Conference paper Open Access

Vers la détection automatique des affirmations inappropriées dans les articles scientifiques

Koroleva Anna


JSON-LD (schema.org) Export

{
  "description": "<p>In this article we consider application of Natural Language Processing (NLP) techniques to the task of automatic detection of misrepresentation (\u00ab spin \u00bb) of research results in scientific publications from the biomedical domain. Our objective is to identify inadequate claims in medical articles, i.e. claims that state the beneficial effect of the experimental treatment to be greater than it is actually proven by the research results. After analyzing the problem from the point of view of NLP, we present methods that we consider applicable for automatic spin identification. We analyze the state of the art in similar or related tasks and we present our first results obtained with basic methods (local grammars) for the task of recognising entities specific for our goal.</p>", 
  "license": "https://creativecommons.org/licenses/by-sa/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "LIMSI, CNRS, Universit\u00e9 Paris-Saclay", 
      "@type": "Person", 
      "name": "Koroleva Anna"
    }
  ], 
  "headline": "Vers la d\u00e9tection automatique des affirmations inappropri\u00e9es dans les articles scientifiques", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2017-06-30", 
  "url": "https://zenodo.org/record/887673", 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.887673", 
  "@id": "https://doi.org/10.5281/zenodo.887673", 
  "@type": "ScholarlyArticle", 
  "name": "Vers la d\u00e9tection automatique des affirmations inappropri\u00e9es dans les articles scientifiques"
}
63
43
views
downloads
All versions This version
Views 6363
Downloads 4343
Data volume 22.5 MB22.5 MB
Unique views 6060
Unique downloads 4343

Share

Cite as