Journal article Open Access

Clustering Trajectories by Relevant Parts for Air Traffic Analysis

Andrienko, Gennady; Andrienko, Natalia; Fuchs, Georg; Garcia, Jose Manuel Cordero


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Trajectory</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Data visualization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Three-dimensional displays</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Guidelines</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Visualization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Clustering algorithms</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Algorithm design and analysis</subfield>
  </datafield>
  <controlfield tag="005">20190410042022.0</controlfield>
  <controlfield tag="001">889198</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">01-06 October 2017</subfield>
    <subfield code="g">IEEE VAST</subfield>
    <subfield code="a">IEEE Visual Analytics Science and Technology</subfield>
    <subfield code="c">Phoenix, Arizona, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IAIS, City University London</subfield>
    <subfield code="a">Andrienko, Natalia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IAIS</subfield>
    <subfield code="a">Fuchs, Georg</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CRIDA</subfield>
    <subfield code="a">Garcia, Jose Manuel Cordero</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">767406</subfield>
    <subfield code="z">md5:99ee996bb9f1c8b3a83106d113a560b6</subfield>
    <subfield code="u">https://zenodo.org/record/889198/files/vast17.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://ieeevis.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-08-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_datacron</subfield>
    <subfield code="o">oai:zenodo.org:889198</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">PP</subfield>
    <subfield code="p">IEEE Transactions on Visualization and Computer Graphics</subfield>
    <subfield code="n">99</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IAIS, City University London</subfield>
    <subfield code="a">Andrienko, Gennady</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Clustering Trajectories by Relevant Parts for Air Traffic Analysis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_datacron</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687591</subfield>
    <subfield code="a">Big Data Analytics for Time Critical Mobility Forecasting</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">699303</subfield>
    <subfield code="a">Interactive Toolset for Understanding Trade-offs in ATM Performance</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spatial positions, times, and thematic attributes. There may be a need to focus the analysis on certain parts of trajectories, i.e., points and segments that have particular properties. According to the analysis focus, the analyst may need to cluster trajectories by similarity of their relevant parts only. Throughout the analysis process, the focus may change, and different parts of trajectories may become relevant. We propose an analytical workflow in which interactive filtering tools are used to attach relevance flags to elements of trajectories, clustering is done using a distance function that ignores irrelevant elements, and the resulting clusters are summarized for further analysis. We demonstrate how this workflow can be useful for different analysis tasks in three case studies with real data from the domain of air traffic. We propose a suite of generic techniques and visualization guidelines to support movement data analysis by means of relevance-aware trajectory clustering.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">http://geoanalytics.net/and/papers/vast17.pdf</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TVCG.2017.2744322</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
32
24
views
downloads
Views 32
Downloads 24
Data volume 18.4 MB
Unique views 32
Unique downloads 22

Share

Cite as