Zernike polynomial basis set and the
ourier–Bessel basis set. It is also interesting to note that

hese expressions provide an alternate polynomial expan-
ion of an integral-order Bessel function.

Likewise, a few special cases of these series expressions
ay be noted. When n= l�0, the Zernike polynomial be-

omes a monomial, Rn
n���=�n, and Eq. (8) reduces to

�n = 2�
m=1

� Jn��nm��

�nmJn+1��nm�
, �17�

hich is a well-known representation.11 Thus the general-
rder top-hat function may be expressed in a Fourier–
essel series that will be immediately relevant to the
ankel transform applications below. Although this se-

ies representation is uniformly convergent for 0��	1, it
oes not converge at �=1, which is simply verified by in-
erting this value and obtaining a contradiction. Of
ourse the series will be numerically poorly behaved near
his end point—an aspect of the Fourier–Bessel expan-
ion that is often overlooked. This deficiency is easily rem-
died by applying the Dini series representation12 to ob-
ain a uniformly convergent expansion for the entire
nterval with consequent superior numerical perfor-

ance. This point will be revisited below.
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Some simple summation formulas, relevant to discrete
ankel transform applications, follow from Eq. (8). Spe-

ifically, by multiplying this expression by Rn�
l ���, inte-

rating over the radial interval, and using the orthogonal-
ty of the Zernike polynomials, the equality

�nn�

2�n + 1�
= 2�

m=1

� Jn+1��lm�Jn�+1��lm�

�lm
2 Jl+1

2 ��lm�
�18�

rises. The special case n=n�= l leads to

1

4�n + 1�
= �

m=1

� 1

�nm
2 . �19�

ummation expressions of this type might be useful to es-
imate the number of series terms needed for a requested
evel of numerical accuracy.

. FINITE-RANGE TRANSFORMS
he Bessel–Zernike representation provides insight into
he evaluation of finite-range transforms; that is, the
ankel transform of a function that is exactly truncated

n the unit radial interval. A simple example would be the
eneralized “top-hat” function defined as fp�r�=rp�H�r�
H�r−1��, where H�r� is the Heaviside step function. As
oted above, the monomial rp is just the particular
ernike polynomial with n= l=p, so its Hankel transform

s immediately obtained from Eq. (9):

f̂p��� =
Jp+1���

�
, �20�

hich is, of course, the exact value. An examination of the
nverse Hankel transform reveals a connection with the
iscretization technique used in the quasi-discrete Han-
el transform representation.5,8 Consider the Fourier–
essel series coefficients of Eq. (7) in this case,

cm =�
0

1 Jp+1���

�
Jp��pm���d�, �21�

here the original infinite interval has been suitably
runcated and scaled to the unit interval. Approximating
hese overlap coefficients by

cm �
Jp+1��pm�

�pm
�22�

nd inserting them into Eq. (6) produces

fp�r� � 2�
m=1

� Jp��lmr�

�pmJp+1��lm�
, �23�

hich is recognized as an approximation of the original
th-order Zernike monomial in Eq. (17).
As mentioned previously, the Fourier–Bessel series

epresentation is uniformly convergent on the interval 0
r	1 and obviously fails at r=1. Numerically, the sum-
ation must be truncated and convergence will be poor in

his neighborhood. A modification of this series, due to
ini,11,12 leads to uniform convergence over the entire in-
erval and much-improved numerical behavior near r=1.
riefly, the Fourier-Bessel representation of Eq. (6) is re-
laced by

f��� = �
m=1

�

2dmJl��lm��, �24�

here the Dini coefficients are

dm = �lm
2 ��lm

2 �Jl���lm��2 + ��lm
2 − l2�


�Jl��lm��2	−1�
0

1

tJl��lmt�f�t�dt, �25�

nd the values �lm are the positive roots of tJl��t�+aJl�t�
0. There is some flexibility in the choice of the �lm since

he value of a is somewhat arbitrary. For example, the
hoice a+ l=0 leads to the condition Jl+1��lm�=0, and the
lm are no more difficult to obtain than the original
ourier–Bessel roots. However, this choice must be ac-
ompanied by an additional term to handle a pole at the
rigin,12 which might be numerically difficult to evaluate
n general cases. This problem may be avoided by choos-
ng a=0 so that the values are determined by

l���lm�=0,13 which also simplifies the denominator in Eq.
25). As an example, the Fourier–Bessel series of Eq. (17)
ay be compared with the analogous Dini series, which
as the explicit form

�n = 2�
m=1

� �nmJn+1��nm�Jn��nm��

��nm − n2�Jn
2��nm�

. �26�

umerically, this series representation is superior to the
ourier–Bessel expression of Eq. (17). For the specific, ar-
itrary choice of n=3, the logarithm of the absolute differ-
nce between the exact function, r3, and the two series
epresentations is plotted in Fig. 1 when both series are
runcated to 512 terms. The error associated with the
ini series is approximately 3 orders of magnitude

maller than the Fourier–Bessel error over the entire in-
erval and, as expected, is much more accurate at the end
oint.
An especially challenging finite-range Hankel trans-

orm has been identified by Markham and Conchello2 in

ig. 1. Logarithm of the absolute difference between the exact
esult and the Fourier–Bessel series (upper curve) and the Dini
eries (lower curve) plotted near the unit interval end point.
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heir consideration of the numerical evaluation of the
ero-order transform of an oscillating sweep signal with
he functional form

f�r� = sin
 �d

b − a�� r�b − a�

d
+ a
2

− a2�� , �27�

here a=5,b=40, and d=1 on the unit radial interval;
he function vanishes for r�1. Applying Eqs. (10) and (11)
o evaluate the zero-order transform leads to

f̂0�r� = 2��
n=0

�

�− 1�n/2
Jn+1�2�r�

2�r
2�n + 1��

0

1

f���Rn
0����d�,

�28�

hich reexpresses the transformed function as a series of
essel functions, thus accounting for the observed compli-
ated interference structure observed previously. From a
umerical perspective, this series representation is com-
etitive with Gauss–Kronrod quadrature. More specifi-
ally, truncating the series at 150 terms and evaluating
he Zernike overlap integrals by Simpson’s rule with a �r
pacing of 2.5
10−4, the transform appears as in Fig. 2
or ��50. The agreement with the Gauss–Kronrod evalu-
tion is quantitative as demonstrated in Figs. 3–5 for dif-
erent series truncation values. In these figures, the loga-
ithm of the absolute value of the relative error. ��f

ig. 2. Evaluation of the Hankel transform of the sweep signal
n the Zernike–Bessel representation retaining 150 terms in the
ummation.

ig. 3. Logarithm of the absolute value of the relative error be-
ween the Gauss–Kronrod and the Zernike–Bessel evaluations
or 80 terms for the Hankel transform of the sweep function.
GK
fZernike� / fGK�, is plotted for n=80, 120, and 150. Since the
th-order Bessel function vanishes as �n at the origin, the
igher-order summation terms contribute only at succes-
ively larger � values; hence convergence near the origin
ccurs within the first few terms. Note that no terms need
o be recalculated for this comparison and that arbitrary �
alues could be chosen since the series solution is essen-
ially a uniform fit of the Hankel transform to Bessel
unctions over the unit interval. Also, the Bessel functions
ay be evaluated to very high accuracy, so the residual

rror is probably dominated by the evaluation of the
ernike overlap integrals.
In the same vein, Markham and Conchello2 considered

he propagation of an out-of-focus pupil function using the
ptical path difference (OPD) derived by Gibson and
anni.14 The real part of this pupil function at a distance
f 0.01575 mm (propagation plane 63) is plotted in Fig. 6.
pplying the Zernike–Bessel expansion, the zeroth-order
ankel transform is readily evaluated and is displayed in
ig. 7 for 120 terms in the summation. The agreement
ith Gauss–Kronrod quadrature is shown in Fig. 8,
here the logarithm of the absolute value of the relative
rror is again plotted in transform coordinates. All of the
onvergence trends noted for the case of the sweep signal
btain. The relative accuracy is high and improves at
arger distances with more summation terms.

ig. 4. Logarithm of the absolute value of the relative error be-
ween the Gauss–Kronrod and the Zernike–Bessel evaluations
or 120 terms for the Hankel transform of the sweep function.

ig. 5. Logarithm of the absolute value of the relative error be-
ween the Gauss–Kronrod and the Zernike–Bessel evaluations
or 150 terms for the Hankel transform of the sweep function.
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The Zernike–Bessel expansion may also be used to
valuate the quasi-discrete Hankel transform5,8 for the
weep function noted above. Specifically, since the
ernike–Bessel series provides a uniformly convergent
epresentation at all points of the open radial unit inter-
al, the quasi-discrete Hankel transform may be obtained
y evaluating the series at the scaled zeros of the appro-
riate Bessel function and forming the Fourier–Bessel se-
ies. In the particular example of the sweep function dis-

ig. 6. Real part of the out-of-focus pupil function at a propaga-
ion distance of 0.01575 mm derived from Eq. (4) of Gibson and
anni.14

ig. 7. Evaluation of the Hankel transform of the pupil function
n the Zernike–Bessel representation retaining 120 terms in the
ummation.

ig. 8. Logarithm of the absolute value of the relative error be-
ween the Gauss–Kronrod and the Zernike–Bessel evaluations
or 120 terms for the Hankel transform of the pupil function.
ussed above, the quasi-discrete zeroth-order Hankel
ransform appears in Fig. 9 using 256 mesh points. The
ogarithm of the absolute value of the relative error is
lotted in Fig. 10, while the same relative error at 512
esh points is plotted in Fig. 11. Although the overall

unctional form is captured relatively well even at the

ig. 9. Quasi-discrete zeroth-order Hankel transform of the
weep function in Fig. 2 using 256 mesh points and a 120-term
ernike–Bessel representation plotted as a function of radial
ariable.

ig. 10. Logarithm of the absolute value of the relative error be-
ween the exact transform of the sweep function and the 256-
oint quasi-discrete zeroth-order Hankel transform as a function
f radial variable.

ig. 11. Logarithm of the absolute value of the relative error be-
ween the exact transform of the sweep function and the 512-
oint quasi-discrete zeroth-order Hankel transform as a function
f radial variable.
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maller number of mesh points, there is a persistent error
ear the origin due to the conditional convergence of the
ourier–Bessel series. That is, the truncated quasi-
iscrete Hankel series in Eq. (6) for l=0 evaluated near or
t the origin provides a poor approximation of the value of
he exact Hankel transform, which vanishes. The error
ecomes worse for a larger number of mesh points since a
egion closer to the origin is sampled for 512 points com-
ared with 256 points.

. INFINITE-RANGE TRANSFORMS
n the cases considered above, favorable series conver-
ence was noted for those functions strictly represented
n the unit interval, whereas the infinite-range transform
ight be more difficult to represent accurately, especially
hen the exact transform integral depends sensitively
pon cancellation of the oscillations at infinity. A striking
xample of the limitations encountered by the series rep-
esentation of transform pairs that are both of infinite ex-
ent is provided by the sinc function

f�r� =
sin�2�
r�

2�
r
�29�

nd its pth-order Hankel transform

f̂��� = �
�p cos�p�/2�

2�
�
2 − �2�
 + �
2 − �2�p
if 0 � � � 


sin�p arcsin�
/���

2�
��2 − 
2
if � � 


.

�30�

he accuracy of the Fourier–Bessel representation of this
air of functions has been recently considered in the con-
ext of the quasi-discrete Hankel transform for orders p
1 and 4, where the stability of the unitary transforma-

ion between the functions is demonstrated.8 However, it
hould be noted that both the Fourier–Bessel and
ernike–Bessel series representations for the sinc func-
ion are poorly behaved at the origin. In particular, either
eries representation vanishes for a finite number of
erms, whereas the exact function approaches unity at
he origin. This effect is apparent in Fig. 12, which con-
ains a plot of the logarithmic absolute error between the
ernike–Bessel approximation and the exact sinc function
or 
=5. As expected, the error is largest near the origin,
ut the relative error is large everywhere, indicating the
oor quality of the fit over the plotted interval. Since the
th-order Hankel transform vanishes at the origin, the
verall error introduced by either the Fourier–Bessel or
he Zernike–Bessel series representation of the first-order
ankel transform is not as severe, as shown by the loga-

ithmic error plots in Figs. 13 and 14, respectively, for the
ifferent series. The error is concentrated near the singu-
arity since a continuous series representation cannot re-
roduce an exact discontinuity. The difficulties associated
ith this demanding transform pair highlight the limita-

ions of truncating intrinsically infinite functions to the
nit interval, since the existence of the exact integral for-
ulation depends upon cancellation of oscillating terms
n the integrand at large radial distances. Functions that
re better behaved at large distances, for example, expo-
entially bounded integrands, will probably not suffer
rom these inaccuracies.

. CONCLUSION
riefly, the Zernike–Bessel series has several interesting

heoretical and practical aspects. The algorithmic imple-

ig. 12. Logarithm of the absolute value of the difference be-
ween the sinc function and the 150-term Zernike–Bessel repre-
entation plotted as a function of radial variable.

ig. 13. Logarithm of the absolute value of the difference be-
ween the exact transform of the sinc function and the 256-point
uasi-discrete first-order Hankel transform as a function of ra-
ial variable.

ig. 14. Logarithm of the absolute value of the difference be-
ween the exact transform of the sinc function and the 150-term
ernike–Bessel representation of the first-order Hankel trans-

orm plotted as a function of radial variable.
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entation follows directly from Eqs. (10) and (11): The
verlap integrals of a given test function are evaluated,
nd the resulting series representation is truncated to
ome desired accuracy. This approach appears to be most
ccurate and numerically useful for functions that are
trictly confined to the unit interval where it obtains an
ccuracy competitive with the most expensive adaptive
uadiature scheme and, consequently, an accuracy much
igher than that of standard methods. Since the overlap

ntegrals need only be computed once and stored, the re-
ulting series evaluation may be very efficient upon re-
eated evaluation. Also, the Zernike–Bessel series shares
any of the positive features of the discrete Fourier–
essel approach since it is directly related to this particu-

ar representation. Superior accuracy may also be
chieved in some circumstances by the use of the Dini se-
ies form, which eliminates end-point singularities. On
he other hand, numerical difficulties are sometimes en-
ountered with conditionally convergent, infinite-range
ransform pairs. Some classes of transform pairs depend
ensitively upon asymptotic cancellation for convergence
o that the resulting series summation requires many
erms. Infinite-range integrals that decay more quickly,
uch as exponentials, though, do not suffer from this dif-
culty and will require far fewer expansion terms. An-
ther practical difficulty with the direct implementation
f the series is the evaluation of the overlap integrals be-
ween the given function and the Zernike polynomials.

Expanding upon this point, the Zernike polynomials
re well known to be highly oscillatory and thus subject to
umerical instability for high-order evaluation. Although
irect calculation of the overlap integrals with high pre-
ision or Gaussian quadrature is possible, the asymptotic
xpansion of the Jacobi polynomials offers an alternative
pproach for the evaluation of the product of high-order
ernike polynomials with a given test function. More spe-
ifically, in the limit n→� this asymptotic expansion
s15,16

Pn
��,���cos �� �

cos�
n +
� + � + 1

2 �� − ��/4��1 + 2��

��n�sin��/2��1/2+��cos��/2��1/2+�

+ O�n−3/2�, �31�

or 0	�	�. Since the Zernike polynomials are simply re-
ated to the general Jacobi polynomials by Eq.(5), apply-
ng this expansion is straightforward. Even though the
xpansion fails near the end points, if the overlap func-
ion in the integrand itself vanishes at the end points,
hen no special care is required to successfully calculate
he integrals. The evaluation of the Zernike–Bessel coef-
cients for the sweep function above was tested for n
80, and good agreement with the direct evaluation of

he coefficients was observed even with Simpson’s rule in-
egration. Inexpensive quadrature techniques of course
reatly improve the numerical efficiency. In general,
hough, the evaluation of the Zernike–Bessel coefficients
ill present a numerical challenge in the practical appli-

ation of this series.
In summary, the primary intent of the above discussion

s the introduction of the Zernike–Bessel representation
s a complementary series expression to the better-known
ourier–Bessel series. The duality between the series is a
onsequence of the simple overlap integral between the
ernike polynomials and a Bessel function on the unit ra-
ial interval. It was noted that the Zernike–Bessel repre-
entation is not limited to special mesh values, such as
he zeros of the Bessel functions, and may be used to fit
uitable functions to a sum of Bessel functions on the unit
nterval and that truncated polynomials possess an exact
eries representation. Additionally, the Fourier–Bessel se-
ies is known to be uniformly convergent on the open unit
nterval with possible divergence at the end points, but a
articular choice of Dini series will overcome this limita-
ion. The connection between the Zernike–Bessel series
valuation of a Hankel transform and the quasi-discrete
pproach is clear. Both representations suffer conver-
ence failures in some infinite-range cases such as the
inc function, but in other, more favorable cases, the
ernike–Bessel series might possess computational ad-
antages. Finally, the Zernike–Bessel representation
ight offer further insight into the properties of the Han-

el transform, as exemplified by the sweep function
bove.
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