Conference paper Open Access

RAN Moderation in 5G Dynamic Radio Topology

Ömer Bulakci; Alexandros Kaloxylos; Josef Eichinger; Chan Zhou


JSON-LD (schema.org) Export

{
  "description": "<p><em>Abstract</em>\u2014The standardization for the fifth generation (5G) of mobile and wireless networks is at its early phase and has recently completed the first study item in Release 14. Nevertheless, there is a consensus that 5G will address the diverse service requirements of high-variety use cases. The network shall cope with such variation effectively and cost-efficiently even though the requirements can change over space and time. The design of the radio topology for the peak service demand is, thus, not desirable for network operators. As a consequence, the trend is towards more flexible network deployment. In this context, dynamic radio topology through vehicular nomadic nodes (VNNs) is an emerging concept towards 5G to efficiently address non-uniformly distributed traffic. VNNs are aimed to overcome the lack of flexibility induced by small cells that are deployed at fixed locations via network planning in current wireless networks. A VNN is a low-power access node with wireless self-backhaul, which can be activated temporarily to provide additional system capacity and/or coverage on demand. VNNs can be integrated into vehicles, e.g., in car-sharing fleets. In this paper, we evaluate the performance of radio access network (RAN) moderation of VNNs in a multi-cell environment considering composite fading/shadowing environments with co-channel interference, where active VNNs are selected from a set of available candidate VNNs based on the signal-to-interference-plus-noise ratio (SINR) on the wireless backhaul link. The results show that RAN moderation can significantly improve the end-to-end rate and SINR performances along with clear amount-of-fading (AoF) reduction.</p>", 
  "license": "https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode", 
  "creator": [
    {
      "@type": "Person", 
      "name": "\u00d6mer Bulakci"
    }, 
    {
      "@type": "Person", 
      "name": "Alexandros Kaloxylos"
    }, 
    {
      "@type": "Person", 
      "name": "Josef Eichinger"
    }, 
    {
      "@type": "Person", 
      "name": "Chan Zhou"
    }
  ], 
  "headline": "RAN Moderation in 5G Dynamic Radio Topology", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2017-06-05", 
  "url": "https://zenodo.org/record/886266", 
  "@type": "ScholarlyArticle", 
  "keywords": [
    "5G; Dynamic Radio Topology; HetNet; METIS-II; Moving Networks; RAN Moderation; Vehicular Nomadic Node"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.886266", 
  "@id": "https://doi.org/10.5281/zenodo.886266", 
  "workFeatured": {
    "@type": "Event", 
    "name": "IEEE VTC2017-Spring"
  }, 
  "name": "RAN Moderation in 5G Dynamic Radio Topology"
}
48
58
views
downloads
All versions This version
Views 4848
Downloads 5858
Data volume 41.1 MB41.1 MB
Unique views 4848
Unique downloads 5757

Share

Cite as