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Abstract

Equations of state can be used not only for the calculation of fluid phase equilibria,
but also for the prediction of the accompanying changes of the internal energy or
enthalpy. In this work, traces of DSC (differential scanning calorimetry) or transi-
tiometry experiments on some fluid model systems at high pressures are simulated
and discussed.
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1 Introduction

Nowadays, differential scanning calorimetry (DSC) is one of the standard methods for the de-
termination of phase equilibria. In the majority of cases, DSC is applied at ambient pressure.
But high-pressure applications are possible, too, and have already a long history; for example,
Kamphausen and Schneider developed a DSC apparatus capable of reaching 250 MPa already
in 1978. The design of the sample holders in this work, however, restricted the application to
phase equilibria accompanied by small volume changes only, e.g., melting transitions of pure
solids or structure changes of liquid crystals.

This restriction is overcome by transitiometry, which can be regarded as the logical extension
of the DSC principle. The core of a transitiometer is a pair of high-pressure vessels, each one
equipped with heaters and transducers for pressure, temperature as well as heat flow, and each
one operated by a computer-controlled screw press [1]. A transitiometer is capable of perform-
ing isobaric temperature scans and to record the resulting heat flow like a DSC instrument, but
can also do isochoric temperature scans, isothermal pressure scans, or follow arbitrary thermo-
dynamic paths. Most important in the context of this work is that a transitiometer can accom-
modate volume changes large enough to make it applicable to supercritical fluids. So Bessieres
et al. demonstrated that it could be used to determine Joule–Thomson inversion curves [2].
Baitalow et al. used transitiometry and DSC to study the decomposition reaction of borazane at
high pressures [3].

Particularly interesting is the application of transitiometry to phase equilibria of mixtures
at elevated pressure. Examples are the determination of the phase diagrams of {methane +
eicosane} and {carbon dioxide + caffeine} [4], which involved solid–solid as well as solid–fluid
phase equilibria.

Especially for mixtures, however, the interpretation of DSC or transitiometer traces can get
rather difficult. In this work, we attempt a “transitiometer simulation”, a theoretical study of
the heat flow to or from the sample vessel of a transitiometer containing a binary fluid mixture.
The phase equilibria inside the vessel are modeled with an equation of state. Simulations of
this kind have been made before [4] for systems involving solid–fluid phase equilibria, but
only with the intention to reproduce given experimental data and conditions. We furthermore
acknowledge the work of Filippov and Chernik [5–7], who analyzed DTA and DSC traces of
heterogenous systems, although not with equations of state nor under supercritical conditions.
Here we will consider fluid-phase equilibria of some model systems, show some typical peak
shapes, and discuss some counter-intuitive results.
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2 Theory

2.1 The DSC/transitiometer working equations

During a scanning experiment, a DSC apparatus or transitiometer enforces a temperature or
pressure change of the sample and records the resulting heat flow. We now assume an ideal
instrument, which has an infinite internal heat conductivity and no internal temperature gra-
dient, and in which the sample is always in an equilibrium state. Using the 2nd Law of ther-
modynamics, we can then write

q̇ = TdṠ , (1)

where q̇ is the absorbed or liberated heat and Ṡ the entropy production at the temperature T .
Introducing the total differential of the entropy leads to

q̇ =
T

dt

[(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV

]

= T

[

CV

T
Ṫ +

(

∂p

∂T

)

V

V̇

]

. (2)

Ṫ and V̇ are the heating and expansion rates, respectively.

For a non-isothermal scanning mode, Ṫ 6= 0, we can then write

q̇ = Ṫ

[

CV + T

(

∂p

∂T

)

V

dV

dT

]

. (3)

In the case of an isochoric scan, dV/dT = 0, and hence the heat flow becomes q̇ = ṪCV . For an
isobaric scan we must set dV/dT = (∂V/∂T )p, and then the resulting heat flow is
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 . (4)

With the common definitions of the isothermal compressibility, κT , and the isobaric expansiv-
ity, αp, the result

q̇ = Ṫ

[

CV +
TV α2

p

κT

]

= ṪCp (5)

is obtained. This is the well-known working equation of (isobaric) DSC instruments. In the
case of a transitiometer in “free-style mode”, however, V (T ) and hence dV/dT are set by the
operator; then Eq. (3) must be used.

Using the total differential of S(p, T ) instead of S(V, T ) in Eq. (2) results in

q̇ =
T

dt

[

(

∂S

∂T

)

p

dT +

(

∂S

∂p

)

T

dp

]

= T

[

Cp

T
Ṫ −

(

∂V

∂T

)

p

ṗ

]

, (6)

which is the general working equation under (p, T ) control. Division by the temperature rate
and substitution of the definition of the isothermal expansivity then yields

q̇ = Ṫ

[

Cp − TV αp
dp

dT

]

. (7)

For isobaric operation, dp/dT = 0, and Eq. (5) is recovered.
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A transitiometer is also capable of doing pressure scans at constant temperature. For this
application, Eq. (2) or (6) can used to obtain

q̇ = T

(

∂p

∂T

)

V

V̇ = T

(

∂p

∂T

)

V

(

∂V

∂p

)

T

ṗ = −TV αpṗ (8)

which is the working equation for a transitiometer in isothermal mode.

The thermodynamic energy function associated with q̇ is

E =

∫

q̇ dt =



























U isochoric

H isobaric

U +
∫

T
(

∂p
∂T

)

V

dV
dT

dT arbitrary nonisothermal path

TS isothermal

(9)

2.2 Heat flow in a two-phase region

Eq. (2) is true for single-phase systems1. For two-phase states, the entropy contributions of both
phases have to be added:

S = n′S′

m + n′′S′′

m (10)

The amounts of substance in the two phases, n′ and n′′, can be obtained from the “lever rule”,
which for a two-component system is

n′(x′1 − x1) + n′′(x′′1 − x1) = 0 . (11)

Here x′
1

and x′′
1

are the equilibrium mole fractions, and x1 the overall mole fraction of the
system. Rearrangement yields

n′ = nf ′ with f ′ =
x′′
1
− x1

x′′
1
− x′

1

n′′ = nf ′′ with f ′′ =
x1 − x′

1

x′′
1
− x′

1

,

(12)

where f ′ and f ′′ are the phase fractions. For multicomponent systems similar, although slightly
more complicated equations can be obtained.

Differentiation of Eq. (10), noting that the equilibrium mole fractions as well as the entropies
generally depend on temperature, results in

q̇ =nṪ

[

(

C ′

mf
′ + C ′′
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)

]

.

(13)

The heat capacities Cm, the entropy derivatives dSm/dx1, and the mole fraction derivatives
dx1/dT must be taken in accordance with the thermodynamic path of the calorimeter. For an

1more accurately: for systems where the amounts of the components in each phase do not change
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isobaric experiment, they latter are the slopes of the phase boundary curves in a conventional
isobaric Tx phase diagram. Then this equation can be written as

q̇ =nṪ

[
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(14)

Combination of this equation with the isobaric Gibbs–Konowalow equations,

dx′
1
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=
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∂x1
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−
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1

)

1
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and its analogue for dx′′
1
/dT , leads to the result of Filippov and Chernik [5–7]:

q̇ = nṪ

[

(
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)
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(

(

dx′
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. (16)

Here G2x is a shorthand notation for (∂2Gm/∂x
2
1
)p,T , the 2nd order derivative of the molar

Gibbs energy with respect to mole fraction. For a stable phase, G2x > 0 must be true (diffusion
stability).

Let us assume that the sample passes from a single-phase state through a two-phase region
to another single-phase state; an example is the evaporation of a liquid, l→lg→g. The heat flow
of the calorimeter is nṪC ′

pm before the transition and nṪC ′′

pm afterwards (identifying phase ′

with the liquid and ′′ with the gas phase). Evidently, the first term within the angular brack-
ets of Eq. (16) is a linear interpolation between C ′

m and C ′′

m, and it can be represented in the
calorimeter traces by smooth connection of the baselines before and after the transition. The
second term within contains the 2nd order derivatives of the Gibbs energy with respect to the
mole fractions — which must be positive for stable phases — and the squares of the slopes
of the phase envelopes. This term cannot be negative; it therefore increases the apparent heat
capacity within the two-phase region.

For isochoric or other thermodynamic paths, the derivatives dSm/dx1 and dx1/dT also reflect
the pressure influence on the phase boundaries. In this case, the simplification by means of the
the Gibbs–Konowalow equation is no longer possible (or leads to additional terms). But it
is not really necessary to calculate the working function analytically. For practical purposes,
numerical differentiation of Eq. (10) is preferable.

2.3 Equation of state

For a discussion of the qualitative features of DSC or transitiometer traces, accurate numerical
results are not really needed. We therefore base our calculations on a simple, cubic equation of
state, namely the equation of Peng and Robinson [8], which we write here in the form

Z =
pVm

RT
=

1

1− ξ
−

8ξα(T̃ )

(1 + 2ξ − ξ2)T̃

with ξ =
v∗

Vm

T̃ =
T

T ∗

and α(T̃ , ω) =



1 +m(ω)



1−

√

T̃

T̃c









2

.

(17)
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Here ξ and T̃ are the reduced density and the reduced temperature respectively, v∗ the char-
acteristic volume (covolume), T ∗ the characteristic temperature, and m(ω) a polynomial of the
acentric factor. The commonly used attraction parameter of this equation of state is aPR =
8RT ∗v∗α(T̃ , ω). The reduced critical temperature is a constant, T̃c = 1.361155 .

For mixtures we use Soave’s mixing rules [9]:

(T ∗v∗) =

N
∑

i=1

N
∑

j=1

xixjv
∗

ijT
∗

ij

√

α(T̃ii, ωi)α(T̃jj , ωj) (18)

v∗ =

N
∑

i=1

xiv
∗

ii (19)

The T ∗

ij (with i 6= j) are adjustable parameters of the mixture.

From these equations, the required thermodynamic energy functions and heat capacities
can be obtained by means of well-known thermodynamic relations. So the residual molar
Helmholtz energy, internal energy, and isochoric heat capacity are

Ar
m

RT
=

∫ ξ

0

Z − 1

ξ
dξ (20)

U r
m

RT
= −T

(

∂Ar
m/RT

∂T

)

Vm

(21)

Cr

Vm

R
= 2

U r
m

RT
− T 2

(

∂2(Ar
m/RT )

∂T 2

)

. (22)

For the total heat capacity, the ideal-gas heat capacity, C id

Vm
(T ) has to be added:

C id

Vm(T ) = C id

pm(T )−R =

N
∑

i=1

xiCpm,i(T )−R (23)

The isobaric ideal-gas heat capacities of the pure components, C id
pm,i(T ), can be conveniently

obtained by spline extrapolations of tables of experimental data.

Calculations of phase envelopes, critical curves, and apparent heat capacities were performed
with the ThermoC program package, where the equations of this Section are implemented [10].

3 Application to high-pressure fluid phase equilibria

For simplicity’s sake we will discuss heating runs of calorimetric experiments only, so that
Ṫ > 0; absorption of heat by the sample then corresponds to q̇ > 0.

3.1 Example: {methane + propane}

The fluid mixture {methane + propane} has a rather simple phase diagram, in which only one
critical curve appears (Fig. 1) [11]. Its phase diagram belongs to class I according to the system
of van Konynenburg and Scott [12], or 1P according to the rational nomenclature of Bolz et
al. [13]. The critical curve passes through a pronounced pressure maximum, which is common
for this type of mixtures.
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A subcritical isobaric Tx cross section, Fig. 2, exhibits the typical spindle-shaped vapour–
liquid coexistence region. Because of Eq. (16), the phase separation causes a positive contribu-
tion to q̇. Fig. 3 shows a positive peak in the two-phase region, with two spikes marking the
passing of the bubble point curve (l→lg) and the dew point curve (lg→l).

At pressures above the critical pressures of both pure components, the Tx phase envelope
detaches from the ordinates of the phase diagram and develops two binary critical points,
as shown in Fig. 4. The maximum of the critical curve in Fig. 1 is a so-called elliptic critical
pressure maximum [13]; here the two-phase region contracts to a point and vanishes. In the
vicinity of the binary critical points in Fig. 4 retrograde behaviour occurs, and one of the phase
boundaries has a positive slope. Still, as only the squares of the slopes appear in the isobaric
working function Eq. (16), the two-phase region always shows a higher apparent heat capacity
than the single phase region (Fig. 5).

If the phase separation is delayed until the phase becomes unstable (G2x < 0), it is possible to
have negative spikes. This is probably not a realistic option for {methane + propane} mixtures,
but can be easily arranged on a computer. For viscous polymer mixtures, however, “spinodal
decomposition” (delayed phase separation on reaching G2x = 0) has been experimentally ob-
served. For such systems, negative DSC signals are therefore possible.

In DSC or transitiometry experiments the baseline is usually suppressed or at least displaced
by subtracting the signal of the reference cell. Then a negative peak might look “wrong”, i.e.,
be mistaken for an exothermic transition during a heating run, or an endothermic transition
during a cooling run. It should be noted, however, that Fig. 5 shows the total apparent heat
capacity still to be positive.

Another interesting feature of Fig. 5 is the pronounced maximum of the baseline, which
might be, at a first glance, mistaken for a signature of a phase separation. This maximum,
however, is relatively broad, whereas the spikes, the true indicators of phase boundaries, are
rather sharp.

The traces of isochoric transitiometer runs are similar to their isobaric counterparts. Some
points, however, need to be considered:

• If an isochoric run were to start at low temperature with a liquid mixture, the thermal
expansion during heating would drive the pressure quickly to more than 100 MPa, and
no vapour–liquid equilibrium would ever occur.

• But if, at the begin of the run, the sample is already in a two-phase state and has a total
volume larger than the its critical volume, an experimental path like curve C in Fig. 1
results. The sample changes from a two-phase to a single-phase vapour state (lg→g) when
curve C crosses the isopleth, i.e., the liquid evaporates. As the entropy term in Eq. (13)
disappears, a negative step results in the transitiometer trace (Fig. 6).

The underlying principle — an increased apparent heat capacity in the two-phase region
— is the same as for Fig. 3. But as the bubble point branch of the isopleth (l→lg) is never
crossed during the isochoric run, the ascending part of the peak does not appear: the
peak, the signal of the two-phase region, extends all the way from the begin of the run to
the negative step and is (because of its width) usually not very high, so that it can easily
be mistaken for the baseline.

• If the run starts with a two-phase state having a total molar volume less than the critical
volume, the gas phase condenses completely when the isopleth is crossed (lg→l). This
case corresponds to curve D in Fig. 1. One might intuitively expect a negative heat flow,
for condensation is an exothermic process. But again, the apparent heat capacity is higher
in the two-phase region than in the single-phase region, and hence a single negative step
results.
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Figs. 7 and 8 show an isothermal phase diagram and isothermal transitiometer traces, re-
spectively, at a temperature where methane is supercritical. For a methane mole fraction of
0.2, the transitiometer trace shows the usual increased apparent heat capacity in the two-phase
region, with two spikes marking the crossing of the phase boundaries. At the mole fraction
0.55, retrogade behaviour occurs, and now one of the spikes is negative.

3.2 Example {carbon dioxide + hexadecane}

Fig. 9 shows the pT phase diagram of a binary mixture whose parameters were set as to ap-
proximately mimic {carbon dioxide + hexadecane}.2 The diagram belongs to class IIIm (rational
momenclature 1CW1Z) [14,15]; it exhibits a pressure maximum and a minimum along the crit-
ical curve which originates at the less volatile component. The maximum is an elliptic critical
pressure maximum; here the phase diagram topology and the transitiometer traces are similar
to the ones of the {methane + propane} system. The minimum is a hyperbolic critical pressure
minimum [13]; here two two-phase regions merge and form a band of limited miscibility.

Fig. 10 contains an isobaric Tx cross section just below the critical pressure minimum, and
through the small l=g critical curve originating at the critical point of carbon dioxide. Transi-
tiometer traces in the vicinity of the band-like liquid–liquid 2-phase region show only rather
small spikes at the phase boundaries, and also a very small baseline shift, which is not surpris-
ing: The energy term in Eq. (13) contains the factors dx′

1
/dT and dx′′

1
/dT , which both vanish at

the “waistline” of the two-phase region. In fact, a transitiometer run taking a path through the
two-phase region would register the heat capacity term only.

The dominant features of the transitiometer traces are the huge spikes caused by crossing the
three-phase curve llg. The phase state of the sample changes here according to l1l2 → l1l2g →
l1g This amounts to the evaporation of a liquid at the temperature of the three-phase state, and
consequently the transitiometer traces contain a large, sharp spike similar to the evaporation
peak of a pure liquid.

4 Conclusions

Even if only fluid phase equilibria are considered and complications due to the existence of
solid phases neglected, the resulting traces of scanning-calorimetry experiments — DSC or
transitiometry — can exhibit an interesting variety of shapes. Due to the appearance of an
additional term (the energy contribution) in the equation for the apparent heat capacity, this
property usually has a higher value in two-phase regions than in single-phase regions.

Isochoric transitiometer runs on mixtures with high-pressure vapour–liquid equilibria typ-
ically result in very broad and low signals. Here often only a negative step is conspicuous,
which marks the transition to a single-phase state.

In regions of retrograde behaviour, isothermal transitiometer runs may exhibit “negative
signals”.

Of course, simulations of scanning calorimetry runs by means of equations of state cannot be
substitutes for the experiments, but they can facilitate the interpretation of calorimetric signals
and the construction of phase diagrams.

2It is not possible to accurately represent this mixture with Eqs. 17–19. With parameters chosen to represent
the high-pressure part of the major critical curve well, its minimum is somewhat too deep in comparison with
experimental data — which, however, scatter considerably.
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Symbols

A Helmholtz energy

C heat capacity

E generalized energy function

f phase fraction

G Gibbs energy

H enthalpy

n amount of substance, “number of moles”

p pressure

q heat

R universal gas constant

S entropy

T temperature

t time

U internal energy

V volume

x mole fraction

Z compression factor, Z = pV/(nRT )

αp isobaric thermal expansivity

κT isothermal compressibility

Subscripts

i related to component i

m molar property

p derivative at constant pressure

V derivative at constant volume

Superscripts

id ideal-gas property

r residual property
′,′′ phase indicators
∗ characteristic property (parameter of an equation of state)
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Figure captions

Fig. 1: Phase diagram of the {methane + propane} system, calculated with the Peng–Robinson equation
of state. —: vapour pressure curves, ◦: pure-component critical points, —: critical curve, - - -: isopleth
x1 = 0.4,⋅⋅⋅⋅⋅: paths of transitiometer runs (A: isobaric, Fig. 2–3; B: isobaric, Fig. 4)–5; C, D: isochoric,
Fig. 6), E: isothermal, Fig. ??.

Fig. 2: Isobaric phase diagram of the {methane(1) + propane(2)} system at 1 MPa, calculated with the
Peng–Robinson equation of state. The arrow indicates the path of a transitiometer run for a sample with
the overall mole fraction x1 = 0.5 (Fig. 3).

Fig. 3: Simulated trace of a transitiometer for a {methane(1) + propane(2)} sample with the overall
composition x1 = 0.5 at 1 MPa.

Fig. 4: Isobaric phase diagram of the {methane(1) + propane(2)} system at 8 MPa, calculated with the
Peng–Robinson equation of state. ◦: binary critical points. The arrows indicate the paths of transitiome-
ter runs (Fig. 5).

Fig. 5: Simulated traces of a transitiometer for {methane(1) + propane(2)} samples with the overall
compositions x1 = 0.4 and 0.9 at 8 MPa. Lower curve at x1 = 0.4: phase separation delayed, after attaining
diffusional instability.

Fig. 6: Simulated traces of a transitiometer for a {methane(1) + propane(2)} sample with the overall
composition x1 = 0.4 at V = 279.5 cm3/mol (path C in Fig. 1) or 80 cm3/mol (path D).

Fig. 7: Isothermal phase diagram of the {methane(1) + propane(2)} system at 320 K, calculated with the
Peng–Robinson equation of state. ◦: binary critical point. The arrows indicate the paths of transitiometer
runs (Fig. 8).

Fig. 8: Simulated traces of a transitiometer for {methane(1) + propane(2)} samples with the overall
compositions x1 = 0.2 and 0.55 at 320 K.

Fig. 9: Phase diagram of a class IIIm system. —: vapour pressure curves, ◦: pure-component critical
points, —: critical curves, −⋅−⋅: three-phase curve llg.

Fig. 10: Isobaric phase diagram of the class IIIm system at 8 MPa. —: phase boundaries, −⋅−⋅: three-phase
state. The insert shows an enlargement of the llg coexistence region; ◦: binary critical point l=g. The
arrows indicate the paths of transitiometer experiments (see Fig. 11).

Fig. 11: Simulated traces of transitiometer runs for the class IIIm system with mole fractions x1 = 0.90
and 0.92 at 8 MPa.
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