Preprint Open Access

Baltimore Housing Prices Disparity for Comparable Neighborhoods: A Case for Enabling Interactive,Visual Exploration of Neighborhoods

Peshave, Akshay; Memon, Siraj; Chavan, Vedmurtty; Oates, Tim


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">correlation analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">clustering</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">data visualisation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Baltimore city</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">housing and community development</subfield>
  </datafield>
  <controlfield tag="005">20200120172913.0</controlfield>
  <controlfield tag="001">884488</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-7 September 2015</subfield>
    <subfield code="g">Data for Policy</subfield>
    <subfield code="a">Data for Policy 2017: Government by Algorithm?</subfield>
    <subfield code="c">London</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Maryland</subfield>
    <subfield code="a">Memon, Siraj</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Maryland</subfield>
    <subfield code="a">Chavan, Vedmurtty</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Maryland</subfield>
    <subfield code="a">Oates, Tim</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">352879</subfield>
    <subfield code="z">md5:996676751a8a8298bd2d74776cdbc4e8</subfield>
    <subfield code="u">https://zenodo.org/record/884488/files/Data_for_Policy_2017_paper_91.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://dataforpolicy.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-dfp17</subfield>
    <subfield code="o">oai:zenodo.org:884488</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Maryland</subfield>
    <subfield code="a">Peshave, Akshay</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Baltimore Housing Prices Disparity for Comparable Neighborhoods: A Case for Enabling Interactive,Visual Exploration of Neighborhoods</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dfp17</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As government agencies increasingly make public data available online, it provides opportunities to leverage such data for descriptive, predictive and prescriptive analytics. One domain where these technological capabilities are applicable is real-estate development and housing market domain. This domain is of interest to home buyers, investors and policy makers. Diverse and varying preferences of residents of a geography are latent behavioral factors that affect residential property prices. This paper describes a geographical area agnostic housing typology classifier for Baltimore City communities or neighborhoods. Further, it discussed correlation analysis and composite Vital Signs scores to characterize city population perceptions of different community development categories. These scores enable community clustering to investigate price disparity in comparable communities based on configurable categories and year-on-year trend analysis. Various visualization possibilities are discussed in conjunction with these approaches to make a case for interactive, visual exploration of geographical communities which may be extended to comparative analysis across geographies. &lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.884487</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.884488</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
160
56
views
downloads
All versions This version
Views 160159
Downloads 5656
Data volume 19.8 MB19.8 MB
Unique views 158157
Unique downloads 5050

Share

Cite as