Lesson Restricted Access

Predicting Spatial Data with Rotation Gradients and Machine Learning

De Pinho, Bruno


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-12</subfield>
  </datafield>
  <controlfield tag="005">20190410042034.0</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.889922</subfield>
  </datafield>
  <controlfield tag="001">889923</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:889923</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Using Machine Learning (ML) algorithms to predict Airbourne Geophysics. A simple, but powerful solution using Rotation Gradients to add complexity to the model with a Automated Machine Learning (AutoML) implementation.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">restricted</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">lesson</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Geology and Python</subfield>
    <subfield code="a">De Pinho, Bruno</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine-learning, geophysics, geology, python, automl</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.889923</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Predicting Spatial Data with Rotation Gradients and Machine Learning</subfield>
  </datafield>
</record>
168
0
views
downloads
All versions This version
Views 168169
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 156157
Unique downloads 00

Share

Cite as