Preprint Open Access

Small Area Estimation of Public Confidence

Williams, Dawn; Howarth, James; Cheng, Tao; Blangiardo, Marta


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">forecasting</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bayesian</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">spatiotemporal</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">small area estimation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">policing</subfield>
  </datafield>
  <controlfield tag="005">20190410041943.0</controlfield>
  <controlfield tag="001">884184</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-7 September 2017</subfield>
    <subfield code="g">Data for Policy</subfield>
    <subfield code="a">Data for Policy 2017: Government by Algorithm?</subfield>
    <subfield code="c">London</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College London</subfield>
    <subfield code="a">Howarth, James</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College London</subfield>
    <subfield code="a">Cheng, Tao</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Blangiardo, Marta</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">579020</subfield>
    <subfield code="z">md5:16c313cadfd91e972f24615355c07117</subfield>
    <subfield code="u">https://zenodo.org/record/884184/files/Data_for_Policy_2017_paper_66.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://dataforpolicy.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-dfp17</subfield>
    <subfield code="o">oai:zenodo.org:884184</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University College London</subfield>
    <subfield code="a">Williams, Dawn</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Small Area Estimation of Public Confidence</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dfp17</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper explores the use of a spatio-temporal approach to small area estimation for improving understanding of attitudes to policing. The study focusing on confidence in the police in London using sample survey data. The Public Attitudes Survey (PAS) collects data on the experiences and perceptions of Londoners with respect to crime, policing and anti-social behavior.  While the most robust survey of its kind in the world, it is not designed for use at the neighborhood level but rather to produce annual, Borough level estimates on a rolling average basis. However, there is a demand for reliable, local level data for quarterly assessment and planning. In this study, we present a Bayesian spatio-temporal hierarchical modeling approach to small area estimation to address this. In this approach, information is “borrowed” from neighboring regions in space and time to increase effective sample size. This enables reliable estimates, forecasts and classification of trends in confidence at the neighborhood-level.   &lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.884183</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.884184</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
48
35
views
downloads
All versions This version
Views 4848
Downloads 3535
Data volume 20.3 MB20.3 MB
Unique views 4747
Unique downloads 3232

Share

Cite as