Journal article Open Access

Birds of a Feather Tweet Together: Integrating Network and Content Analyses to Examine Cross-Ideology Exposure on Twitter

Himelboim, Itai; McCreery, Stephen; Smith, Marc


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/889707</identifier>
  <creators>
    <creator>
      <creatorName>Himelboim, Itai</creatorName>
      <givenName>Itai</givenName>
      <familyName>Himelboim</familyName>
    </creator>
    <creator>
      <creatorName>McCreery, Stephen</creatorName>
      <givenName>Stephen</givenName>
      <familyName>McCreery</familyName>
    </creator>
    <creator>
      <creatorName>Smith, Marc</creatorName>
      <givenName>Marc</givenName>
      <familyName>Smith</familyName>
    </creator>
  </creators>
  <titles>
    <title>Birds of a Feather Tweet Together: Integrating Network and Content Analyses to Examine Cross-Ideology Exposure on Twitter</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2013</publicationYear>
  <dates>
    <date dateType="Issued">2013-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/889707</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1111/jcc4.12001</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">This study integrates network and content analyses to examine exposure to cross-ideological political views on Twitter. We mapped the Twitter networks of 10 controversial political topics, discovered clusters – subgroups of highly self-connected users – and coded messages and links in them for political orientation. We found that Twitter users are unlikely to be exposed to cross-ideological content from the clusters of users they followed, as these were usually politically homogeneous. Links pointed at grassroots web pages (e.g.: blogs) more frequently than traditional media websites. Liberal messages, however, were more likely to link to traditional media. Last, we found that more specific topics of controversy had both conservative and liberal clusters, while in broader topics, dominant clusters reflected conservative sentiment.</description>
  </descriptions>
</resource>
62
43
views
downloads
Views 62
Downloads 43
Data volume 47.4 MB
Unique views 62
Unique downloads 42

Share

Cite as