Conference paper Open Access

Cooperative Transmissions in Ultra-Dense Networks under a Bounded Dual-Slope Path Loss Model

Yanpeng Yang; Ki Won Sung; Jihong Park; Seong-Lyun Kim; Kwang Soon Kim


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.886586</identifier>
  <creators>
    <creator>
      <creatorName>Yanpeng Yang</creatorName>
      <affiliation>KTH Royal Institute of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Ki Won Sung</creatorName>
      <affiliation>KTH Royal Institute of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Jihong Park</creatorName>
      <affiliation>Aalborg University</affiliation>
    </creator>
    <creator>
      <creatorName>Seong-Lyun Kim</creatorName>
      <affiliation>Yonsei University</affiliation>
    </creator>
    <creator>
      <creatorName>Kwang Soon Kim</creatorName>
      <affiliation>Yonsei University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Cooperative Transmissions in Ultra-Dense Networks under a Bounded Dual-Slope Path Loss Model</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>Ultra-dense networks, cooperative transmissions, bounded path loss model, multi-slope path loss model</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-06-12</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/886586</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.886585</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In an ultra-dense network (UDN) where there are more base stations (BSs) than active users, it is possible that many BSs are instantaneously left idle. Thus, how to utilize these dormant BSs by means of cooperative transmission is an interesting question. In this paper, we investigate the performance of a UDN with two types of cooperation schemes: non-coherent joint transmission (JT) without channel state information (CSI) and coherent JT with full CSI knowledge. We consider a bounded dual-slope path loss model to describe UDN environments where a user has several BSs in the near-field and the rest in the far-field. Numerical results show that non-coherent JT cannot improve the user spectral efficiency (SE) due to the simultaneous increment in signal and interference powers. For coherent JT, the achievable SE gain depends on the range of near-field, the relative densities of BSs and users, and the CSI accuracy. Finally, we assess the energy efficiency (EE) of cooperation in UDN. Despite costing extra energy consumption, cooperation can still improve EE under certain conditions.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/671680/">671680</awardNumber>
      <awardTitle>Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society-II</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
50
36
views
downloads
All versions This version
Views 5050
Downloads 3636
Data volume 17.9 MB17.9 MB
Unique views 4949
Unique downloads 3434

Share

Cite as