Conference paper Open Access

Tri Automatique de la Littérature pour les Revues Systématiques

Norman, Christopher; Leeflang, Mariska; Zweigenbaum, Pierre; Névéol, Aurélie


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Information Retrieval</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Supervised Classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Systematic Reviews</subfield>
  </datafield>
  <controlfield tag="005">20191104071144.0</controlfield>
  <controlfield tag="001">887606</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">26-30 June 2017</subfield>
    <subfield code="a">Traitement Automatique des Langues Naturelles</subfield>
    <subfield code="c">Orléans</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands</subfield>
    <subfield code="a">Leeflang, Mariska</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LIMSI, CNRS, Université Paris Saclay, 91405 Orsay, France</subfield>
    <subfield code="a">Zweigenbaum, Pierre</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LIMSI, CNRS, Université Paris Saclay, 91405 Orsay, France</subfield>
    <subfield code="a">Névéol, Aurélie</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">405143</subfield>
    <subfield code="z">md5:6088c14f1e4aab157de3dcd9d0fe7486</subfield>
    <subfield code="u">https://zenodo.org/record/887606/files/Actes_TALN_2017_234_241.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-miror</subfield>
    <subfield code="o">oai:zenodo.org:887606</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">LIMSI, CNRS, Université Paris Saclay, 91405 Orsay, France</subfield>
    <subfield code="a">Norman, Christopher</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Tri Automatique de la Littérature pour les Revues Systématiques</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-miror</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">676207</subfield>
    <subfield code="a">Methods in Research on Research</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Current approaches to document discovery for systematic reviews in biomedicine rely on exhaustive manual screening. We evaluate the performance of classifier based article discovery using different definitions of inclusion criteria. We test a logistic regressor on two datasets created from existing systematic reviews on clinical NLP and drug efficacy, using different criteria to generate positive and negative examples. The classification and ranking achieves an average AUC of 0.769 when relying on gold standard decisions based on title and abstracts of articles, and an AUC of 0.835 when relying on decisions based on full text. Results suggest that inclusion based on title and abstract generalizes to inclusion based on full text, so that references excluded in earlier stages are important for classification, and that common-off-the-shelves algorithms can partially automate the process.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.887605</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.887606</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
28
14
views
downloads
All versions This version
Views 2828
Downloads 1414
Data volume 5.7 MB5.7 MB
Unique views 2020
Unique downloads 1414

Share

Cite as