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The duality between the well-known Zernike polynomial basis set and the Fourier—Bessel expansion of suit-
able functions on the radial unit interval is exploited to calculate Hankel transforms. In particular, the Hankel
transform of simple truncated radial functions is observed to be exact, whereas more complicated functions
may be evaluated with high numerical accuracy. The formulation also provides some general insight into the
limitations of the Fourier—Bessel representation, especially for infinite-range Hankel transform pairs. © 2007
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1. INTRODUCTION

Hankel transforms naturally arise from the evaluation of
a two-dimensional Fourier transform with radial symme-
try. Since the imposition of exact or approximate radial
geometry is ubiquitous in Fourier-transform-based optical
propagation, Hankel transform techniques remain an im-
portant analytical and numerical tool in these investiga-
tions. More specifically, the integral pth-order Hankel
transforms are the coefficients in the radial Fourier de-
composition of a given function

©

flu,v)= 2, #F,(p)exp(ip ), (1)
ft

where wu=pcos(¢),v=psin(¢) are radial coordinates,

f(u,v) is the Fourier transform of the given function
flx,y), and

Py

Fop) =2 j F() 2 prdr, (2)
0

with the usual notation for the integral pth-order Bessel
functions, p(z).l The inverse transform is of course sym-
metric:

fo(r)=2m f To(p)(27pr)pdp. 3)
0

Some of the most demanding applications of the Han-
kel transform occur in computational optical sectioning
microscopy, where rapidly varying sweep signals and pu-
pil functions pose severe accuracy and timing challenges
for existing numerical techniques. These approaches have
been recently reviewed, applied, and, in some cases,
extended.? As emphasized in this earlier work, consider-
able care is required to obtain numerical accuracy from
any of the many competing algorithms. The difficulties
that remain with the evaluation of this class of highly os-
cillatory functions, though, motivate the present investi-
gation.
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In the method proposed here, the duality between the
well-known Zernike polynomials® and the Bessel func-
tions on the radial unit interval is exploited to produce
highly accurate expressions for the Hankel transforms of
functions truncated on this interval. The duality arises
from the observation that a series expansion of suitable
functions in terms of Zernike polynomials is simply re-
lated to the corresponding Fourier—Bessel series. Since
both basis sets are complete, a given function may be ex-
panded in terms of either series and, in particular, a
specified-order Bessel function has a convergent series
representation in terms of Zernike polynomials that pro-
vides an alternate form of the associated Hankel trans-
form. Conversely, the Hankel transform of a polynomial
function restricted to the unit interval is represented ex-
actly by the corresponding Bessel function. An interesting
numerical aspect of the Zernike and Fourier—Bessel se-
ries duality is the utility of the often rediscovered discrete
version of the Fourier—Bessel series.*® In this expansion,
the roots of a given-order Bessel function become the
quadrature points of the integral evaluation, which has
the important numerical property of preserving the in-
verse Hankel transform to the same accuracy as the di-
rect transform.

In the following section, the general formalism is
briefly described. The subsequent sections detail applica-
tions of this formalism to the evaluation of Hankel trans-
forms of finite-range functions such as the generalized
top-hat functions and their inverses; the highly oscilla-
tory sweep signal and pupil function Hankel transforms
in Markhamz; and the infinite-range Hankel transforms,
such as the sinc function. The final section concludes the
presentation with a discussion of the limitations of the
general formalism, especially with respect to the intrinsi-
cally infinite -range Hankel transform.

2. ZERNIKE-BESSEL REPRESENTATION

The Zernike polynomials are important in optical physics
due to their convenient representation of the various lens-
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diffractive aberration terms. This set of polynomials is
specifically constructed to be a complete, orthogonal set
on the unit radial interval®

! 1
1 ) -
fo R, (p)R, . (p)pdp = 2+ 1) Onn'» (4)

where Rﬁ,(p) denotes the Zernike polynomial of integer or-
der n and integer degree [ as a function of the radial vari-
able p. The Zernike polynomials are a special case of the
Jacobi polynomials,s’9

R.(p)

a

PPx) = (- 1) (5)

where Piﬁ’ﬁ )(x) are the standard Jacobi polynomials10
with x=1-2p%,8=0,a=l, and n’'=(n-1)/2. Since the
Zernike polynomials are related directly to the Jacobi
polynomials, they possess both three-term recurrence re-
lationships for both degree and order and may be numeri-
cally integrated with Gaussian quadrature points and
weights. Their oscillatory behavior for large order, how-
ever, often complicates their numerical application.’

Recall that the Fourier—Bessel series expansion ex-
presses some suitable function, f(p), on the radial unit in-
terval in terms of a Bessel function of fixed order, J;(p),
whose argument is scaled by the positive zeros of that
Bessel function, ay,,,

2c,,

fip)= >, ——Ji(ap), (6)

m=1J7:1(@m)

where the coefficients, c,,, are determined by the overlap
integrals

1
Cm = f flp) (s p)pdp. (7
0

These coefficients are recognizable as the Hankel trans-
form of order [ for the function f(p) evaluated at the Bessel
function roots. Applying the Fourier—Bessel expansion to
a fixed-degree Zernike polynomial produces

- Jn+ Am
Rl(p)=2(-1)"D2Y #Jz(mmp), (8)

m=1 almJl+1(a’lm)

using the explicit form of the overlap integral in Eq. (7)
between Zernike and Bessel functions®

! Jn+1(k)
f Rl (p)J (kp)pdp = (- 1>("-”’2T. 9)
0

Conversely, using the completeness of the Zernike polyno-
mials, any suitable function may be expanded on this in-
terval as

flp) = >, 2(n + 1)b,R(p), (10)
n=I

where the necessary overlap coefficients are

1
b,= f AR, (p)pdp. (11)
0
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Summarizing this development, two expansions, Eqgs.
(6) and (7), express the function f(p) in terms of either the
Bessel functions or the Zernike polynomials. The two co-
efficient sets, b, and c,,, may be expressed in terms of
each other by using the respective orthogonality of the ba-
sis sets. That is, starting from

0

. 2¢,,
fip)= > 2(n+1)b,RL(p) = > ————
n=l

J1(emp),
m=1 Jl+1(alm) !

(12)

multiplying by Rfl,(p), and integrating over the radial unit
interval, the coefficients b,, are

= (e
b, = (- 102y o T (13)
m=1

A

where the coefficients c¢,, are the Hankel transforms
evaluated at the Bessel zeros. Correspondingly, the coef-
ficients c,, may be expressed in the form

” Jn+1(2 Wazm)
m=J21(a) Y, (- D220 + 1)b,—— .

n=l T,

(14)

For example, specializing to the case of f(p)=J;(kp) pro-
duces an interpolation formula for a given Bessel function
in terms of Zernike polynomials

- J, (R
Jikp) =2, (- )" 22(n + 1) }:( )R,'L(P), (15)
n=(

with the specific choice k= qy, yielding

- Jn+ A
J@mp) = 2 (- D"P2(n + 1)£

n=[ Xm

R(p). (16)

This last series expansion displays the expected duality
between the Zernike polynomial basis set and the
Fourier—Bessel basis set. It is also interesting to note that
these expressions provide an alternate polynomial expan-
sion of an integral-order Bessel function.

Likewise, a few special cases of these series expressions
may be noted. When n=[+#0, the Zernike polynomial be-
comes a monomial, R (p)=p", and Eq. (8) reduces to

pr=2>

- 1 b
m=1 anmJn+1(anm)

J o (@nmp) an

which is a well-known representation.!! Thus the general-
order top-hat function may be expressed in a Fourier—
Bessel series that will be immediately relevant to the
Hankel transform applications below. Although this se-
ries representation is uniformly convergent for 0 <p<1, it
does not converge at p=1, which is simply verified by in-
serting this value and obtaining a contradiction. Of
course the series will be numerically poorly behaved near
this end point—an aspect of the Fourier—Bessel expan-
sion that is often overlooked. This deficiency is easily rem-
edied by applying the Dini series representation12 to ob-
tain a uniformly convergent expansion for the entire
interval with consequent superior numerical perfor-
mance. This point will be revisited below.
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Some simple summation formulas, relevant to discrete
Hankel transform applications, follow from Eq. (8). Spe-
cifically, by multiplying this expression by Ri,(p), inte-
grating over the radial interval, and using the orthogonal-
ity of the Zernike polynomials, the equality

5nn’ - Jn+1(alm)Jn’+l(alm)
=2 2 2 72 (18)
2(n + 1) m=1 almJl+1(alm)

arises. The special case n=n’=[ leads to

2 (19)

4(n + ].) m=1 anm

Summation expressions of this type might be useful to es-
timate the number of series terms needed for a requested
level of numerical accuracy.

3. FINITE-RANGE TRANSFORMS

The Bessel-Zernike representation provides insight into
the evaluation of finite-range transforms; that is, the
Hankel transform of a function that is exactly truncated
on the unit radial interval. A simple example would be the
generalized “top-hat” function defined as f,(r)=r"(H(r)
—H(r-1)), where H(r) is the Heaviside step function. As
noted above, the monomial r? is just the particular
Zernike polynomial with n=[=p, so its Hankel transform
is immediately obtained from Eq. (9):

a Jp+1(p)
(o) = o, (20)

which is, of course, the exact value. An examination of the
inverse Hankel transform reveals a connection with the
discretization technique used in the quasi-discrete Han-
kel transform representation.>® Consider the Fourier—
Bessel series coefficients of Eq. (7) in this case,

p+1(P)
Cn = f —J(a,,p)pdp, (21)
0o P

where the original infinite interval has been suitably
truncated and scaled to the unit interval. Approximating
these overlap coefficients by

J, .1 (a
e = M (22)

apm

and inserting them into Eq. (6) produces

)
£,(r) = E Iolan) 23)

Xpm p+1(alm)

which is recognized as an approximation of the original
pth-order Zernike monomial in Eq. (17).

As mentioned previously, the Fourier—Bessel series
representation is uniformly convergent on the interval 0
<r<1 and obviously fails at »=1. Numerically, the sum-
mation must be truncated and convergence will be poor in
this neighborhood. A modification of this series, due to
Dini,'? leads to uniform convergence over the entire in-
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terval and much-improved numerical behavior near r=1.
Briefly, the Fourier-Bessel representation of Eq. (6) is re-
placed by

= > 2d,J)(Bimp), (24)

m=1

where the Dini coefficients are

dm = ﬁ%m{lglzm[‘]l, (ﬁlm)]2 + (Blzm - lz)

1
X[y (Br) P f tJ)(Bit)f(t)dt, (25)
0

and the values B, are the positive roots of tJ; () +a-J(t)
=0. There is some flexibility in the choice of the 3, since
the value of @ is somewhat arbitrary. For example, the
choice a+[=0 leads to the condition J;,(8;,,) =0, and the
B, are no more difficult to obtain than the original
Fourier—Bessel roots. However, this choice must be ac-
companied by an additional term to handle a pole at the
origin,12 which might be numerically difficult to evaluate
in general cases. This problem may be avoided by choos-
ing a=0 so that the values are determined by
J; (By,) =0, which also simplifies the denominator in Eq.
(25). As an example, the Fourier—Bessel series of Eq. (17)
may be compared with the analogous Dini series, which
has the explicit form

n_9 i Bnm‘LHl(Bnm)Jn(:Bnmp)
a m=1 (ﬁnm - nz)JrzL(ﬁnm)

(26)

Numerically, this series representation is superior to the
Fourier—Bessel expression of Eq. (17). For the specific, ar-
bitrary choice of n=3, the logarithm of the absolute differ-
ence between the exact function, r3, and the two series
representations is plotted in Fig. 1 When both series are
truncated to 512 terms. The error associated with the
Dini series is approximately 3 orders of magnitude
smaller than the Fourier—Bessel error over the entire in-
terval and, as expected, is much more accurate at the end
point.

An especially challenging finite-range Hankel trans-
form has been identified by Markham and Conchello? in

Fourier-Bessel

3
&

Log(Abs(Difference))
&

0.95 0.96 0.97 0.98 0.99 1.00
Radial Distance
Fig. 1. Logarithm of the absolute difference between the exact
result and the Fourier—Bessel series (upper curve) and the Dini
series (lower curve) plotted near the unit interval end point.
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Fig. 2. Evaluation of the Hankel transform of the sweep signal
in the Zernike—Bessel representation retaining 150 terms in the
summation.

-2

4

LA S L L IR

-6

Log(Relative Error)

-8

-10
0
Radius

Fig. 3. Logarithm of the absolute value of the relative error be-
tween the Gauss—Kronrod and the Zernike—Bessel evaluations
for 80 terms for the Hankel transform of the sweep function.

their consideration of the numerical evaluation of the
zero-order transform of an oscillating sweep signal with
the functional form

_(wd {r(b—a) r 2)
f(r) =sin +al| —-a , (27)

b-a d

where a=5,b6=40, and d=1 on the unit radial interval;
the function vanishes for > 1. Applying Egs. (10) and (11)
to evaluate the zero-order transform leads to

Jn+1(

for) = 2772 (=12 2(n + l)f f(p)RY(p)pdp,

(28)

which reexpresses the transformed function as a series of
Bessel functions, thus accounting for the observed compli-
cated interference structure observed previously. From a
numerical perspective, this series representation is com-
petitive with Gauss—Kronrod quadrature. More specifi-
cally, truncating the series at 150 terms and evaluating
the Zernike overlap integrals by Simpson’s rule with a Ar
spacing of 2.5 1074, the transform appears as in Fig. 2
for p=<50. The agreement with the Gauss—Kronrod evalu-
ation is quantitative as demonstrated in Figs. 3-5 for dif-
ferent series truncation values. In these figures, the loga-
rithm of the absolute value of the relative error. |(fgx
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~Fzernire) faxl, is plotted for n=80, 120, and 150. Since the
nth-order Bessel function vanishes as p™* at the origin, the
higher-order summation terms contribute only at succes-
sively larger p values; hence convergence near the origin
occurs within the first few terms. Note that no terms need
to be recalculated for this comparison and that arbitrary p
values could be chosen since the series solution is essen-
tially a uniform fit of the Hankel transform to Bessel
functions over the unit interval. Also, the Bessel functions
may be evaluated to very high accuracy, so the residual
error is probably dominated by the evaluation of the
Zernike overlap integrals.

In the same vein, Markham and Conchello? considered
the propagation of an out-of-focus pupil function using the
optical path difference (OPD) derived by Gibson and
Lanni.'* The real part of this pupil function at a distance
0of 0.01575 mm (propagation plane 63) is plotted in Fig. 6.
Applying the Zernike—Bessel expansion, the zeroth-order
Hankel transform is readily evaluated and is displayed in
Fig. 7 for 120 terms in the summation. The agreement
with Gauss—Kronrod quadrature is shown in Fig. 8,
where the logarithm of the absolute value of the relative
error is again plotted in transform coordinates. All of the
convergence trends noted for the case of the sweep signal
obtain. The relative accuracy is high and improves at
larger distances with more summation terms.

0
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Fig. 4. Logarithm of the absolute value of the relative error be-
tween the Gauss—Kronrod and the Zernike—Bessel evaluations
for 120 terms for the Hankel transform of the sweep function.

LI I LR S B L

Log(Relative Error)

0 10 20 30 40 50
Radius
Fig. 5. Logarithm of the absolute value of the relative error be-
tween the Gauss—Kronrod and the Zernike—Bessel evaluations
for 150 terms for the Hankel transform of the sweep function.
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Fig. 6. Real part of the out-of-focus pupil function at a propaga-
tion diisfance of 0.01575 mm derived from Eq. (4) of Gibson and
Lanni.
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Fig. 7. Evaluation of the Hankel transform of the pupil function
in the Zernike—Bessel representation retaining 120 terms in the
summation.
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Fig. 8. Logarithm of the absolute value of the relative error be-
tween the Gauss—Kronrod and the Zernike—Bessel evaluations
for 120 terms for the Hankel transform of the pupil function.

The Zernike—Bessel expansion may also be used to
evaluate the quasi-discrete Hankel transform®® for the
sweep function noted above. Specifically, since the
Zernike—Bessel series provides a uniformly convergent
representation at all points of the open radial unit inter-
val, the quasi-discrete Hankel transform may be obtained
by evaluating the series at the scaled zeros of the appro-
priate Bessel function and forming the Fourier—Bessel se-
ries. In the particular example of the sweep function dis-
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cussed above, the quasi-discrete zeroth-order Hankel
transform appears in Fig. 9 using 256 mesh points. The
logarithm of the absolute value of the relative error is
plotted in Fig. 10, while the same relative error at 512
mesh points is plotted in Fig. 11. Although the overall
functional form is captured relatively well even at the

1.20

e
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S

Sweep Signal

-0.40

-0.80

s lole ‘ l0?4l l 10!6‘ l l0?8l l l1.0
Radius
Fig. 9. Quasi-discrete zeroth-order Hankel transform of the
sweep function in Fig. 2 using 256 mesh points and a 120-term
Zernike—Bessel representation plotted as a function of radial
variable.
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Fig. 10. Logarithm of the absolute value of the relative error be-
tween the exact transform of the sweep function and the 256-
point quasi-discrete zeroth-order Hankel transform as a function
of radial variable.
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Fig. 11. Logarithm of the absolute value of the relative error be-
tween the exact transform of the sweep function and the 512-
point quasi-discrete zeroth-order Hankel transform as a function
of radial variable.
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smaller number of mesh points, there is a persistent error
near the origin due to the conditional convergence of the
Fourier—Bessel series. That is, the truncated quasi-
discrete Hankel series in Eq. (6) for /=0 evaluated near or
at the origin provides a poor approximation of the value of
the exact Hankel transform, which vanishes. The error
becomes worse for a larger number of mesh points since a
region closer to the origin is sampled for 512 points com-
pared with 256 points.

4. INFINITE-RANGE TRANSFORMS

In the cases considered above, favorable series conver-
gence was noted for those functions strictly represented
on the unit interval, whereas the infinite-range transform
might be more difficult to represent accurately, especially
when the exact transform integral depends sensitively
upon cancellation of the oscillations at infinity. A striking
example of the limitations encountered by the series rep-
resentation of transform pairs that are both of infinite ex-
tent is provided by the sinc function

sin(2myr)
fr)=—/—— (29)
2myr
and its pth-order Hankel transform

PP cos(pm/2)

‘ 5 5 if0=p=y
. 27V - p (v + ¥ - P2
PP=] sin[p arcsin(v/p)]
2my\p* -
(30)

The accuracy of the Fourier—Bessel representation of this
pair of functions has been recently considered in the con-
text of the quasi-discrete Hankel transform for orders p
=1 and 4, where the stability of the unitary transforma-
tion between the functions is demonstrated.? However, it
should be noted that both the Fourier-Bessel and
Zernike—Bessel series representations for the sinc func-
tion are poorly behaved at the origin. In particular, either
series representation vanishes for a finite number of
terms, whereas the exact function approaches unity at
the origin. This effect is apparent in Fig. 12, which con-
tains a plot of the logarithmic absolute error between the
Zernike—Bessel approximation and the exact sinc function
for y=>5. As expected, the error is largest near the origin,
but the relative error is large everywhere, indicating the
poor quality of the fit over the plotted interval. Since the
pth-order Hankel transform vanishes at the origin, the
overall error introduced by either the Fourier—Bessel or
the Zernike—Bessel series representation of the first-order
Hankel transform is not as severe, as shown by the loga-
rithmic error plots in Figs. 13 and 14, respectively, for the
different series. The error is concentrated near the singu-
larity since a continuous series representation cannot re-
produce an exact discontinuity. The difficulties associated
with this demanding transform pair highlight the limita-
tions of truncating intrinsically infinite functions to the
unit interval, since the existence of the exact integral for-
mulation depends upon cancellation of oscillating terms

Charles Cerjan

3

Log(Error)
&

LENRANR N (R A B A 0
1]
=

.00 0.20 0.40 0.60 0.80 1.00
Radial Variable
Fig. 12. Logarithm of the absolute value of the difference be-
tween the sinc function and the 150-term Zernike—Bessel repre-
sentation plotted as a function of radial variable.
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Fig. 13. Logarithm of the absolute value of the difference be-
tween the exact transform of the sinc function and the 256-point
quasi-discrete first-order Hankel transform as a function of ra-
dial variable.
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Fig. 14. Logarithm of the absolute value of the difference be-
tween the exact transform of the sinc function and the 150-term
Zernike—Bessel representation of the first-order Hankel trans-
form plotted as a function of radial variable.

in the integrand at large radial distances. Functions that
are better behaved at large distances, for example, expo-
nentially bounded integrands, will probably not suffer
from these inaccuracies.

5. CONCLUSION

Briefly, the Zernike—Bessel series has several interesting
theoretical and practical aspects. The algorithmic imple-



Charles Cerjan

mentation follows directly from Egs. (10) and (11): The
overlap integrals of a given test function are evaluated,
and the resulting series representation is truncated to
some desired accuracy. This approach appears to be most
accurate and numerically useful for functions that are
strictly confined to the unit interval where it obtains an
accuracy competitive with the most expensive adaptive
quadiature scheme and, consequently, an accuracy much
higher than that of standard methods. Since the overlap
integrals need only be computed once and stored, the re-
sulting series evaluation may be very efficient upon re-
peated evaluation. Also, the Zernike—Bessel series shares
many of the positive features of the discrete Fourier—
Bessel approach since it is directly related to this particu-
lar representation. Superior accuracy may also be
achieved in some circumstances by the use of the Dini se-
ries form, which eliminates end-point singularities. On
the other hand, numerical difficulties are sometimes en-
countered with conditionally convergent, infinite-range
transform pairs. Some classes of transform pairs depend
sensitively upon asymptotic cancellation for convergence
so that the resulting series summation requires many
terms. Infinite-range integrals that decay more quickly,
such as exponentials, though, do not suffer from this dif-
ficulty and will require far fewer expansion terms. An-
other practical difficulty with the direct implementation
of the series is the evaluation of the overlap integrals be-
tween the given function and the Zernike polynomials.
Expanding upon this point, the Zernike polynomials
are well known to be highly oscillatory and thus subject to
numerical instability for high-order evaluation. Although
direct calculation of the overlap integrals with high pre-
cision or Gaussian quadrature is possible, the asymptotic
expansion of the Jacobi polynomials offers an alternative
approach for the evaluation of the product of high-order
Zernike polynomials with a given test function. More spe-
cifically, in the limit n—o this asymptotic expansion

is'®
{( a+ﬁ+1) }
cos| | n+ 5 60— (7/4)(1 + 2a)

Jmn[sin(6/2)]V2+ [ cos(6/2)]V*+#

+0(n%2), (31)

Pff’ﬁ)(cos 0) =

for 0 < <. Since the Zernike polynomials are simply re-
lated to the general Jacobi polynomials by Eq.(5), apply-
ing this expansion is straightforward. Even though the
expansion fails near the end points, if the overlap func-
tion in the integrand itself vanishes at the end points,
then no special care is required to successfully calculate
the integrals. The evaluation of the Zernike—Bessel coef-
ficients for the sweep function above was tested for n
>80, and good agreement with the direct evaluation of
the coefficients was observed even with Simpson’s rule in-
tegration. Inexpensive quadrature techniques of course
greatly improve the numerical efficiency. In general,
though, the evaluation of the Zernike—Bessel coefficients
will present a numerical challenge in the practical appli-
cation of this series.

In summary, the primary intent of the above discussion
is the introduction of the Zernike—Bessel representation
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as a complementary series expression to the better-known
Fourier—Bessel series. The duality between the series is a
consequence of the simple overlap integral between the
Zernike polynomials and a Bessel function on the unit ra-
dial interval. It was noted that the Zernike—Bessel repre-
sentation is not limited to special mesh values, such as
the zeros of the Bessel functions, and may be used to fit
suitable functions to a sum of Bessel functions on the unit
interval and that truncated polynomials possess an exact
series representation. Additionally, the Fourier—Bessel se-
ries is known to be uniformly convergent on the open unit
interval with possible divergence at the end points, but a
particular choice of Dini series will overcome this limita-
tion. The connection between the Zernike—Bessel series
evaluation of a Hankel transform and the quasi-discrete
approach is clear. Both representations suffer conver-
gence failures in some infinite-range cases such as the
sinc function, but in other, more favorable cases, the
Zernike—Bessel series might possess computational ad-
vantages. Finally, the Zernike-Bessel representation
might offer further insight into the properties of the Han-
kel transform, as exemplified by the sweep function
above.
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