Conference paper Open Access

Vers la détection automatique des affirmations inappropriées dans les articles scientifiques

Koroleva Anna


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120174023.0</controlfield>
  <controlfield tag="001">887673</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">26 - 30 June 2017</subfield>
    <subfield code="g">RECITAL</subfield>
    <subfield code="a">19e Rencontres des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues</subfield>
    <subfield code="c">Orléans, France</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">523853</subfield>
    <subfield code="z">md5:7099aea0808b819d6e61aba5556b7fc7</subfield>
    <subfield code="u">https://zenodo.org/record/887673/files/Koroleva_RECITAL_2017.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://taln2017.cnrs.fr/recital/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-miror</subfield>
    <subfield code="o">oai:zenodo.org:887673</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">LIMSI, CNRS, Université Paris-Saclay</subfield>
    <subfield code="a">Koroleva Anna</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Vers la détection automatique des affirmations inappropriées dans les articles scientifiques</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-miror</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">676207</subfield>
    <subfield code="a">Methods in Research on Research</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-sa/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Share Alike 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this article we consider application of Natural Language Processing (NLP) techniques to the task of automatic detection of misrepresentation (« spin ») of research results in scientific publications from the biomedical domain. Our objective is to identify inadequate claims in medical articles, i.e. claims that state the beneficial effect of the experimental treatment to be greater than it is actually proven by the research results. After analyzing the problem from the point of view of NLP, we present methods that we consider applicable for automatic spin identification. We analyze the state of the art in similar or related tasks and we present our first results obtained with basic methods (local grammars) for the task of recognising entities specific for our goal.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.887672</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.887673</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
75
53
views
downloads
All versions This version
Views 7575
Downloads 5353
Data volume 27.8 MB27.8 MB
Unique views 6767
Unique downloads 5353

Share

Cite as