
Gene Set Enrichment Analysis with LIGER
Jean Fan

2015-09-27

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori
defined set of genes shows statistically significant, concordant differences between two biological states. The
original algorithm is detailed in Subramanian, Tamayo, et al. with Java implementations available through
the Broad Institute.

The liger package provides a lightweight R implementation of this enrichment test on a list of values.
Given a list of values, such as p-values or log-fold changes derived from differential expression analysis or
other analyses comparing biological states, this package enables you to test a priori defined set of genes for
enrichment to enable interpretability of highly significant or high fold-change genes.

Examples

Consider an example, simulated dataset.

library(liger)
load gene set
data("org.Hs.GO2Symbol.list")
get universe
universe <- unique(unlist(org.Hs.GO2Symbol.list))
get a gene set
gs <- org.Hs.GO2Symbol.list[[1]]
fake dummy example where everything in gene set is perfectly enriched
vals <- rnorm(length(universe), 0, 10)
names(vals) <- universe
vals[gs] <- rnorm(length(gs), 100, 10)

head(vals) # look at vals

AKT3 C10orf2 DNA2 LIG3 MEF2A MGME1
110.15987 82.21852 82.20798 99.17085 71.00519 98.36124

Here, vals can be seen as representing a list of log-fold changes derived from differential expression analysis
on samples in two biological states. We want to interpret the set of differentially expressed genes with high
positive fold changes using gene set enrichment analysis.

Testing individual gene sets

To test for enrichment of a particular gene set:

names(org.Hs.GO2Symbol.list)[[1]]

[1] "GO:0000002"

1

http://www.pnas.org/content/102/43/15545.full.pdf
http://www.broadinstitute.org/gsea/index.jsp

gs # look at gs

[1] "AKT3" "C10orf2" "DNA2" "LIG3" "MEF2A" "MGME1"
[7] "MPV17" "OPA1" "PID1" "PRIMPOL" "SLC25A33" "SLC25A36"
[13] "SLC25A4" "STOML2" "TYMP"

gsea(values=vals, geneset=gs, mc.cores=1, plot=TRUE)

0
50

00
10

00
0

15
00

0

sc
or

e

P−value < 1e−04

0
50

10
0

va
lu

es

edge value = 71

[1] 1e-04

In this simulation, we created vals such that gs was obviously enriched. And indeed, we see that this gene
set exhibits significant enrichment.

Now to test for enrichment of another gene set:

gs.new <- org.Hs.GO2Symbol.list[[2]]
names(org.Hs.GO2Symbol.list)[[2]]

[1] "GO:0000003"

head(gs.new) # look at gs.new

[1] "ACE" "ACR" "ADAM2" "ADAM20" "ADAM21" "ADAM28"

2

gsea(values=vals, geneset=gs.new)
−

10
00

−
60

0
−

20
0

0

sc
or

e

P−value < 0.222

0
50

10
0

va
lu

es

edge value = 14

[1] 0.2215

In this simulation, we created vals such that gs.new was obviously not enriched. And indeed, we see that
this gene set does not exhibit significant enrichment.

If we simulate a more ambiguous case:

add some noise
vals[sample(1:length(universe), 1000)] <- rnorm(1000, 100, 10)
test previously perfectly enriched gene set again
gs <- org.Hs.GO2Symbol.list[[1]]
gsea(values=vals, geneset=gs)

3

0
20

00
40

00
60

00
80

00

sc
or

e
P−value < 0.0369

0
50

10
0

va
lu

es

edge value = 82

[1] 0.0369

The enrichment plots and p-values are affected as expected.

Testing multiple gene sets

We can also test a number of gene sets:

bulk.gsea(values=vals, set.list=org.Hs.GO2Symbol.list[1:10])

p.val q.val sscore edge
GO:0000002 0.00029997 0.0002 1.4482041 82.207984
GO:0000003 0.11948805 0.1930 -0.6865872 91.225989
GO:0000012 0.03249675 0.0590 -0.9097704 9.305473
GO:0000014 0.00909909 0.0286 -1.0054556 4.682667
GO:0000018 0.12928707 0.3660 0.6867761 111.137825
GO:0000022 0.00029997 0.0068 -1.1912446 2.996575

To save on computation time, we can also iterative assess significance:

iterative.bulk.gsea(values=vals, set.list=org.Hs.GO2Symbol.list[1:10])

initial: [1e+02 - 6] [1e+03 - 3] [1e+04 - 2] done

4

p.val q.val sscore edge
GO:0000002 0.00029997 0.00089991 1.4482041 82.207984
GO:0000003 0.10889111 0.12487512 -0.9746783 91.225989
GO:0000012 0.03496503 0.05244755 -1.1806076 9.305473
GO:0000014 0.00909909 0.01819818 -1.0054556 4.682667
GO:0000018 0.12487512 0.12487512 0.9549556 111.137825
GO:0000022 0.00029997 0.00089991 -1.1912446 2.996575

5

	Examples
	Testing individual gene sets
	Testing multiple gene sets

