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Abstract 

The macroalgae Sargassum muticum was selected for the treatment of solutions 

containing Cr(VI). Very acidic pH values were established as optimal for Cr(VI) 

reduction. Algae chemical modification reduced equilibrium time to 4 hours. First order 

kinetic model was used to describe the reduction kinetic of Cr(VI). A column 

experiment allowed to distinguish the processes occurring during Cr(VI) elimination: its 

reduction to Cr(III) and the subsequent adsorption of this species formed. Under the 

selected conditions the biomass was capable of reducing all the incoming Cr(VI) during 

77 hours. Industrial wastewaters from chrome plating industry were also tested for 

chromium removal. 
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1. Introduction 

Hexavalent chromium is used in many industrial processes such as electroplating, wood 

preservation, corrosion control or leather tanning, among others. Therefore, several 

chromium compounds are released into the natural environment, mostly as Cr(VI) and 

Cr(III) forms [1]. It is well established that Cr(VI) is likely to be carcinogenic, 

mutagenic and teratogenic to animals and humans via ingestion [2]. During the last 

decades, the dumping of wastes containing Cr(VI) into natural ecosystems becomes a 

real concern. Then, is necessary to establish maximum limits for the discharge of this 

contaminant. The United States Environmental Protection Agency limit for Cr  (total) in 

drinking waters is 0.1 mgL-1 [3]. 

Traditionally, the removal of Cr(VI) from wastewaters has been developed in two steps. 

The first step is the chemical reduction of Cr(VI) to Cr(III), followed by the 

precipitation of Cr(III) as Cr(OH)3 [4]. This technique involves some disadvantages like 

secondary pollution, high chemical and energy requirements or excessive costs. 

Therefore, several studies can be found in literature related to develop more cheap and 

efficient processes for Cr(VI) contamination control. Different materials of natural 

origin have been tested by many authors for Cr(VI) remediation. Seaweeds [5-9], 

agriculture by-products and wastes [10-14], together with other materials like bracken 

fern [15] or lignin [16] have been proposed as  low cost alternatives to traditional 

methods. 

The extensive study of the interaction between Cr(VI) and natural materials had 

established that not only biosorption, but also reduction, are the processes responsible 

for Cr(VI) elimination from solution [17, 18]. Therefore, the use of classic isotherm, 

like Langmuir or Freundlich models, to describe Cr(VI) removal by biomaterials is 
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erroneous. These equations have no application for a redox reaction, but they can be 

applied to describe the total chromium or trivalent chromium removal. In this case, is 

important to be sure that equilibrium state has been achieved. Park et al. [17, 19] have 

definitively contributed to shed some light on these fundamental aspects. 

In this work, various materials have been tested as possible Cr(VI) bio-reductants. The 

raw and protonated form of the macroalgae Sargassum muticum have been selected for 

a more detailed study. This brown seaweed, originated from Japan, is considered an 

invasive species in European coast. Their uncontrolled spread produces several damages 

to environment, fisheries and tourism [20]. During the last decade our group have 

dedicated a great effort to find a practical application for this biomass as an effective 

agent in wastewater treatment [21-26]. Following, here are included experiments for the 

determination of optimum removal pH, biomass dose and kinetic studies centred in 

hexavalent chromium removal. Moreover, a dynamic test in column has also been 

carried out. Evidences of Cr(III) retention on the biomass has been found in this column 

study despite the unfavourable conditions for its adsorption. Finally, the raw and 

protonated Sargassum muticum have been used for the treatment of real wastewaters 

from an electroplating industry. 

2. Experimental methods 

2.1 Biomass 

The materials used in this work: Sargassum muticum (brown algae), Gelidium 

sesquipedale and Chondrus crispus (red algae), hottentot fig (Carpobrotus edulis), 

bracken fern (Pteridium aquilinum), pine cone, pine needles, wild blackberry (Rubus 

ulmifolius) leaves, orange peel and quitin (obtained from spider crab shells [27]), were 

collected in Galicia (NW Spain). They were washed twice with tap water to eliminate 
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impurities, oven dried at 60 ºC overnight, crushed with an analytical mill (IKA A 10, 

Werke GmbH & Co. KG, Staufen, Germany), sieved (size fraction of 0.5-1 mm) and 

stored in polyethylene bottles until their use. 

The raw S. muticum biomass was acid-treated in order to obtain its fully protonated 

form. It was soaked and shacked in a 0.2 molL-1 HNO3 solution using a rotary shaker 

(175 rpm) during 4 h, at a biomass concentration of 10 gL-1. Afterwards, the material 

was rinsed thoroughly with deionised water until pH 4.5 was attained. Following 

filtration, treated biomass was dried in an oven at 60 ºC overnight. 

2.2 Reagents 

The reagents used in this work were HNO3 and H2SO4 from Merck (Merck, Darmstadt, 

Germany, pro analysis, p.a.), 1,5-diphenylcarbazide from Aldrich (Sigma-Aldrich, 

Germany) and K2Cr2O7·2H2O p.a. from Panreac (Panreac Química S.A., Barcelona, 

Spain). All solutions were prepared with deionised water. 

2.3 Analytical techniques 

A standard colorimetric method was employed to determine Cr(VI) concentration in 

solution [28]. This procedure measures only hexavalent chromium by reaction with 1,5-

diphenylcarbazide in acid solution. A red-violet complex is formed and measured 

spectrophotometrically at 540 nm (Cary 100 Bio UV-visible, Varian, Palo Alto, CA, 

USA). Total Cr concentration was determined by FAAS (Atomic Absorption 

Spectrometer- Varian 55B). The concentration of trivalent chromium was calculated as 

the difference between total chromium and hexavalent chromium concentrations. 

Fourier Transform Infrared (FTIR) spectroscopy was used to identify the chemical 

groups present in the raw and protonated Sargassum muticum. The samples were 
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examined within the range 350-4000 cm-1 using a Bruker spectrophotometer (model 

Vector 22) equipped with a Speac Golden Gate ATR (attenuated total reflection) device. 

This technique allowed analysing the samples (fine powder) directly without KBr 

grinding. 

2.4 Screening 

Hexavalent chromium solutions of 100 mgL-1 were prepared dissolving exact quantities 

of K2Cr2O7·2H2O in deionised water. 0.1 g of biomass was putted in contact with 40 

mL of the chromium salt solution. A pH value of 1 was achieved and maintained during 

the experiments with small volumes of HNO3 65%. The mixtures were stirred in a 

rotary shaker (175 rpm) during 24 hours and then, they were analysed to determine the 

Cr(VI) concentration in solution. 

The Cr(VI) removal percentages were calculated from the expression: 

       (1) 

Where Ci is the initial Cr(VI) concentration and Cf is the Cr(VI) concentration after 24 

hours of contact time. 

2.5 Biomass dose 

These studies were carried out in order to estimate the optimum biomass dose for 

maximum elimination of Cr(VI) from solution. Different amounts of raw biomass, 

varying between 0.5 and 7.5 mgL-1, were equilibrated with 40 mL of Cr(VI) solution 

(100 mgL-1) during 24 h. The solution pH was fixed at 1. 

2.6 Effect of pH on metal reduction 
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The dependence of Cr(VI) elimination on solution pH was studied in batch experiments 

in the pH range from 1 to 6. For this purpose 0.1 g of biomass were placed in 

Erlenmeyer flasks with 40 mL of metal solution (100 mgL-1). The mixtures were stirred 

on a rotary shaker at 175 rpm for 24 h (room temperature). The pH was adjusted by 

addition of NaOH and HNO3 (Merck p.a.) solutions. The hexavalent chromium 

concentration was calculated as mentioned above. 

2.7 Kinetic studies 

The experiments were performed in a thermostated vessel (25.0 ± 0.1 ºC). 0.25 g of 

Sargassum muticum were mixed under agitation with 100 mL of Cr(VI) solution of 

different concentrations: 20, 50, 100 and 200 mgL-1 (raw biomass) or 50 and 100 mgL-1 

(protonated biomass). The pH was maintained at a constant value of 1. Several aliquots 

were collected at different times in order to determine the Cr(VI) concentration. 

2.8 Column experiment 

The column experiment was carried out in a glass column of 3 cm internal diameter and 

40 cm length, filled with 30 g of protonated Sargassum muticum. A porous sheet was 

attached at the bottom of the column in order to support the biomass, and to ensure 

uniform inlet flow and a good liquid distribution into the column. The top of the bed 

was closed by a 10 cm height layer glass beds (1 mm diameter), which avoid the loss of 

biomass and also ensure a closely packed arrangement. A 50 mgL-1 Cr(VI) solution was 

fed through the bed in up-flow mode at 10 mLmin-1 using a peristaltic pump (Watson 

Marlow) connected at the bottom of the column. The pH of the incoming solution was 

fixed at 1. Samples were collected periodically. The concentrations of the chromium 

species in solution were determined as mentioned above. 

2.9 Industrial wastewaters 
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Batch experiments were also carried out to treat wastewaters from a chrome plating 

industry. The materials used in this study were: the raw and protonated algae Sargassum 

muticum and the bracken fern biomass. They were putted into contact with 40 mL of the 

wastewaters during 48 h at the optimal dose. After this time, Cr(VI), Cr(III) and total Cr 

concentrations were determined. Two pH values were tested, natural (not fixed) and 1. 

3. Results and discussion 

3.1 Screening 

Chromium removal from wastewaters using biomaterials is well stated as an adsorption-

coupled reduction process [17]. In order to favour the reduction reaction of the 

hexavalent chromium a very acidic pH was selected. Very low pH values could avoid 

operating a system based on this technology. Nevertheless, it can be directly applied, for 

example, at the end of some acidic washing cuvettes in chromium plating plants, where 

solution pH values are lower than 2. 

Different materials were studied at pH 1 in order to evaluate their potential use in Cr(VI) 

removal processes. Figure 1 shows the Cr(VI) elimination percentages obtained for each 

biomass. Most of the selected materials in this screening were able to remove high 

quantities of Cr(VI). In fact, only two of them (Chondrus crispus and chitin) presented 

removal percentages lower than 40%. The brown seaweed Sargassum muticum, both 

raw and acid treated forms, along with bracken fern, hottentot fig and Rubus ulmifolius 

present removal percentages close to 100%. Therefore, these materials could be 

considered for their use in Cr(VI) decontamination technologies, considering the good 

removal results. 

Regarding the chemical composition of these materials, we can find a wide variety of 

compounds and many structural differences. The main structural polysaccharide present 
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in most of them is cellulose (1-4 linked β-D-glucose). Sargassum muticum is an 

example of brown algae, which are formed by different kinds of polysaccharides, 

mainly alginates (1-4-linked β-D-mannuronate and α-L-guluronate) and fucoidans (α-L-

fucose). Gelidium sesquipedale and Chondrus crispus are red algae constituted by 

carrageenans (3-linked β-D-galactopyranose and 4-linked α-D-galactopyranose) and 

agar (L,D-(3-6)-anhydro-α-galactopyranose). All these macroalgae also contain a great 

number of hydroxyl groups that form part of the polysaccharide structure and an 

internal cell wall composed by cellulose [29, 30]. The other materials are basically 

composed by lignin (methoxylated monolignol monomers), cellulose and hemicellulose, 

or acetylglucosamine (2-Acetylamino-2-deoxy-D-glucose), in the case of the chitin. 

Nevertheless, they all share the ability to reduce Cr(VI) to Cr(III) due to the presence of 

a great number of chemical entities, such as phenols or amino groups, that act as 

electron donors. 

As stated in the introduction section, Sargassum muticum was selected not only for its 

good removal results but also for its abundance and problems associated with its spread. 

The treatment of the algae is also significant in order to obtain stable biomass suitable 

for industrial use. As in many parts of the world, this macroalgae is also considered an 

invasive species in Galician coats, which implies an important environmental hazard 

and also a risk for the aquaculture industry, with a great importance in this Spanish 

region. These problems require the removal of the algae from the sea and its treatment 

as a waste. Therefore, the search for an application regarding this seaweed is of great 

importance. Nevertheless, some limitations concerning optimal operation pH, 

stabilization of the material or processing of the generated metal-biomass should be 

taken into account. 
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FTIR spectroscopy was used to identify the chemical groups present in raw and 

protonated S. muticum. The results are showed in Figure 2. The broad band at 3276-

3332 cm-1 shows the presence of free and intermolecular bounded –OH and –NH groups. 

The band that appeared at 2923-2935 cm-1 indicates the existence of –CH stretching. 

Carboxyl ions present in these materials, give rise to two bands: a strong asymmetrical 

stretching band at 1614-1621 cm-1 and a weaker symmetrical band at 1415-1503 cm-1. 

Moreover, the peak at 1250 cm-1 could be ascribed to –SO3 stretch. The peaks at 1020-

1029 cm-1 were due to the –C–O stretching of alcoholic groups. It is remarkable the fact 

that the intensity of this peak is greater than the corresponding to carboxyl groups 

especially for protonated S. muticum. This could mean that –OH groups are more 

abundant than carboxyl ones. Moreover, when the alga was protonated some differences 

appear in FTIR spectra: great increase in the peak due to –C–O stretching of alcoholic 

groups; displacement of the weaker stretching symmetrical band and splitting of the 

strong asymmetrical stretching band, due to the presence of carboxyl ions. The FTIR 

spectroscopy does not provide quantitative information about the algae surface 

chemistry but this analysis can even identify the main chemical groups. 

3.2 Biomass dose 

The minimum dose of Sargassum biomass necessary to achieve maximum chromium 

elimination was studied increasing the biomass concentration. Figure 3 shows the 

removal percentages of Cr(VI) from solution. Percentages close to 100% were obtained 

for a biomass dose greater than 2 gL-1. These results allowed us to select a biomass 

concentration of 2.5 gL-1 as optimum for further experiments. 

3.3 pH dependence studies 
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We have already mentioned that hexavalent chromium removal is mainly due to 

reduction and adsorption processes, both of them highly pH dependent. Then, pH 

studies were carried out in order to determine the best experimental conditions for 

maximum Cr(VI) removal. Figure 4 shows the Cr(VI) elimination as a function of pH 

for raw and protonated Sargassum muticum. In both cases at low pH values the Cr(VI) 

removal efficiency was high. Nevertheless, as the pH was increased the removal 

percentages were considerably reduced. Maximum removals of 100% were observed at 

pH 1. Moreover, when the protonated form of the alga was studied, Cr(VI) maximum 

removal was also observed at pH 2, which is important for practical application. The 

elimination efficiency in the range of pH from 2 to 5.5 decreases, but removal 

percentages observed for the protonated algae were always better than those reported for 

raw Sargassum muticum. 

Speciation calculations show that hexavalent chromium in solution mainly exists as 

hydrogen chromate ion (HCrO4
-) in the pH interval studied [31]. This anion, in contact 

with the electron donor groups of the biomass, is reduced to Cr(III) with the subsequent 

oxidation of the functional groups in the biomass surface. 

The proposed indirect mechanism for this reaction involves three steps [32]: (1) 

sorption of HCrO4
- anions onto the biomass (2) reduction of Cr(VI) to Cr(III) and (3) 

adsorption of Cr(III) onto the biomass. This mechanism and also its variant, considering 

the direct reduction of Cr(VI) on solution, are now widely accepted. It was confirmed 

by the study of the interaction of hexavalent chromium with the biomass by several 

techniques, like X-ray photoelectron spectroscopy [33] and recently by X-ray 

absorption fine structure spectroscopy [18]. 
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Then, according to this mechanism, low pH values will favour the Cr(VI) reduction by 

two different ways: on the one hand the Sargassum surface will be more positively 

charged, which favours the adsorption of HCrO4
-; on the other hand, the presence of 

great amounts of protons in solution favours the reduction reaction, in agreement with 

the following equation: 

 

According to this relationship, acidic conditions produce an increase in the reduction 

potential HCrO4
-/Cr3+, thereby strengthening the oxidising character of HCrO4

- ions 

with respect to the biomass. When the solution pH increases the reduction potential 

decreases, so Cr(VI) stays in hexavalent form [5]. So that, pH 1 was selected as 

optimum for Cr(VI) elimination. More detailed studies were performed at this pH value. 

3.4 Kinetic studies 

Kinetic studies allow establishing the necessary time to achieve the equilibrium. Figures 

5 and 6 show the variation of Cr(VI) concentration with time for the selected 

biomaterials. The reduction kinetics of Cr(VI) by raw S. muticum is relatively fast, 

achieving the 50 % in less than 50, 85 and 90 minutes, when the initial chromium 

concentration is 20, 50 and 100 mgL-1, respectively. When the protonated alga was 

utilized, the kinetic was considerably faster, achieving a 50 % reduction in the initial 

metal concentration, 50 and 100 mgL-1, in less than 40 and 50 minutes, respectively. 

When the initial Cr(VI) concentration was 100 mgL-1, the equilibrium was achieved in 

14 h for raw S. muticum. The chemical modification of this alga has a significant impact 

in the equilibrium time, reducing it to a value close to 200 min. These equilibrium times 

are comparable or even better than the obtained in previous works for the elimination of 
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Cr(VI) with bracken fern [15], grape stalks and yohimbe bark [13] or activated carbons 

[34]. 

Kinetic studies also proved that the reduction depends on the initial Cr(VI) 

concentration. Moreover, it can be noted that complete removal of Cr(VI) is obtained if 

contact time is long enough. 

As stated in the above section, at pH 1 it can be assumed the irreversible reduction of 

Cr(VI) to Cr(III) due to the reducing organic matter present in the alga. Therefore, the 

disappearance of Cr(VI) in solution can be examined, as a first approximation, using a 

simple first order kinetic model (Eq. 3).  

                                    (3) 

where k is a pseudo-first order rate constant for the reduction of Cr(VI) that includes the 

effect of protons and the concentration of oxidable organic matter. 

Figures 5 and 6 show the kinetic of Cr(VI) elimination by raw and protonated S. 

muticum, respectively, at different initial metal concentrations and also the data fit to Eq. 

3. The kinetic constants obtained and the coefficients of correlation for each fit are 

showed in Table 1. The k values found are much higher in the case of the protonated 

algae. 

There is no clear relation between the kinetic constants and the initial chromium 

concentrations studied. Similar k values were obtained for 50 and 100 mgL-1 of initial 

Cr(VI) concentration, but for the lowest one tested the metal reduction is more rapid. 

This last value is similar to the obtained with the protonated alga at 100 mgL-1 of initial 

Cr(VI) concentration (Table 1).  
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The presence of Cr(III) could alter the kinetic of Cr(VI) reduction, probably inhibiting 

its adsorption and blocking the access to reducing sites. This is in agreement with the 

reduction mechanisms proposed by Park et al. for the removal of Cr(VI) by biomaterials 

[32]. The kinetic constant, k, includes the equivalent organic compounds capable of 

reducing Cr(VI), then, some modification in these groups due to the presence of 

different quantities of Cr(III) ions in solution and adsorbed in the algae could explain its 

changes. The adsorption of the formed Cr(III), that normally occurs based on 

electrostatic interactions, and contribute to the biomass modification, should be small in 

this case due to the very acidic pH of the solution, but not negligible. 

3.5 Column experiment 

The column experiment was developed in order to determine the capacity of acid treated 

S. muticum to remove Cr(VI) from solution in continuous tests. These studies allowed to 

distinguish the two processes occurring during Cr(VI) elimination: its reduction to 

Cr(III) and the subsequent adsorption of this species formed. Batch experiments 

indicated that low pH favours the reduction reaction, so a pH value of 1 was maintained 

in the column inlet.  

The data plotted in Figure 7 shows the evolution of Cr(VI), Cr(III) and total Cr 

concentration during the time that the column was working. Under the selected 

conditions of bed depth and flow rate, 30 g of acid treated S. muticum was capable of 

reducing 100% the incoming Cr(VI) during 77 h, when the breakthrough point was 

attained. In this case, it was established as the time when Cr(VI) concentration in the 

outlet is 10% of the initial concentration. At that moment 46.2 L of contaminated 

solution were treated. 
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After breakthrough point the Cr(VI) concentration in solution was increased very fast 

during 50 h, when the Cr(VI) concentration in the outlet reached 30 mgL-1. After this 

point, it started a very slow increase until the initial concentration of 50 mgL-1 was 

reached. Regarding the curve of Cr(III) it can be observed that, at first, 34 % of total Cr 

was retained by the biomass. Once Cr(VI) started to appear in the outlet solution (77 

hours), no more adsorption of Cr(III) was observed. While Cr(VI) is totally reduced, the 

adsorption of the Cr(III) formed is observed, despite of the unfavourable pH conditions 

for this process [24]. Evidences of the Cr(III) adsorption but not Cr(VI) at pH 1 on 

Sargassum species were found by Zheng et al. [18]. 

Figure 7 allow us to analyse the properties of this kind of biomass for reducing and also 

adsorbing the two forms of Cr present in solution. At first, treated S. muticum is capable 

of act as reductant, eliminating 100% of Cr(VI). In addition, this alga also acts as an 

adsorbent, removing 34% of total Cr. This fact can be explained taking into account that 

at low times the functional groups of the algae were involved in two processes, 

reduction and adsorption. As the biomass is able to reduce 100% of Cr(VI), total Cr in 

the outlet increases, which could imply that the functional groups involved in Cr(III) 

adsorption are the same that those involved in Cr(VI) reduction. This fact is also 

supported by the work of Zhang et al. where it is showed that Cr(III) ions coordinate 

with the oxygen atoms of carboxyl and hydroxyl groups present in the alga. Moreover, 

when Cr(VI) appears in the outlet, the capacity of the biomass for adsorbing Cr is over 

and the biomass acts only as a Cr(VI) reductant. 

Regarding to the capacity of the biomass to reduce Cr(VI) different behaviours can be 

observed. Once the biomass is not able to reduce 100% of the inlet Cr(VI) a sharp rise 

was observed corresponding with the decrease in the groups that are oxidized in the 

biomass. After 125 h, the increase in the Cr(VI) concentration becomes slower, which 
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can be attributed to the remaining oxidizable groups which reduce Cr(VI) during 300 h. 

These groups are able to reduce Cr(VI) ions for a long time, so large amounts of 

contaminated solution can be treated. 

Finally, the increase in total Cr concentration observed at the end could be assigned to 

the Cr(III) desorption that was retained in the column in the firsts hours of operation, 

due to some lose of the biomass structural consistence. This fact was observed during 

all the time that the column was working, at first the outlet solution had a brown colour 

characteristic of this kind of alga, and the biomass inside the columns started to become 

colourless. At the end of the operation time all the algae had a white-yellow colour, that 

can be ascribed to de loss of the main pigments (chlorophyll and fucoxantin) present in 

the biomass due to their oxidation by Cr(VI) [5]. 

3.6 Industrial wastewaters 

Industrial wastewaters from a chrome plating plant were tested in this part of the study. 

These wastewaters were fully characterized. The results are showed in Table 2. 

Cr(VI) and Cr(III) elimination from these real wastewaters were essayed in batch 

experiments. Table 3 shows the removal percentages of Cr(VI), Cr(III) and total Cr in 

solution after 48 h of contact time. When the pH was not fixed, the raw Sargassum 

muticum presents elimination percentages lower than 40%, while the protonated algae is 

capable of removing higher percentages of the two chromium forms present in solution. 

According with the previous experiments, the acid treatment of S. muticum also 

improves the capacity of this biomass for Cr(VI) reduction in the real wastewater tested. 

The presence of Cr(III), Al and nitrate ions in solution makes the interaction of Cr(VI) 

with the biomass oxidized groups more difficult. At the pH of the real wastewater 

solution carboxylate groups present in the algae structure are ionized, so the interactions 
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of these groups with cations are favoured. So that, Cr(VI) reduction could be partially 

inhibited due to the great diminution in positive charge of the chemical entities, and also 

to possible inhibition in the organic groups oxidation. 

In order to improve conditions for the reduction, a set of experiments were developed 

adjusting the pH to 1. The summary is showed in Table 3. As expected, taking into 

account the result obtained in batch experiments with synthetic water, Cr(VI) removal 

percentages were improved considerably, reaching almost 100% in both cases. The 

increase is particularly significant for raw S. muticum. Concerning Cr(III) results, it was 

found that the drop in pH value greatly diminish its adsorption due to the less 

favourable interaction with the protonated groups of the biomass. Therefore, at pH 1 

Cr(VI) is completely removed from solution, but some Cr(III) from reduction and 

initially present remains in solution, so Cr(III) is not eliminated. In the case of total Cr, 

the best results were obtained with the protonated algae at natural pH. 

As a brief resume it can be said that Sargassum muticum seaweed could be a good 

alternative to the traditional methods for chromium species elimination from real 

wastewaters of a plating plant. Control of solution pH is of great importance. Then, 

depending on the objectives of the treatment, the pH should be fixed to a determinate 

value. 

4. Conclusions 

The macroalgae Sargassum muticum was found to be extremely efficiency for Cr(VI) 

removal in solutions with very low pH. The kinetics of the process is relatively fast and 

can be described using a first order model. The protonation of the algae considerably 

increase its Cr(VI) removal qualities. Elimination of Cr(VI) through its reduction to 

Cr(III) and the subsequent adsorption of this species formed, was clearly stated in a 



18 
 

simple column experiment. Industrial wastewaters from a chrome plating plant were 

successfully tested for chromium removal using this biomass. 
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FIGURE CAPTIONS 

Figure 1. Percentage of chromium removal by different biomasses in deionised water. 

Initial concentration of Cr(VI) 100 mg L-1, pH 1 and biomass dose 2.5 g L-1. 

Figure 2. FTIR spectra for raw (solid line) and protonated (dashed line) S. muticum.  

Figure 3. Removal percentage of Cr(VI) as a function of biomass dose. Initial 

concentration of Cr(VI) 100 mg L-1, pH 1 and 24 h of contact time. 

Figure 4. pH dependence studies for the elimination of Cr(VI) using raw (squares) and 

protonated (circles) Sargassum muticum. Contact time 24 h, biomass concentration of 

2.5 g L-1 and initial Cr(VI) concentration 100 mg L-1.  

Figure 5. Kinetics of Cr(VI) elimination for raw Sargassum muticum. Biomass 

concentration 2.5 gL-1, Cr(VI) initial concentration 20 (circles), 50 (squares), 100 (up 

triangles) and 200 (down triangles) mgL-1. T= 25 ± 0.1 ºC and pH 1. The lines 

correspond to the fit to Eq. 3. 

Figure 6. Kinetics of Cr(VI) elimination for acid treated Sargassum muticum. Biomass 

concentration 2.5 gL-1, Cr(VI) initial concentration 50 (squares) and 100 (up triangles) 

mgL-1. T= 25 ± 0.1 ºC and pH 1. The lines correspond to the fit to Eq. 3. 

Figure 7. Column experiment at pH 1, using 30 g of acid treated Sargassum muticum, 

Initial Cr(VI) concentrations 50 mgL-1 and flow rate of 10 mLmin-1. The symbols 

represent Cr(VI) concentration (circles), Cr(III) concentration (triangles) and total Cr 

concentration (squares). 
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TABLES 

Table 1. Kinetic rate constants for Cr(VI) elimination by raw and protonated Sargassum 

muticum at several initial metal concentrations (T=298 K, pH= 1), obtained by fitting 

experimental data to Equation 3. 

 

Ci (mg⋅L-1) k (h-1) r2 

Raw Sargassum muticum 

200 0.39 ± 0.05 0.86 

100 0.49 ± 0.03 0.96 

50 0.52 ± 0.02 0.98 

20 0.92 ± 0.03 0.992 

Protonated Sargassum muticum 

100 0.85 ± 0.02 0.995 

50 1.18 ± 0.03 0.997 
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Table 2. Composition of wastewater from a chrome plating plant. 

Parameter  

pH (18.9 ºC) 4.88 

Conductivity (25 ºC) / µScm-1 157.3 

Solved Cr(VI) / mgL-1 25.3 

Solved Cr(III) / mgL-1 12.8 

Solved Al / mgL-1 22.6 

Total Cr / mgL-1 38.1 

Total Al / mgL-1 24.1 

Nitrate / mgL-1 16.0 

Cyanide / mgL-1 ˂ 0.5 
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Table 3. Elimination percentages of chromium species by raw and protonated 

Sargassum muticum at pH 1 and natural pH. Contact time 48 h, biomass dose 2.5 gL-1. 

 Sargassum muticum Protonated S. muticum 

% pH 1 natural pH pH 1 natural pH 

Cr(VI) 99.3 39.4 99.2 84.3 

Cr(III) - 30.4 - 33.2 

Cr total 32.9 36.4 32.9 67.1 

 

 

 


