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I wish to thank reviewer to his or her valuable comments.  

1. Abstract is now changed. Two new explicit approximations to the Colebrook approximation are 

shown. I did not see that Fang et al. favor their approximation for smooth pipes. In their paper is 

equally important approximation to the Colebrook equation. Also as I explained, the Colebrook 

equation is not only for “rough” pipes. It is for whole regime of turbulence which includes smooth 

and rough law and transient zone between them. Smooth law is not only valuable in absence of 

roughness and therefore equation of Fang et al. for smooth pipes has limited application as I 

explain in my text. 

2. I do not use anymore Zigrang and Sylvester method from 1985 to estimate the complexity of 

approximations. But to be clear, Fang et al. approximation has few not simple power terms 

(1.1007, 1.1105 and 1.0712). These are not simple input parameters for hand calculators. 

3. I examined approximation in 740 points in my paper “Review of explicit approximations to the 

Colebrook relation for flow friction”. My results can be compared with results by Gregory and 

Fogarasi (1985) and Zigrang and Sylvester (1985). Both papers are in my reference list. Results by 

Yıldırım (2009) are different and I have comments in my paper on this. Gregory and Fogarasi 

(1985) and Zigrang and Sylvester (1985) are 25 years old research. My results with newly 

developed approximations can be compared with results from S. Genić, I. Arandjelović, P. 

Kolendić, M. Jarić, N. Budimir, V. Genić, A review of explicit approximations of Colebrook’s 

equation, FME Transactions 39 (2011), 67-71. My analysis was done using MS Excel and I am 

preparing new research in MATLAB with much more points than 740.  

4. Moody diagram starts from 0 with laminar zone. Of course Colebrook’s equation is only for 

turbulent zone. Turbulent zone is for Re>2300 or in the Moody chart for Re>4000. But laminar 

zone can exist up to Re=10
4
. To avoid any misunderstandings, my charts are for Re>10

4
. For 

example, from figure 1, for Fang et al. (2011) equation, it can be seen that relative error is up to 

0.62% for Re>10
4
 (or about 0.73% for Re=3000). I do not claim anymore that my analysis covers 

the entire Re range of the Moody diagram. I do not have deeper comments on Haaland or Barr 

approximation. 

5. Colebrook paper is from Vol. 11, Issue 4 which was published in February 1939. Note that 

previous Issue 3 is in Vol. 10 which was published in January 1939. Issue 2 in Vol. 10 is the last 

from 1938. It is not usual practice, but this was in Journal of the ICE (Vol. 10 with issues 1 and 2 

in 1938, Vol. 10 with issue 3 in 1939, Vol. 11 with issues 4, 5 and 6 in 1939, Vol. 12 with issue 7 

and 8 in 1939)  

6. My text is now with no informal expression. I hope that my English expression is now 

improved. 
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1. Introduction 

Standard Colebrook’s equation (1) is implicit in flow friction factor. 
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Turbulent part of the famous Moody chart was drawn using Colebrook’s results (Colebrook, 

1939; Moody, 1944). Colebrook’s formula can be used for whole turbulent regime including the 

smooth and the rough zone of turbulence and also for the transient zone between them. 

 

Colebrook’s formula has two parts which presents “smooth” and “rough” portion of turbulence. 

Only “smooth” part presented by Prandtl’s formula (2) is implicit in friction factor.  
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“Rough” part in Colebrook’s formula is presented by von Karman’s formula (3) which is not 

implicitly given.  
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Prandtl’s and von Karman’s formula are also known as NPK (Nikuradse-Pandtl-von Karman) 

formulas. 

 

Using logarithmic rules, one can found that Colebrook’s formula is incorrect because 

log(A)+log(B)≠log(A+B). But Colebrook’s equation solves not problem from mathematics, but 

from hydraulics. Colebrook’s formula is empirical and make fine transitional curve between 

smooth and rough turbulent law. NPK equations used separately for smooth law (Prandtl’s 

Text DB
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equation) and for rough law (von Karman’s equation) do not make such transitional curve. NPK 

equations represent only extremes of Colebrook formula. This is because the relative roughness 

of inner pipe surface (ε/D) is not only physical characteristic of pipe surface. It also depends on 

thickness of laminar boundary layer which occurs near pipe wall during the turbulent flow of 

fluid. So one extreme of turbulence is smooth flow in total absence of roughness (ε/D=0) 

covered by Prandtl’s equation while other extreme is rough flow where boundary layer does not 

exist (ε/D→max for observed inner pipe surface) which is covered by von Karman’s equation. 

Colebrook’s equation includes not only these two extremes presented by NPK equations but also 

smooth law where relative roughness is very small (ε/D→0) with significant laminar boundary 

layer and also rest of turbulent regime where relative roughness smoothly increases to its 

physical maximum while thickness of laminar boundary layer decreases. 

 

The Colebrook equation is also known under the Colebrook-White name, but this equation 

should be quoted in a correct way from source Colebrook (1939). Although, White was not 

actually a co-author of the paper in which considered equation was presented, Colebrook made a 

special point of acknowledging important contribution of White to the development of the 

equation based on his previous joint work (Colebrook and White, 1937). Paper of Colebrook is 

from 1939 (as can be seen from doi: 10.1680/ijoti.1939.13150 of this paper) and not from 1938-

39 as often erroneously cited (volume 11 has only issues 4, 5 and 6 all from 1939). 

 

Colebrook’s formula can be solved in iterative procedure since it contains implicitly given flow 

friction factor. Also, numerous explicit approximations can be used to substitute implicit 

Colebrook’s equation which cannot be solved for unknown flow friction factor with no 
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approximate calculus (Moody, 1947; Wood, 1966; Eck, 1973; Churchill, 1973; Swamee and 

Jain, 1976; Jain, 1976; Churchill, 1977; Chen, 1979; Round, 1980; Barr, 1981; Zigrang and 

Sylvester, 1982; Haaland, 1983; Serghides, 1984; Manadilli, 1997; Romeo et al. 2002; Sonnad 

and Goudar, 2006; Buzzelli, 2008; Avci and Karagoz, 2009; Vatankhah and Kouchakzadeh, 

2009; Papaevangelou et al., 2010; Brkić, 2011a,b; Fang et al. 2011; Ghanbari et al., 2011). Two 

novel explicit approximations to the Colebrook’s formula will be shown in further text. 

 

2. Some recent explicit formulas for turbulent flow friction 

There are many different explicit formulas developed to substitute implicit Colebrook’s relation. 

Most recent formula is by Fang et al. (2011). Fang et al. (2011) estimated very accurately 

maximal relative error up to 0.5% for their approximation of Colebrook’s formula. From figure 

1, it can be seen that this error is slightly bigger, up to 0.62% for Re>10
4
 (or about 0.73% for 

Re=3000). This is very accurate which means that their approximation is in first ten sorted by 

accuracy (Brkić, 2011c). 

 

Figure 1. Distribution of estimated relative error of approximation by Fang et al. (2011) compared with iterative 

solution of implicit Colebrook equation 

 

Also, approximations proposed by Romeo et al. (2002), Buzzelli (2008), more complex form of 

approximation by Serghides (1984), more complex form of approximation by Zigrang and 

Sylvester (1982) and approximation by Vatankhah and Kouchakzadeh (2009) will always give 

more accurate results than those calculated by approximations proposed by Fang et al. (2011) as 

shown in figure 2. On the other hand as shown in figure 3, inconclusive conclusion of accuracy 
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in general can be found by using of approximation by Barr (1981), simpler form of 

approximation by Serghides (1984), approximation by Chen (1979), Sonnad and Goudar (2006), 

Papaevangelou et al. (2010) and by using simpler form of approximations by Zigrang and 

Sylvester (1982), all versus approximation by Fang et al. (2011). Approximation proposed by 

Fang et al. (2011) will give better prediction of implicit Colebrook equation compared with other 

approximations from Brkić (2011c). 

 

Figure 2. Approximation of Fang et al. (2011) compared with the most accurate approximations 

 

Figure 3. Approximation of Fang et al. (2011) compared with moderate accurate approximations 

 

Relative error of certain approximations to the Colebrook equation was also presented in 

Gregory and Fogarasi (1985) and Zigrang and Sylvester (1985). As noted by Fang et al. (2011), 

Yıldırım (2009) conducted comprehensive analysis of existing correlations for single-phase 

friction but he used Techdig 2.0 software which caused remarkable reading errors factor. 

Findings by Brkić (2011c) as well as findings by Fang et al. (2011) do not support Yıldırım’s 

error estimations because he greatly overestimated errors and offered different accuracy-based 

rank order for the correlations evaluated than in Fang et al. (2011) or in Brkić (2011c). One can 

be always aware that Moody diagram was constructed using Colebrook’s equation and not 

opposite (Colebrook, 1939; Moody, 1944). It is not acceptable to replace cause and its 

consequence such was done by reading of points from Moody diagram using Techdig 2.0 

software. Ghanbari et al. (2011) also made their approximation of Colebrook’s equation based on 
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data which was obtained by digitizing the Moody’s diagram. This approach produces 

approximation with error up to 3% as can be seen from figure 4.  

 

Figure 4. Distribution of estimated relative error of approximation by Ghanbari et al. (2011) compared with iterative 

solution of implicit Colebrook equation 

 

Use of input data in model proposed by Ghanbari et al. (2011) obtained by iterative solution of 

Colebrook’s equation instead of the data from Moody’s diagram would almost certain produce 

more accurate approximation.  

 

3. New explicit approximations to the Colebrook’s formula 

In some recent papers, few new explicit approximations of Prantdl’s relation were shown (Fang 

et al., 2011; Li et al., 2011; Danish et al., 2011). As noted before, Prantdl’s relation is actually 

Colebrook’s equation in the case of total absence of relative roughness (ε/D). Approximations to 

the Prandtl equation by Fang et al. (2011) and Li et al. (2011) are suitable for transformation in 

approximations to the Colebrook equation. Approximations to the Prandtl equation given in 

suitable form (with its smooth part “x” transformed in explicitly given form) can be easily 

transformed in approximation to the Colebrook equation (4). 
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Using approximations to the Prandtl equation proposed in Fang et al. (2011), new approximation 

to the Colebrook equation can be obtained (5). 
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After few simple transformations new approximation to the Colebrook equation (6) can be 

obtained from approximations to the Prandtl equation proposed in Li et al. (2011). 

      




























D71.3

Reln

2.5341533

Reln

0.3942031

Reln

0015702.0
Re

25603.1
log2

1

32

10





 

 (6) 

Distribution of relative error for both presented approximations (marked as new in figure 6) to 

the Colebrook equation can be seen in figure 5. 

 

Figure 5. Distribution of estimated relative error of two new approximations compared with iterative solution of 

implicit Colebrook equation 

 

Presented equations with relative error up to 2% can be used to substitute implicit Colebrook’s 

equation. This error is comparable with other available approximations as can be seen from 

figure 6. 

 

Figure 6. Two new approximations compared with some other available approximations to the Colebrook equation 

 

Both equations are presented in figure 6 are presented with one line “new” since they produce 

identical error. The Colebrook equation is empirical and therefore error of 2% can be neglected. 

 

4. New explicit approximations to the Prandtl’s formula 
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Hydraulically smooth regime of turbulence does not occur only in total absence of roughness of 

inner pipe surface (Brkić, 2011d), but also, four new relations for this theoretical regime are 

presented. As noted before, Colebrook’s equation in total absence of relative roughness is 

actually Prandtl’s equation, and vice versa. These four approximations to the Prandtl equation 

was developed using inverse procedure from previous section, i.e. from appropriate 

approximations to the Colebrook formula, “rough” part was simply removed (Table 1). 

 

Table 1: Equations for hydraulically smooth regime developed for total absence of roughness (when ε/D=0) 

 

Approximations to the Prandtl equation (new 1-4) were developed using approximations to the 

Colebrook formula shown in Romeo et al. (2002), Zigrang and Sylvester (1982), Manadilli 

(1997), and Serghides (1984), respectively (new 1-4). 

 

Comparison of presented approximations of Prandtl’s relation is given in figure 7. 

 

Figure 7. Accuracy of some approximations to the Prandtl equation 

 

With relative error of up to 0.15% to the Prandl equation, all approximations from table 1 can be 

used instead of implicit form of Prandtl’s equation (or Colebrook’s when ε/D=0). 

 

5. Conclusion 

Two new explicit approximations to the standard implicit Colebrook equation are shown. Their 

relative error over the entire practical domain of Reynolds number and relative roughness are up 
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to 2%. Since the Colebrook equation is empirical this is good results. In that way, main goal 

which is avoiding of iterative procedure is fulfilled. Also, there are many explicit approximations 

to the implicit Prandtl equation in literature. The Prandtl equation is actually the Colebrook 

equation in total absence of inner pipe roughness. In some cases, an explicit approximation to the 

Colebrook equation can be easily used to develop an explicit approximation to the Prandtl 

equation. Procedure for this is explained in text, and vice versa, using some of the explicit 

approximations to the Colebrook equation known from literature, for new explicit 

approximations to the Prandtl equation were developed. With relative error of no more than 

0.15%, these for equations are very accurate.  
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Table 1: Equations for hydraulically smooth regime developed for total absence of roughness (when ε/D=0) 
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