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Abstract 
The effective thermal conductivity of Cu-Fe and Sn-Al miscibility gap alloys over a range of temperatures and volume 

fractions was determined using the Lattice Monte Carlo Method. The Cu-Fe system was found to have an effective 

conductivity predictable by the Maxwell-Eucken Model. The Sn-Al system was not consistent with any empirical 

model analysed. The microstructures of physical samples were approximated using a random growth algorithm 

calibrated to electron or optical microscope images. Charts of effective conductivity against temperature for a number 

of volume fractions are presented for the two alloys. It was determined that the Cu-Fe alloy would benefit from an 

interstice type microstructure and the Sn-Al would be more efficient with a hard spheres type microstructure. More 

general conclusions are drawn about the efficiency of the two observed microstructures. 

 

1 Introduction 
Processes that utilise intermittent heat resources stand to benefit considerably from a high energy density heat storage 

device. These processes may use the heat directly or through a power cycle transform the heat into electrical energy. 

For example power generation through concentrated solar thermal (CST) generation may overcome intermittency of 

the radiation source given an adequate heat storage device. 

 

Heat storage devices relying on a sensible method, by definition, deliver energy at a range of temperatures. 

Additionally the energy density is limited by the volumetric heat capacity of the material. Heat storage devices that 

incorporate a solid to liquid phase change benefit from the latent heat required (or available) in melting (or freezing) a 

material. A great number of materials incorporating a phase change have been identified and categorised on transition 

temperature [1-3]. Knowledge of how the materials behave thermally is paramount to their successful adoption. 

 

Most purely latent heat storage materials suffer from a number of limitations typically involving their low thermal 

conductivity, thermal stability and reactivity. As a consequence of these limitations a new range of thermal storage 

materials have been developed that take advantage of the favourable thermal properties of metals. 

 

Miscibility gap alloys (MGAs) are capable of storing thermal energy with high energy density and high thermal 

conductivity [4]. The alloys consist of a distributed metallic phase surrounded by another phase with a higher melting 

temperature. The two (or more) metals must be strongly immiscible to prevent the formation of solid solutions or 

intermetallics. The distributed phase may then freeze or melt, releasing or storing a large amount of thermal energy at 

a temperature without degradation of the system.  

 

The microstructure of these MGAs consists of a dispersed fusible phase in a highly conductive solid matrix [4]. 

Efficient design of thermal storage devices employing MGAs necessitates knowledge of their effective thermal 



conductivity, specific heat capacity and density. The storage capacity and charge/discharge rates for the material may 

be determined and thus a device rated to an application. The wide range of volume fractions. morphologies and 

constituent thermal conductivities encountered in the different MGAs warrant an advanced approach to estimating the 

effective thermal properties aforementioned.  

 

The two MGAs of interest in this paper are the Copper-Iron and Tin-Aluminium systems (Fusible Phase-Matrix 

Phase). Though the thermal properties of the constituents are well understood and documented [5, 6], the properties of 

the alloy at differing composition are more uncertain. This research addresses existing methods of numerically 

evaluating the properties of the alloys and proposes the use of the Lattice Monte Carlo (LMC) method as a viable 

means of predicting the Effective thermal conductivity for the thermal storage systems. 

 

1.1 Effective Thermal Properties of Composites 
 

The thermal properties of concern for heat transfer modelling of a solid are isobaric specific heat capacity, density and 

thermal conductivity. Each of these properties should be considered temperature dependent. On phase change the 

thermal properties are often found to change significantly. It may be readily shown that effective specific heat capacity 

for a composite is the mass fraction weighted average of the component heat capacities. The effective density of a 

composite is the volume fraction weighted average of the component densities.  

 

In contrast to these scalar properties, thermal conductivity is influenced by more than the constituent properties and 

relative amounts of the components in a composite. Shape, distribution and orientation of the phases all contribute to 

the effective conductivity of the material [7]. A great quantity of literature exists on determining the thermal 

conductivity of composites from both theoretical and experimental bases [8]. 

 

The alloys considered in this paper have been found experimentally to have differing microstructures [4]. The Cu-Fe 

systems display a dispersion of near spherical inclusions of copper that may touch and intersect. The Sn-Al alloys 

have a microstructure where the fusible Tin looks to have flowed and filled the interstices between larger spherical 

Aluminium particles. These characteristics are shown in (Figure 1): 

 

a)  b)  
Figure 1 Morphology of Cu-Fe (a) and Sn-Al (b) microstructures. (a) is an optical microscope image whilst (b) is an SEM image. The 

Cu-Fe alloy appears to resemble a random distribution of spheres. The Sn-Al alloy appears to resemble an interstice filling type 

structure. 

Regardless of the morphology, the effective conductivity is known to always fall within the Wiener bounds [9] given 

by the volume fraction weighted series and harmonic averages. Here k refers to conductivity, φ to volume fraction and 

the subscripts A and B refer to the fusible and matrix phases respectively.  

 

 𝑘̅𝑠𝑒𝑟 = 𝜑𝐴𝑘𝐴 + 𝜑𝐵𝑘𝐵 (1)  

 𝑘̅ℎ𝑎𝑟 = (
𝜑𝐴
𝑘𝐴

+
𝜑𝐵

𝑘𝐵
)
−1

 (2)  

 

The Maxwell-Eucken (ME1) model has been used to estimate the effective conductivity of a small dispersion of 

spheres in a matrix [10, 11]. The model assumes the temperature fields about each particle do not interact [7]. A 

relatively sparse distribution of spheres, like the apparent morphology of the Cu-Fe alloy, is likely to be predicted by 

this model. 

 

 𝑘̅𝑀𝐸1 =
𝑘𝐴𝜑𝐴 + 𝑘𝐵𝜑𝐵[3𝑘𝐴 (2𝑘𝐴 + 𝑘𝐵)⁄ ]

𝜑𝐴 + 𝜑𝐵[3𝑘𝐴 (2𝑘𝐴 + 𝑘𝐵)⁄ ]
 (3)  



 

The Maxwell-Eucken model has been modified (ME2) to also estimate the other extreme of a large volume fraction of 

particles by interchange of the A and B phases in equation 3 [12]. 

 

 𝑘̅𝑀𝐸2 =
𝑘𝐵𝜑𝐵 + 𝑘𝐴𝜑𝐴[3𝑘𝐵 (2𝑘𝐵 + 𝑘𝐴)⁄ ]

𝜑𝐵 +𝜑𝐴[3𝑘𝐵 (2𝑘𝐵 + 𝑘𝐴)⁄ ]
 (4)  

 

Another model commonly utilised assumes a macroscopically isotropic distribution of components and has an implicit 

solution. The effective mean field theory was first proposed by Bruggeman in 1935 [13]. The effective conductivity is 

found on an implicit solution of the following. 

 

 (1 − 𝜑𝐵)
𝑘𝐴 − 𝑘̅𝐸𝑀𝑇

𝑘𝐴 + 2𝑘̅𝐸𝑀𝑇

+ 𝜑𝐵

𝑘𝐵 − 𝑘̅𝐸𝑀𝑇

𝑘𝐵 + 2𝑘̅𝐸𝑀𝑇

= 0 (5)  

 

A more recent model discussed by del Rio et. al. in 1998 [14] estimates effective conductivity through approximately 

satisfying the reciprocity conditions (developed by Keller in 1964 [15] for 2d systems of parallel cylinders) of 

statistically equivalent binary components. Here the ratio of conductivities was given as r = kB/kA. The following 

model is referred to at the reciprocity model in this paper. 

 

 𝑘̅𝑟𝑒𝑐 = 𝑘𝐴
1 + 𝜑𝐴(𝑟

0.5 − 1)

1 + 𝜑𝐴(𝑟
−0.5 − 1)

 (6)  

 

Though grounded in either geometric or statistical theory all of these five models are independent of the shape, 

distribution and orientation of inclusions. Thus they are limited to a particular subset of microstructures. Many 

additional models exist that take into account these factors but as each cater for only a specific range of shapes and 

materials they have little generality [8]. In addition to calculating the effective thermal conductivity of the Cu-Fe and 

Sn-Al alloys we also seek to identify which, if any, of the models described suit each microstructure type. 

 

To better observe how altering a microstructure might optimise thermal conductivity a property was developed called 

microstructural efficiency. This was defined as the ratio of the effective conductivity to the series average. This is 

described mathematically below. 

 𝜂𝑚𝑖𝑐𝑟𝑜 =
𝑘𝑒𝑓𝑓

𝑘̅𝑠𝑒𝑟
=

𝑘𝑒𝑓𝑓

𝜑𝐴𝑘𝐴 + 𝜑𝐵𝑘𝐵
 (7)  

 

1.2 Numerical Estimation of Effective Thermal Conductivity 
Lattice Monte-Carlo (LMC) analysis is a multi-scale modelling method for complex diffusion problems [16]. 

Complex geometries with varying conductivity are decomposed to a grid which virtual entities of energy or mass may 

explore. In a heat transfer problem the entities are considered to represent energy and they diffuse, free of potential, in 

a random walk. After a known period of time, the displacements of a very large number of particles are recorded. The 

isotropic and tensor components of conductivity are proportional to the ensemble averaged displacement 〈𝑅2〉 and the 

length of time 𝑡 over which they were permitted to wander as described in equation 8. The LMC method has been 

used successfully in heat transfer problems for multiphase composites [17-19] 

 

 𝑘 ∝
〈𝑅2〉

𝑡
 (8)  

 

If the dominant heat transfer mechanism can be assumed to be conduction, the LMC method is ideal for estimating the 

effective thermal conductivity of regular and irregular composite microstructures like those of an MGA. The LMC 

method was preferred over finite element methods due to its accuracy, inherent tensorial output and computational 

efficiency for steady state simulations. If a transient analysis was required a finite element simulation would generally 

be more computationally efficient. Obtaining these relationships is of interest in modelling MGAs at the macroscopic 

scale using effective properties. 

 

The LMC procedure described above requires a lattice on which to run. This lattice prescribes the location, relative 

size and shape of inclusions and also indicates the conductivity of each phase. The virtual energy particles are allowed 

to diffuse over the lattice with a probability described by the current and target node conductivities. The LMC steady 

state procedure simulates the effective conductivity of an infinite number of repeating cells. These cells are chosen to 

be sufficiently large with respect to the inclusion dimensions so that any artificial structuring from the periodic 



boundaries has a negligible influence on effective conductivity. Provided the lattice node density is great enough to 

adequately resolve the shape of the randomly placed inclusions, the simulated effective conductivity will be 

independent of inclusion size. That is, the effective conductivity for an infinite random microstructure is dependent on 

inclusion shape, orientation and packing; not on physical inclusion size. 

 

The complete microstructure of a physical specimen is difficult to transform into a digital format suitable for LMC 

simulations. Techniques utilising X-Ray tomography to non-destructively import the 3 dimensional spatial data 

exactly have been used in a wide variety of fields [20, 21]. Where this technique is not available the microstructure 

may be ‘grown’ with information taken from 2 dimensional slices of the real microstructure. The algorithm which 

builds the microstructure may be called a Random Microstructure Generation (RMG) Algorithm. 

 

The quality of the generated microstructure may be inferred through comparison of a number of correlation functions 

including the radial distribution and the two point probability functions as outlined in Torquato’s text [7]. The radial 

distribution function generates a curve indicating the fraction of the inclusion phase in sequential shells from the 

centre of each inclusion. The two point probability function generates a curve of the likelihood that a line of length R 

will have both its vertices within the same phase. These functions are performed on 2d images from optical or electron 

microscopy or on slices from generated microstructures. Analysing the variance between two curves for the data range 

gives a quantitative means of characterising spatial arrangements of constituents. 

 

The use of an LMC method on a RMG algorithm domain results in uncertainty in the simulated property. The 

uncertainty may be further classified as systematic or statistical. Systematic errors stem from periodic boundary 

interactions (size of repeating cell) and lattice sizing (decomposition of curvature). Statistical errors are inherent in the 

LMC method and can be minimised by increasing the number of particles and number of time steps in the analysis. 

External to the LMC method considerable uncertainties will likely exist in the constituent conductivities. 

 

An LMC simulation utilises a base cell with periodic boundaries. This base cell must be large enough, relative to the 

inclusion geometry, to avoid returning a perturbed conductivity for the ideally random microstructure. Above a certain 

critical cell size the standard deviation of simulated conductivity reaches a constant value. The critical cell size 

describes the smallest domain on which the LMC simulation can run whilst still eliminating the systematic error 

introduced by periodic boundaries. 

 

As with Finite Element techniques the LMC mesh must be fine enough to properly capture the geometric detail of the 

system. Regions of curvature, common in the microstructures of this research, require a high node density (when the 

grid is cubic) to be successfully captured in the mesh. Again, as the parameter of interest is thermal conductivity, the 

mesh should be fine enough such that an acceptably small variation in the LMC conductivity output is obtained. 

 

Statistical uncertainty in the LMC process arises from the finite number of particles and time involved in the 

simulation. The particles must be allowed to diffuse for a long enough time whereby an adequate portion of the 

medium is explored. Similarly, a large number of particles must be simulated such that a great number of different 

possible diffusion paths are represented in the simulation. 

1.3 Dominant Heat Transfer Mechanism 
Random heterogeneous systems are considered isolated from the environment for analysis of effective thermal 

conductivity. The heat transfer mechanisms within the medium available are conduction, natural convection and 

radiation off the inclusion walls. All metals in both solid and molten states are completely opaque, hence radiation can 

be neglected. Given the small size of inclusions, small temperature gradients across inclusions and the low thermal 

expansivity of the molten metals, the contribution to effective thermal conductivity from natural convection would be 

expected to be low. 

 

The dimensionless Rayleigh number is often used to describe the relative magnitude of buoyant and viscous forces in 

a fluid [22]. It is dependent on both fluid and geometry properties as the product of Prandtl and Grashof numbers.  

 

 𝑃𝑟 =
𝜈

𝛼
 (9)  

 𝐺𝑟 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿

3

𝜈2
 (10)  

 𝑅𝑎 = 𝑃𝑟 × 𝐺𝑟 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿

3

𝜈𝛼
 (11)  

 



Here 𝜈  is the kinematic viscosity, 𝛼  the thermal diffusivity, 𝑔 gravitational acceleration, 𝛽  volume expansivity, 𝑇𝑠 
surface temperature, 𝑇∞ bulk fluid temperature and L is a characteristic length (radius in this case). The Prandtl, 

Grashof and Rayleigh numbers are denoted by 𝑃𝑟, 𝐺𝑟 and 𝑅𝑎 respectively. 

 

It has been shown that when the Rayleigh number is less than 100, the heat transfer in a sphere of fluid would be 

dominated by conduction and result in a negligible velocity field [23]. Within a cube the limit has been shown to be 

nearer to Ra=3000 [24].  For the molten metals considered in this study the inclusions would have to approach a seven 

millimetre diameter to exceed the critical Rayleigh number of 100 with a temperature difference of 10 °C. 

 

A non-negligible velocity field may occur where inclusions manage to touch (percolate) and create long chains of 

molten metal. This is more likely at high volume fractions (φA>0.6) and with interstice type morphology. It is still 

expected that given the very small temperature gradients available during charging or discharging the transport via 

natural convection would be quite low. The impact of natural convection on effective thermal conductivity does not 

form part of this work. 

2 Results and Discussion 

2.1 Periodicity and Mesh Density Independence 
A Matlab® program was written to generate representative microstructures for the LMC program. The random 

microstructure generation program for the microstructures discussed in this paper utilised spheres with a specified 

base radius (R) and deviation (δR). The base radius was fixed as a proportion of the base cell size at the critical 

periodicity fraction (as demonstrated in Figure 2 and Figure 3). The spheres allowable radial intersection was specified 

with an intersection parameter (In) and the likelihood for sphere growth via percolation (touching or intersecting 

another sphere) was specified with a percentage (Pe).  

 

The parameters required as arguments for the random microstructure generation RMG were estimated by analysis of 

the real world microstructural images. Mean radius was provided such that periodicity and mesh independence were 

satisfied. The three remaining parameters controlling deviation, intersection and likelihood to percolate were set to 

zero or very low values for hard sphere type microstructures and were tuned for interstice type microstructures. 

 

Given the LMC procedure utilised periodic boundaries over a base cell, the base cell had to be of sufficient size to 

avoid representing a periodic microstructure. A previous study looked at a random distribution of inclusions with 

voxel (single element) volume and established that a three dimensional structure with size 1003 nodes was adequate to 

avoid periodic perturbations [17]. Given that the inclusions assessed in this work are spherical or spherical interstices 

made up of many nodes (many voxels volume) the study was repeated with the goal of determining a critical ratio 

between cell dimension and inclusion base dimension. 

 

A volume fraction of 20% was found to create the largest systematic errors from cell size in the work of Fiedler et. al. 

[17]. This volume fraction was considered for the hard sphere analysis of this paper. Ten microstructures were grown 

for each cell size with the same generation parameters. The effective conductivity was obtained for each 

microstructure and the standard deviation calculated between those of the same cell size as shown in Figure 2. The 

critical cell size to inclusion radius was found to be around 16 for hard spheres. Beyond this ratio the standard 

deviation of conductivity measurements was almost constant at about one half the statistical uncertainty of the LMC 

process. 



 
Figure 2 The Normalised Standard Deviation of effective conductivity for hard spheres (20% Vf.). 

A ratio of 16 times the base radius of matrix material was found to minimise the standard deviation to near constant 

for the alternate morphology of interstices. The analysis was repeated for a microstructure with a range of volume 

fractions. The results of this are shown in Figure 3. 

 
Figure 3 The Normalised Standard Deviation of effective conductivity for interstices over a range of volume fractions. 

The second source of systematic error, mesh density, was also analysed by first randomly generating a typical 3 

dimensional microstructure for both hard spheres and interstices. This microstructure was saved as centre and radius 

data only before it was decomposed upon grids with varying nodal density as shown in Figure 4. The conductivity was 

obtained using the LMC method for each mesh density, the density at which the conductivity became constant was 

determined to be the critical mesh density. This is presented as the number of nodes across the base radius. 

 

a)  b)  c)  
Figure 4 Increasing mesh density on a slice midway through the simulation domain for 20% inclusion volume fraction of hard spheres. 

a) 2 nodes across base radius, b) 10 nodes across base radius, c) 50 nodes across base radius. 



It was found that for hard spheres a minimum number of 10 nodes across the inclusion base radius were necessary to 

eliminate the mesh error. Too few nodes could not capture the detail of the inclusion curvature. The results of the 

analysis are presented in Figure 5. 

 

 
Figure 5 Normalised Effective Conductivity for 20% Volume Fraction of Hard Spheres and 35% Volume Fraction of Interstices. Those 

to the right of the dashed vertical line are considered mesh independent. 

For inclusion type microstructures the mesh utilised could also be quite coarse without a large change in the effective 

conductivity. The influence of increasing mesh density on the appearance of the generated microstructure is shown in 

Figure 6. Ten nodes across the inclusion base radius was the lowest resolution at which the conductivity fell within the 

statistical uncertainty for any increase in node number as indicated in Figure 5. 

 

a)  b)  c)   

Figure 6 Increasing mesh density on a slice midway through the simulation domain for 35% inclusion volume fraction of interstices. a) 2 

nodes across base radius, b) 10 nodes across base radius, c) 50 nodes across base radius. 

2.2 Real and Generated Microstructures 
The samples were prepared by mixing and pressing a mixture of metal powders into a specially designed canister. The 

Sn-Al samples were fired at 500 °C for 1 hour and the Cu-Fe samples at 1000 °C for 2 hours under an inert 

atmosphere. Physical samples were sectioned then wet ground and polished to a 6 μm diamond finish for metallurgical 

optical images and 1 μm for Back Scattered Electron (BSE) images. Optical images were then taken using an 

Olympus BX60M Microscope. BSE images were collected on a Philips XL-30 SEM. These images were fed into an 

image processing routine written in Matlab® which converted the images to a binary map upon which two point 

correlation functions could be performed. These functions were then used to characterise the physical specimens and 

compare them quantitatively to their generated equivalents.  

 

The Copper-Iron microstructure had copper particles quite regular in size and shape. The samples were sintered below 

the melting temperature of copper and hence this discrete phase did not have the mobility of a liquid whilst the matrix 

sintered. The generated microstructures were found to have very similar radial distribution and two point probability 

to the real microstructures. The correlation functions variance between real and RMG was comparable in most cases 



to the variance observed between real images. Typical microstructures of both real and generated microstructures are 

shown along with their generation properties and correlation function variances in Table 1. 

 

 

Original Microstructure Generated Microstructure Properties 

Correlation 
Function Mean 

Variance Between 
Real Images 

Correlation 
Function 

Mean 
Variance 

Between Real 
and Grown 

Images 

  

Alloy Properties: 

Cu-Fe 20% Vf. 
 

Generation 
Properties: 

δR = 20% 
In = 0% 

Pe = 50% 

Radial Distribution: 

2.58×10-4 
Two Point: 

3.27×10-4 

Radial 
Distribution: 

6.37×10-4  
Two Point: 

7.34×10-4  

  

Alloy Properties: 

Cu-Fe 40% Vf. 
 

Generation 
Properties: 

δR = 20% 
In = 0% 

Pe = 50% 

Radial Distribution: 
7.44×10-4 

Two Point: 

7×10-4 

Radial 
Distribution: 

7.77×10-4  
Two Point: 

5.83×10-4 

  

Alloy Properties: 

Cu-Fe 50% Vf. 
 

Generation 
Properties: 

δR = 20% 
In = 15% 
Pe = 25% 

Radial Distribution: 

8.85×10-4 
Two Point: 

8.56×10-4 

Radial 
Distribution: 

4.18×10-5  
Two Point: 

1.39×10-5  

  

Alloy Properties: 

Cu-Fe 60% Vf. 
 

Generation 
Properties: 

δR = 20% 
In = 15% 
Pe = 25% 

Radial Distribution: 

8.20×10-4 
Two Point: 

1.1×10-3 

Radial 
Distribution: 

2.93×10-5  
Two Point: 

4.73×10-5  

Table 1 Original and grown microstructure morphology for Cu-Fe alloys with the generation parameters δR being Radial Deviation, In 

Intersection allowance and Pe being likelihood to grow by percolation. The mean variance between the generated and the real image 

correlation functions is given along with the mean variance observed between real images. 

The quality of the Cu-Fe generated microstructures was found to be quite high as indicated in Table 1. Graphical 

representations of slices of the grown 3d structure were visually similar to the real optical micrographs. The radial 

distribution and two point correlation functions were also very similar between real and generated images. The 

similarity is reflected in the comparable average variances between these function. This suggests that the shape of the 

inclusions and their distribution were realistic in the grown microstructures. 

 

The microstructure observed for the Sn-Al alloy, which was sintered above the melting temperature of tin, was rather 

different to the Cu-Fe alloy. The Tin phase had flowed to fill the interstices between almost spherical Aluminium 

matrix particles. This morphology was generated by growing percolating and highly intersecting small spherical 

inclusions of the matrix phase. This differed from the Cu-Fe case where fusible Cu was the grown phase. Again, the 

correlation function variance between real and RMG was comparable to the internal variance between real images at 

the same volume fraction. Images and information regarding the Sn-Al generated microstructures are shown below in 

Table 2. 



Original Microstructure Generated Microstructure Properties 

Correlation 
Function Mean 

Variance 
Between Real 

Images 

Correlation 
Function Mean 

Variance 
Between Real 

and Grown 
Images 

  

Alloy 
Properties: 

Sn-Al 20% Vf. 
 

Generation 
Properties: 

δR = 75% 
In = 30% 
Pe = 30% 

Radial 
Distribution: 

6.93×10-4 
Two Point: 

7.37×10-4 

Radial 
Distribution: 

2.2×10-4 
Two Point: 

5.19×10-5 

  

Alloy 
Properties: 

Sn-Al 40% Vf. 
 

Generation 
Properties: 

δR = 75% 
In = 30% 
Pe = 30% 

Radial 
Distribution: 

5.31×10-4 
Two Point: 

5.80×10-4 

Radial 
Distribution: 

1.3×10-3 
Two Point: 

7.74×10-4 

  

Alloy 
Properties: 

Sn-Al 50% Vf. 
 

Generation 
Properties: 

δR = 75% 
In = 30% 
Pe = 30% 

Radial 
Distribution: 

1.9×10-2 
Two Point: 

2.0×10-2 

Radial 
Distribution: 

1.2×10-3 
Two Point: 

1.14×10-4 

  

Alloy 
Properties: 

Sn-Al 60% Vf. 
 

Generation 
Properties: 

δR = 75% 
In = 30% 
Pe = 30% 

Radial 
Distribution: 

1.5×10-3 
Two Point: 

1.8×10-3 

Radial 
Distribution: 

2.72×10-4 
Two Point: 

2.13×10-4 

Table 2 Original and grown microstructure morphology for Sn-Al alloys with the generation parameters δR being Radial Deviation, In 

Intersection allowance and Pe being likelihood to grow by percolation. The mean variance between the generated and the real image 

correlation functions is given along with the mean variance observed between real images. 

The randomly grown Sn-Al microstructures were also of high quality. By observation, they closely represented the 

electron micrographs of the physical samples. This similarity is quantified in the correlation function mean variances. 

The real-real and real-grown mean variances were comparable for all volume fractions. It can be seen by comparison 

of the correlation function variances that the Cu-Fe type microstructures had a closer representation. 

2.3 Effective Conductivity 
The constituent thermal conductivities were taken from C. Y. Ho et. al. [5]. This temperature dependent data formed 

the constituent conductivities of each phase in the alloy microstructures. The differing microstructures were then 

simulated over a range of temperatures and the derived effective conductivity was recorded. The Cu-Fe data is 

displayed in Figure 7, whilst the Sn-Al data is presented in Figure 8. Additional tabulated data is presented in 

Appendix A. 

 

Both materials simulated displayed a reduction in effective thermal conductivity with temperature similar to the 

constituent behaviour. The reduction in conductivity over the phase change is, as expected, more pronounced as the 

volume fraction of the fusible phase increases. The high effective thermal conductivity prior to phase change presents 

a significant benefit in allowable charging rate for a large volume of the material. The following results are valid to a 

maximum discrete particle size of 7 mm, above which natural convection may become significant in thermal transport. 

 



The Cu-Fe temperature dependent effective conductivity for volume fractions up to 60% are shown in Figure 7.The 

Cu-Fe system had the high conductivity phase as the inclusion and hence the overall thermal conductivity increased 

with volume fraction. The thermal conductivity of the copper constituent demonstrates a near linear decrease to the 

phase change discontinuity whilst the Iron conductivity exhibits a minimum at 800 °C. For all volume fractions the 

solid effective conductivity decreased to the 800 °C minima, flattening as the volume fraction increased. Above the 

melting temperature of Copper both materials had a positive conductivity-temperature gradient and this behaviour has 

been mimicked in the effective property. 

 

 
Figure 7 Effective thermal conductivity against temperature for Cu-Fe Volume fractions. Pure Copper and Iron are also shown for 

comparison. The melting temperatures of Copper and Iron are 1085 °C and 1538 °C respectively. 

The temperature dependent effective conductivity of Sn-Al for volume fractions to 60% are shown in Figure 8. 

Aluminium is the more conductive material in the Sn-Al alloy and formed the matrix, thus the alloys effective 

conductivity dropped with increasing volume fraction of Sn. Solid Tin has a slightly concave up conductivity shape 

whilst Aluminium exhibits a maximum at 100 °C. The solid alloy effective conductivity thus varied from concave 

down, through a near linear decrease, to concave up as the Sn volume fraction increased. The conductivity-

temperature gradient of the alloy above the melting temperature of Tin was found to decrease for low volume fractions 

and increase for higher volume fractions.  

 

 
Figure 8 Effective thermal conductivity against temperature for Sn-Al Volume Fractions. Pure Aluminium and Tin are shown for 

comparison. The melting temperatures of Tin and Aluminium are 232 °C and 660 °C respectively. 

A comparison was made to the statistical models of equations 1- 5 to ascertain whether they could be useful in 

predicting the effective MGA behaviour. The Cu-Fe composite was found to have an effective thermal conductivity 

similar to that predicted by the Maxwell-Euckman model at all temperatures and for volume fractions less than 50% 

Cu. At volume fractions of copper greater than or equal to 50% the Maxwell-Euckman model was found to be 



inadequate. This is due to the assumption of the ME model that the discrete phase consists of randomly distributed 

non-interacting spheres. It can be observed in the microscope images of Table 1 that at 50% Cu volume fraction the 

onset of percolation began, causing the spheres to thermally interact with each other. The Bruggeman, Reciprocity and 

ME2 models over-predicted the conductivity, the latter model with the greatest divergence. The comparison is shown 

graphically in Figure 9 for a volume fraction of 40% Copper. 

 

 
Figure 9 Statistical Model Estimation of effective conductivity for Cu-Fe 40%, the simulated data are crosses. The original Maxwell-

Eucken 1 model best fitted the data. 

The Sn-Al alloy morphology was dissimilar to the assumed structures of the statistical models discussed in this paper.  

The Maxwell models were derived on a distribution of non-interacting spherical inclusions or omissions, poorly 

matching the morphology of the Sn-Al alloys. The Reciprocity based model diverged less than the ME1 model but 

still gave a poor representation at all volume fractions save 50%. The Bruggeman model, based on an ideally isotropic 

case, gave a closer estimate than the Maxwell models but still gave errors greater than 5%. These results are shown in 

Figure 10 again for 40% volume fraction of inclusion material. 

 
Figure 10 Statistical Model Estimation of effective conductivity for Sn-Al 40% the simulated data are crosses. None of the models could 

closely fit the data. The Bruggemann model was the best of those analysed. 

In understanding how a microstructure might be optimised for effective thermal conductivity, a further study was 

undertaken. The ratio of effective conductivity may be normalised against the series solution to provide a 

microstructural efficiency (Eq. 6). This efficiency is a function both of the sample morphology and the ratio of 

constituent conductivities. The efficiency also depends on whether the more conductive constituent forms the 

inclusion or the matrix phase. 

 



It was found that for a more conductive matrix a hard spheres type microstructure was more efficient than an 

interstices type microstructure. For a more conductive inclusion phase the interstice type morphology was more 

efficient. This suggests that the Cu-Fe alloy would benefit from being sintered above the melting temperature of 

copper, or by using less spherical copper powder. Inversely, the Sn-Al alloy would be more efficient if it had of been 

sintered below the melting temperature of Tin obtaining a more spherical inclusion shape. The difference is more 

noticeable for large conductivity ratios. 

 

More generally, where the inclusion was more conductive the interstice type microstructure was more efficient over 

all volume fractions examined. This can be seen in Figure 11. Where the inclusion is less conductive, as seen in Figure 

12, the microstructural efficiency of the hard spheres type microstructure is higher for all volume fractions tested. The 

difference is more pronounced as the inclusion conductivity increases. With increasing constituent conductivity ratio 

the microstructural efficiency is also seen to drop. It should be noted that microstructural efficiency must converge to 

unity at 0% and 100% volume fractions. 

 

 
Figure 11 Microstructural efficiency of Hard Spheres (H.S.) and Interstices (Int.) for a range of volume fractions and four different 

ratios of inclusion to matrix conductivity. Here the inclusions are more conductive than the matrix. 

 
Figure 12 Microstructural efficiency of Hard Spheres (H.S.) and Interstices (Int.) for a range of volume fractions and four different 

ratios of inclusion to matrix conductivity. Here the inclusions are less conductive than the matrix. 

3 Conclusions 
The effective thermal conductivity for potential thermal storage media Cu-Fe and Sn-Al immiscible alloys have been 

estimated through a Lattice Monte Carlo (LMC) procedure. The physical threshold size for conduction dominated heat 

transfer in molten inclusions was determined to be less than 7 mm for the fusible phases. The computational alloy 



microstructures were grown by calibrating a Random Microstructure Generation (RMG) algorithm to Optical and 

SEM microstructure images. The RMG and LMC processes were validated for physical similarity, mesh independence 

and periodicity. It was found that the Cu-Fe alloy would have a higher effective conductivity if it were sintered above 

the melting temperature of copper. Inversely, the Sn-Al alloy would have a higher effective conductivity if the Tin 

inclusions were spherical. Generally a low conductivity inclusion is more microstructurally efficient with a hard 

spheres microstructure morphology, whilst a high conducting inclusion is more efficient with an interstice type 

microstructure. 
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Appendix (Tabulated Effective Thermal Conductivity Data)  
Table 3 Effective Thermal Conductivity of Cu-Fe Alloy. 

Volume Fraction of Copper 

  0% 10% 20% 30% 40% 50% 60% 100% 

T [°C] Effective Conductivity [W/m.K] 

0 83.5 ± 1.67 97.3 ± 2.32 114.4 ± 2.96 133.7 ± 3.6 156.6 ± 4.24 186.0 ± 4.88 220.2 ± 5.52 403.0 ± 8.06 

250 59.7 ± 1.2 72.7 ± 1.92 86.7 ± 2.57 103.4 ± 3.23 124.7 ± 3.88 155.0 ± 4.53 188.3 ± 4.53 384.4 ± 7.68 

500 44.8 ± 0.9 55.3 ± 2.41 67.5 ± 3.81 82.0 ± 5.21 100.1 ± 6.61 113.0 ± 8.01 146.1 ± 9.41 368.0 ± 14.7 

750 30.8 ± 0.62 40.8 ± 1.93 50.8 ± 3.26 62.9 ± 4.6 79.5 ± 5.93 108.7 ± 7.26 141.7 ± 8.59 350.4 ± 14.0 

1000 29.6 ± 0.59 37.7 ± 1.87 47.0 ± 3.16 58.4 ± 4.44 74.0 ± 5.72 102.0 ± 7.00 133.0 ± 8.28 334.0 ± 13.3 

1084 30.7 ± 2.46 39.0 ± 3.53 48.3 ± 4.60 60.1 ± 5.67 75.5 ± 6.74 102.9 ± 7.81 133.2 ± 8.88 328.0 ± 13.1 

1084 30.7 ± 2.46 36.3 ± 4.72 43.2 ± 6.97 50.9 ± 9.22 59.8 ± 11.4 72.5 ± 13.7 86.6 ± 15.9 166.0 ± 24.9 

1250 32.8 ± 2.62 39.0 ± 4.95 45.7 ± 7.27 53.5 ± 9.59 63.4 ± 11.9 76.6 ± 14.2 90.8 ± 16.5 171.6 ± 25.7 

 
Table 4 Effective Thermal Conductivity of Sn-Al Alloy. 

Volume Fraction of Tin 

 
0% 10% 20% 30% 40% 50% 60% 100% 

T [°C] Effective Conductivity [W/m.K] 

0 236.0 ± 7.08 215.2 ± 6.59 192.1 ± 6.09 165.0 ± 5.58 149.8 ± 5.08 125.7 ± 4.57 110.7 ± 4.07 68.2 ± 2.05 

50 239.0 ± 7.17 217.7 ± 6.67 193.5 ± 6.14 164.8 ± 5.62 148.0 ± 5.10 124.3 ± 4.58 109.1 ± 4.06 65.5 ± 1.97 

100 240.0 ± 7.2 217.5 ± 6.69 191.8 ± 6.15 163.7 ± 5.62 146.8 ± 5.09 122.5 ± 4.56 107.2 ± 4.03 63.2 ± 1.90 

150 239.0 ± 7.17 216.8 ± 6.66 191.0 ± 6.12 161.8 ± 5.59 145.5 ± 5.05 120.4 ± 4.52 104.9 ± 3.99 62.6 ± 1.88 

200 237.0 ± 7.11 214.6 ± 6.6 189.8 ± 6.06 160.1 ± 5.53 142.9 ± 5.00 118.2 ± 4.47 102.8 ± 3.94 60.2 ± 1.81 

231 235.8 ± 7.074 214.8 ± 6.56 187.8 ± 6.03 158.9 ± 5.5 142.3 ± 4.97 117.3 ± 4.44 102.1 ± 3.91 59.5 ± 1.79 

232 235.8 ± 7.074 204.8 ± 6.53 170.6 ± 5.98 133.0 ± 5.42 114.5 ± 4.86 84.7 ± 4.31 68.7 ± 3.75 30.3 ± 1.52 

300 233.0 ± 6.99 203.5 ± 6.46 169.8 ± 5.92 133.5 ± 5.38 115.4 ± 4.84 86.4 ± 4.3 70.4 ± 3.76 31.7 ± 1.59 

 


