Presentation Open Access

Timbral Analysis of Music Audio Signals with Convolutional Neural Networks

Jordi Pons; Olga Slizovskaia; Rong Gong; Emilia Gómez; Xavier Serra


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.884445</identifier>
  <creators>
    <creator>
      <creatorName>Jordi Pons</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
    <creator>
      <creatorName>Olga Slizovskaia</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
    <creator>
      <creatorName>Rong Gong</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
    <creator>
      <creatorName>Emilia Gómez</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
    <creator>
      <creatorName>Xavier Serra</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Timbral Analysis of Music Audio Signals with Convolutional Neural Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>eusipco</subject>
    <subject>presentation slides</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-09-04</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/884445</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://arxiv.org/pdf/1703.06697.pdf</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.884444</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mdm-dtic-upf</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This is the presentation slides for the paper&lt;/p&gt;

&lt;blockquote&gt;
&lt;p&gt;Timbral Analysis of Music Audio Signals with Convolutional Neural Networks&amp;nbsp;&lt;/p&gt;
&lt;/blockquote&gt;

&lt;p&gt;This paper has been presented in Eusipco 2017 conference.&lt;/p&gt;

&lt;p&gt;The preprint paper PDF can be found here:&amp;nbsp;https://arxiv.org/abs/1703.06697&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/267583/">267583</awardNumber>
      <awardTitle>Computational models for the discovery of the world's music</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
55
49
views
downloads
All versions This version
Views 5555
Downloads 4949
Data volume 187.7 MB187.7 MB
Unique views 5555
Unique downloads 4949

Share

Cite as