1708.09058v1 [cs.CR] 29 Aug 2017

arxXiv

POISED: Spotting Twitter Spam Off the Beaten Paths

Shirin Nilizadeh Frangois Labréche Alireza Sedighian
UC Santa Barbara Ecole Polytechnique de Montréal Ecole Polytechnique de Montréal
California, USA Québec, Canada Québec, Canada
nilizadeh@ucsb.edu francois.labreche@polymtl.ca alireza.sadighian@polymtl.ca
Ali Zand José Fernandez Christopher Kruegel
UC Santa Barbara Ecole Polytechnique de Montréal UC Santa Barbara
California, USA Québec, Canada California, USA
zand@ucsb.edu jose.fernandez@polymtl.ca chris@ucsb.edu

Gianluca Stringhini
University College London
London, United Kingdom
g.stringhini@ucl.ac.uk

ABSTRACT

Cybercriminals have found in online social networks a propitious
medium to spread spam and malicious content. Existing techniques
for detecting spam include predicting the trustworthiness of ac-
counts and analyzing the content of these messages. However,
advanced attackers can still successfully evade these defenses.

Online social networks bring people who have personal con-
nections or share common interests to form communities. In this
paper, we first show that users within a networked community
share some topics of interest. Moreover, content shared on these
social network tend to propagate according to the interests of peo-
ple. Dissemination paths may emerge where some communities
post similar messages, based on the interests of those communi-
ties. Spam and other malicious content, on the other hand, follow
different spreading patterns.

In this paper, we follow this insight and present POISED, a sys-
tem that leverages the differences in propagation between benign
and malicious messages on social networks to identify spam and
other unwanted content. We test our system on a dataset of 1.3M
tweets collected from 64K users, and we show that our approach
is effective in detecting malicious messages, reaching 91% preci-
sion and 93% recall. We also show that POISED’s detection is more
comprehensive than previous systems, by comparing it to three
state-of-the-art spam detection systems that have been proposed
by the research community in the past. POISED significantly out-
performs each of these systems. Moreover, through simulations,
we show how POISED is effective in the early detection of spam
messages and how it is resilient against two well-known adversarial
machine learning attacks.
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1 INTRODUCTION

Cybercriminals have found in social networks a propitious medium
to spread malicious content and perform scams against users [36].
Social networks are leveraged by cybercriminals for a number of
reasons. First, social networks are very popular, with the largest
ones having hundreds of millions of users: this constitutes a large
victim base for criminals. Second, attackers who compromise social
network accounts with an already established reputation can exploit
the inherent trust between connected users to spread malicious
content very effectively [27, 38].

Previous work addressed the detection of spam on social net-
works by predicting the trustworthiness of the accounts that post
messages, notably by detecting Sybil communities [22, 87], bots [29,
75, 86], compromised accounts [27], or a combination of these [13,
85]. Recent research, however, showed how attackers can suc-
cessfully evade both Sybil-based defenses [50] and account-based
ones [93]. This happens because existing spam detection systems
detect the way in which malicious accounts infiltrate the network and
build connections, rather than the way in which malicious messages
spread across the network in comparison to legitimate ones.

In this paper, we propose a novel way to detect malicious mes-
sages on social networks. Instead of looking at the characteristics
of accounts or messages, we inspect the way in which messages
spread on the social network.

In social networks, users tend to form networked communities,
where most users are connected to many other users within the
same community. These communities can be recognized by their
structure in the underlying connection graph, as they form strongly
connected subgraphs. For this reason, they are also dubbed struc-
tural communities. The reasons why such communities form are as
varied as the reasons why people connect to each other, such as fam-
ily, geographical location, past common history, etc. Nonetheless,
it has been recognized that one important reason why members
of social networks tend to connect to others is the so-called ho-
mophily principle, i.e., people connect to other people who hold
similar thoughts and values [54]. In that sense, these people also
form communities of interest, where connected users communicate
and interact on topics of common interest. In principle, members of



a networked community may not necessarily share the same inter-
ests, and thus, structural communities and communities of interest
may not coincide. However, we postulate that the homophily prin-
ciple constitutes indeed the principal reason why people connect.
Therefore, we formalize our first hypothesis as follows:

H1: In social networks, the topics of interest of users within a
networked community are strongly shared among its members. In
other words, networked communities are structured subsets of the
larger set of users interested in the same topics.

It is recognized that the topology of social networks has an ex-
tremely important role in the dissemination of information [59, 90].
The dissemination of information is shaped by the structure of the
network, and in particular faster dissemination is favored within
networked communities [48]. Nonetheless, such dissemination can
traverse networked communities as long as there are members
in both communities who share the same interests. As time pro-
gresses, dissemination paths may emerge where some communities
trigger and post specific messages based on the interests of those
communities and of the surrounding ones. These dissemination
paths can help us predict patterns of postings within and outside of
communities. For example, if two communities C; and C, always
post messages on similar topics, then when a message is observed
in Cy, the same or similar message has a high probability to also be
posted or shared in Cy. In this paper, we refer to these communities
interested in the same set of topics as parties of interest.

On the other hand, spam typically spread differently throughout
the network. For example, messages that are posted by compro-
mised accounts may spread in unexpected communities, because
each compromised user posts that message regardless of whether
the topic is of interest to the account owner or of the communities
of interest of which the compromised user is a member [28]. This
leads to formulate our second hypothesis as follows:

H2: Normal messages disseminate through predictable parties
of interest that include intra-community communication and inter-
community exchanges between structural communities that share
common interests. Conversely, the propagation probability of mali-
cious messages through these parties of interest do not match with
those of normal messages.

In this paper, we investigate these two hypotheses through ex-
perimentation on the Twitter social network. First, our analysis
shows that, on Twitter, community members have a similar and
restricted set of topics of interest, thus validating our first hypothe-
sis. We then build a system, called POISED, that is able to detect
whether a message shared on a social network spreads through
expected parties of interest, or if it rather spreads anomalously.
Our experimental performance evaluation shows that POISED can
detect malicious spam messages with high accuracy, thus validating
our second hypothesis.

In a nutshell, POISED works as follows. First, it detects net-
worked communities in Twitter by partitioning its social graph.
Second, it identifies topics of interest in these communities. Then,
it tracks the dissemination of similar messages through communi-
ties and constructs a probabilistic model of the parties of interest
through which these messages are normally disseminated. Finally,
leveraging this model, a classifier detects malicious content by iden-
tifying the messages that do not follow these expected parties of

interest. POISED can successfully detect spam messages with 91%
precision and 93% recall. We also compare POISED to three state-of-
the-art spam detection systems that have been proposed by previous
work: SPAMDETECTOR [75], CompA [27], and BoTORNoT [25]. With
respect to the F1-score, POISED outperformed them by more than
70%, 35%, and 83%, accordingly.

Through simulations, we show that POISED performs very well
in detecting spam messages early on. For example, it can detect
spam messages that have spread through only 20% of the commu-
nities with 88% precision and 75% recall.

Finally, we investigate the resilience of POISED against two
common adversarial machine learning attacks [46], poisoning [70]
and evasion attacks [5]. Our simulation results suggest that the
adversary needs to have a great knowledge about the network and
parties of interest to highly impact the performance of POISED. For
example, even if 30% of the network is compromised, the precision
and recall remain at 82% and 87%, in the case of a poisoning attack,
and at 75% and 52%, in the case of an evasion attack.

In summary, this paper makes the following contributions:

(1) Through our experiments on 300 Twitter neighborhoods
with more than 15M tweets and 82K users, we show that
networked communities are built around shared topics.

(2) We developed POISED, which relies on a combination of
techniques from network science, natural language pro-
cessing, and machine learning to detect spam messages by
predicting the dissemination of messages through parties
of interest. We tested POISED on a ground-truth dataset
including data for 202 neighborhoods in Twitter with about
1.3M tweets and 64K users. Our results suggest that our ap-
proach is successful in detecting spam messages. Moreover,
it outperforms other state-of-the-art detection systems.

(3) Our results demonstrate that this approach is scalable and
can detect spam with only a partial knowledge of the social
network. Our simulation results show that spam messages
can be detected early on, when only attaining 20% of their
potential reach in their neighborhood network. We also
show that POISED is difficult to evade for an active ad-
versary. We simulate two attacks in which the adversary
attempts to mimic the propagation of benign messages, and
show that POISED is still highly effective even when the
adversary has compromised a large portion of the network.

2 BACKGROUND AND THREAT MODEL
2.1 Threat Model

In our threat model, spam messages are posted on a large scale [81,
83] and are similar in content and format since, in most cases, they
are generated by similar templates [31, 32]. This can be accom-
plished either by creating fake (Sybil) accounts [22], compromising
and abusing legitimate accounts [27], or by purchasing bots [30].
Unlike other related work that focuses on analyzing message
content (i.e., URLs) [47, 80], or finding compromised accounts [22,
28], we do not place any additional constraints on the type of spam
messages sent nor on the type of accounts used by the adversary.
Spam detection is an adversarial problem. In a real setting, an
adversary could reverse engineer how POISED works and actively
attempt to evade it. Therefore, we assume that the adversary is able



to post spam messages through parties of interest similar to those
of benign messages. Particularly, we assume that the community
detection and topic detection algorithms can be played. Malicious
accounts can compromise some parts of the network, establish con-
nections with honest users and pretend to share the same interests
as the target communities. We also assume they can replicate the
propagation model of benign messages through the parties of in-
terest. For example, an attacker may observe the number of times
a specific benign (viral) message has been posted in compromised
communities as well as the number of users who have posted those
messages, and then generate or compromise accounts to imitate
legitimate parties of interest.

2.2 Communities and Parties of Interest

In social networks, users establish connections with others, and
through them are able to interact with each other. The structure of
the underlying connection graph is not homogeneous: rather than
being connected with any user in the network, users tend to connect
to each other, creating networked communities, where “everybody
knows everybody.” On the other hand, users tend to come together
and form groups to interact around specific topics of interest [20,
39, 49], i.e., that they tend to form communities of interest. Thus,
the question becomes whether networked communities, defined in
terms of the actual connections in the network, coincide with this
topic-oriented notion of communities of interest.

The homophily principle [54] has been observed on online social
networks, where users tend to connect to people who hold similar
thoughts and values [42, 89]. In summary, this research would seem
to suggest that the concepts of community and topics of interest
are related.

However, they cannot be exactly the same. Indeed, we expect
that in the social network universe there may be several different
groups of users that are interested in the same things, but that are
not in direct contact with each other. In other words, there may
exist several networked communities that share the same interest,
but that are not connected. In that case, the overall community
of interest would consist of a set of disconnected networked com-
munities, and would thus not constitute a networked community
per se. Thus, modulo this caveat, one can postulate that networked
communities do constitute communities of interest, albeit not a
complete community of interest regrouping all users interested in
those topics. This is indeed our first hypothesis.

In fact, this hypothesis has been implicitly employed in previous
work on communities of interest. Indeed, in modern Internet-based
social networks it is much easier to determine who is connected to
whom than it is to determine a priori what are the topics of interest
of users, let alone of groups of users. Thus, a proxy method for
reconstructing these communities of interest has been to extract
networked communities from the information on connections be-
tween users [79]. This can be done by using graph algorithms to
identify dense subgraphs within the graph of user nodes and con-
nections. We explore the validity of this hypothesis on our Twitter
dataset.

In Figure 1, we provide an example of three such Twitter net-
worked communities. The edges represent the “following” relation-
ships between users. The size of nodes is scaled according to their
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o o . Topicl:Celebrities
o , Topic2: Friends and Family
% Topic 3: Love

T Topic 1: Soccer
Topic 2: Inspirational messages
Topic 3: Specific TV shows

® !
.

Comm2:\_________ ¥ —
Topic 1: YouTube videos
Topic 2: Blog posts

Figure 1: An example of three Twitter communities, where
each is talking about a specific set of topics.

degree. We detected these three communities in a subgraph of 2000
users and extracted the topics of their members’ discussions. We
found that each community talks about a specific set of main topics.
Users in Comm1 post news about Hollywood celebrities and dis-
cuss topics about friends and family. Users in Comm2 share videos
of some specific reputable Youtube users and bloggers. Users in
Comm3 are interested in soccer, post inspirational quotes, and talk
about a specific TV show.

Homophily [54] as well as the topology of social networks [59,
90] highly impact the dissemination of information in social net-
works. For example, by analyzing the tweets of communities, it is
possible to predict viral memes [90]. On social networks, however,
not all messages become viral [48] and many just travel through
some networked communities interested in similar topics. The
probability that a certain message is propagated through a set of
networked communities is different from another set of communi-
ties in the network. We call these sets of communities, who care
more or less about a message, the Parties of Interest. We hypothesize
that the propagation probability of malicious messages throughout
the network distinguishes them from the normal messages.

Based on this intuition, we propose a method for detecting mali-
cious content on Twitter, called POISED (Parties Of Interest Seman-
tic Extraction and Discovery). POISED computes and learns the
propagation probability of messages in the networked communities
and extracts the parties of interest. It then detects malicious mes-
sages by distinguishing their propagation probabilities and parties
of interest from those of normal messages.



3 METHODOLOGY

The components of our system are shown in Figure 2: 1) data ex-
traction, 2) community detection, 3) topic detection, 4) clustering
of similar messages, and 5) spam detection. In the following, we
explain each component in detail.

3.1 Data Extraction

We evaluated POISED on a large-scale dataset extracted from Twit-
ter. Twitter is one of the most popular microblogging platforms
with over 320 million active users [84]. This platform enables users
to broadcast and share information. A user’s timeline includes all
tweet messages posted by that user. On Twitter, users follow others
or are followed. Followers of a user receive all the tweet messages
posted by this user. Twitter also provides a “retweet” mechanism
that permits users to spread information of their choice beyond the
reach of the original tweet’s followers. Throughout this paper, we
use the terms messages, posts, and tweets interchangeably. POISED
utilizes user timelines and the social network. Here, we formally
define a network as:

Definition 3.1. A social graph G(V,E) is a set of vertices V rep-
resenting the users in the network and a set of edges E C {(u,v) :
u,v € V} representing the set of social connections.

Note that a social graph G can be directed or undirected. If it is
undirected, this means that (u,v) € E & (v,u) € E; If, on the
contrary, it is directed, then (u,v) € E does not necessarily mean
that (v, u) € E, i.e, u might be connected with v but not vice-versa.

3.2 Community Detection

Although there is no universally agreed-upon definition of a com-
munity in a social network, in a graph, structural communities
usually refer to a group of nodes that are densely connected to each
other and loosely connected to the rest of the graph. The nodes in-
side such a community might also share common properties and/or
play similar roles within the graph. In social media, communities
might have a link with external real entities. For example, a user
might have a group of friends from the same city, a group from the
same school, and yet another group interested in information secu-
rity. Although these communities might be roughly defined and be
overlapping with each other [1, 62], the concept behind them is still
valid. In contrast, however, structural communities are normally
defined as disjoint, non-overlapping sets of nodes of the graph. In
this paper, we will favor the use of structural communities as they
are easier to reconstruct from connection information. Later, our
results suggest that detecting structural communities enables us
to detect communities and parties of interest. Here, we define a
networked community as follows:

Definition 3.2. A networked community structure C of a graph
G is a disjoint partition of nodes in V, namely C = {Cy,...,Cp},
where C; CV,V = C1U---UCp,and C; # @,C;NC; = @ifi # j, for
alli,j € {1,...,h}. Nodes in a community C; are connected to each
other with higher probability than to nodes in other communities.

3.3 Topic Detection

Recently, natural language models have been used for clustering
words in order to discover the underlying topics that are combined

to form documents in a corpus. Topic detection algorithms such as
Latent Dirichlet Allocation (LDA) [6] and Topic Mapping [45] have
been successfully applied for analyzing text from user messages on
social networks. By employing a topic detection algorithm, POISED
identifies a set of topics of interest for a user and a community.

The LDA detection algorithm uses a list of documents as an input
and detects the corresponding topics. For social networks with small
message lengths, such as Twitter, topic detection is shown to be less
efficient [37]. For this reason, we aggregate a user’s messages into
larger documents and then run topic modeling on the documents.
For a user u, a set of documents D, namely D, = {d1,da, ..,d}},
is generated by partitioning the user’s timeline into k groups with
I messages. Note that [ is the number of messages in a document
and is a constant, whereas k varies based on the size of the user’s
timeline. Our evaluation with variation of [ = {1, 5, 10, 20, 50, all}
shows that the length of documents do not have a significant impact
on the overall results and therefore, we chose [ = 20.

Formally, a user u’s topics of interest (T,), namely a list T =
{t1,1t2, ..., tx}, consists of topics detected by a topic detection al-
gorithm on user u’s set of documents D,.

Having extracted the topics for each user’s documents, a com-
munity’s topics of interest can be simply defined as the list of all
topics detected for members of that community:

Definition 3.3. For a community C, its set of documents D¢ is
the union of the documents generated for each community member
ueC, Dc=Uyec Dy ={d1,da,...dm}, where m = 3, cc |Dul.

Thus, the set of topics of interest for a community C is defined
as follows:

Definition 3.4. The topics of interest T¢ of a community C is a
list Tc = {t1,t2, ..., tm} of m topics detected by a topic detection
algorithm on the community’s set of documents D¢, where each
document d; is labeled with a topic ¢;.

Note that the topics in the topic lists T, and T¢ of a user and
a community are not unique, and that several documents for the
same user or the same community can be labeled with the same
topic. Given Hypothesis 1, we expect that the topics found for a
user or a community will greatly overlap.

Detecting topics of interest for each community, POISED con-
structs a network of structural communities where each community
is represented by a set of topics.

3.4 Clustering Similar Messages

Similarity between messages can be measured by several metrics,
and some can be more complex than others [23, 67, 82]. Other spam
detection methods [27, 74] have effectively used an approach called
four-gram analysis to identify similar messages on Twitter. This
technique proved effective in our case : after manually inspecting
the performance of this method on 60 clusters of different sizes,
all clusters included the tweets with the same text, i.e., all tweets
were correctly grouped. As part of this approach, messages that
share four or more consecutive words are clustered together. While
in POISED, other algorithms can also be used to identify similar
messages, in our evaluation we cluster messages employing four-
gram analysis.
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Figure 2: POISED constructs a probabilistic model based on the diffusion of messages throughout communities of interest.
Then, it employs supervised machine learning to classify messages as spam or benign.

If a message contains less than four words, then all its words in
their consecutive order are compared with other messages. The re-
sult of running this algorithm is a list of groups of similar messages,
g = [msg1,msgz, ..., msg;], where g includes j similar messages,
|9l = j. The messages in a group can be generated by a single user
or several users.

3.5 Parties of Interest

A specific message could have been (re-)posted in one or several
communities. Tracking the propagation of the messages in struc-
tural communities identifies parties of interest. Over time, this track-
ing makes it possible to predict the probability that a message
posted in a community is also posted/retweeted in another commu-
nity. POISED tracks the diffusion of messages over communities,
and computes a probabilistic model for every cluster of similar
messages.

First, the union set of topics of interest is constructed, which
includes all topics detected from all documents. Then, for each
group of similar messages, POISED counts the number of times that
messages in the group have been observed in a community with a
specific topic. These counts for a group are normalized by the total
number of topics identified for messages in that group. For example,
assume three communities, C1, Cy and Cs are detected in a network,
whose topics of interest are {t1, 2}, {1, 3} and {¢1, t4, t5}, respec-
tively. Assume, a group includes three similar messages posted by
users u1 and up in C1, and user u3 in C2. The probability distribution
for the union of topics in these three communities, (t1, t2, £3, t4, t5),
is (%, %, %, 0, 0). All three messages in this group are posted in
communities with #; as their topic of interest (C; and Cy), while
only one of these messages is posted in communities with t3 as
their topic of interest (Cz). Therefore, the count distribution for
(t1, ta, t3, ta, t5), is (3, 2, 1, 0, 0). The distributions are normalized by
being divided by the message counts of the union of topics, i.e., six
in this example, to compute probability distribution.

As a result, for each group of similar messages, a probabilistic
model is computed, which shows the potential parties of interest for
that group of messages. Assume T is the union of all the detected
topics in the dataset, where T = {t1,f2, ..., . }. Each group g of
similar messages is represented with a topic probability vector
probg = [p1,p2, .... pi ], where k = |T| and p; is the likelihood that
messages in this group favor communities interested in topic ¢;;
this probability distribution thus represents the parties of interest
for messages in g. The overall table of probability distributions for

all groups of messages prob_table = {probsg, , probsg,, ..., probsg, }
thus represents the parties of interest for the social network given
the observed messages, and it is the basis for the classification model.
In other words, using this model, if a message is seen in a specific
community, it is possible to predict the probability that this (or a
similar message) are going to be observed in other communities.

Note that POISED does not need to learn about the topics of
messages, but only about their propagation through communities
of interest.

3.6 Classification

If spam messages travel through different parties of interest than
those of benign messages, then a classifier can learn these patterns
and detect spam messages. Hence, by having a ground-truth data
set, a classifier can be trained where topics found in communities
are features of that classifier, and the class is defined as a binary
variable that takes as values: spam or benign.

4 EVALUATION SETUP
4.1 Dataset

In December 2015, we used the Twitter API to crawl users’ timelines.
The API provides a stream of random users. We used a sample of
300 of them, called “seeds,” and crawled the timelines for them as
well as their friends and followers. Thus, we obtained data for 300
neighborhoods in Twitter, where a neighborhood consists of a seed
with all his friends and followers. In our random selection of seeds,
we did not collect data for users with more than 2,000 followers or
friends, so that the crawling process would be of manageable size.
We also limited the crawl to users having specified English as their
language, so the further text analysis would be performed on tweets
of a single language. To limit the bias of analysis in favor of older
accounts with many tweets, and to work with more current data,
we limited the number of tweets used per user to a maximum of 300
of their most recent English tweets. In our dataset, the average of
all users’ oldest and newest tweets are March 2015 and June 2015.

4.2 Network Construction

For each neighborhood, we constructed a directed and an undirected
network based on following relationships between all users inside
the neighborhood. The undirected network is obtained from the
directed network, where the relationship between two users must
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Figure 3: While on average neighborhoods contain 270 users,
some include more than 1000.

be reciprocal to form an edge. In our experiments we examine the
impact of both networks on our results.

Some users in each neighborhood only have a single connection
to other users. These isolated users later result in some communities
with a size of one and two. We applied a standard technique called
k-core [72] to extract the maximal connected subgraph of each of
the networks, where all nodes have a degree of at least k, here
k=2

After obtaining the k-core of all 300 networks, the mean neigh-
borhood size is 271, while some neighborhoods include more than
1000 users.

Figure 3(a) shows the histogram of the number of users (neigh-
borhood size) in 300 neighborhoods. After obtaining the k-core of
all 300 networks, the median for neighborhood size is 178 and the
mean is 271. Seven neighborhoods include more than 1000 users.
Figure 3(b) shows the histogram of timelines’ length in our dataset,
with an average value of 332 and a median of 177. Examining our
hypotheses on both small and large neighborhoods demonstrates
that our findings are not dependent on the size of a dataset or a
specific neighborhood.

In summary, the dataset for testing the first hypothesis includes
15,751,198 English tweets posted by a total of 82,275 users in 300
neighborhoods.

4.3 Community Detection

To find structural communities, we employed one of the most
widely accepted disjoint community detection algorithms, called
Infomap [69]. This algorithm has shown good performance in tests
using benchmark networks [43, 44].! In Infomap, a community
is a partition that minimizes the average number of bits per step
required to describe trajectories of random walkers.

Infomap detects a total of 2,283 communities in our 300 neighbor-
hoods. While on average neighborhoods contain 8 communities, a
handful of them contain more than 30 communities. Figure 4 shows
the histograms for number of communities and their size resulting
from the Infomap community detection algorithm. The median for
number of communities in each neighborhood is 4 and the mean

! Among the variety of community detection methods, we evaluated the impact of a set
of them on our results, including Infomap [69], Spinglass [26], Walktrap [64], Leading
eigenvector [60], Fastgreedy [18] and Multilevel [7]. Interestingly, we obtained very
similar results while Infomap slightly outperforms the other algorithms.
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Figure 4: Histograms for number of communities and com-
munity size.

is about 7.5. The median for community size is 6 and the mean is
about 30.

4.4 Topic Detection

We applied Latent Dirichlet allocation (LDA) to find topics of inter-
est for users and communities. We first generated text documents
from users’ timelines and then ran LDA modeling on the documents
to obtain a list of detailed topics for each document.

Documents. As explained in Section 3.3, POISED divides the
timeline into several documents.Since on Twitter, some accounts are
older and some users post more often, the lengths of timelines can
differ substantially. Figure 3(b) shows the histogram of timelines’
length in our dataset, with an average value of 332 and a median of
177. On average, the users’ timeline include 332 posts. As explained
earlier, for each user we only consider at most 300 of the most
recent tweets for our analysis.

Each document contains a fixed [ number of tweets. The number
of documents for a user depends on the number of tweets in the
user’s timeline. In our experiments, we investigated the impact of [
on the list of detected topics and found that there is not a significant
difference with a variation of /. Nonetheless, LDA detects topics
slightly more accurately with 20 tweets per document.

Topics. We cleaned the documents by removing URLs, and non-
printable characters. We removed stop words, a list of common
words found in the English language, to improve topic detection
and obtain detailed topics.

We employed the LDA implementation provided by Machine
Learning for Language Toolkit (MALLET) [53]. The output includes
documents labeled with a series of topics. We chose to label each
document with the topic having the highest weight value. Having
several documents for a user results in possibly several topics for
the user. If all the documents of a user are labeled with a particular
topic, then it shows that the user is interested in that specific topic.

MALLET requires a few parameters to apply LDA, such as the
amount of topics to be found in the given documents. We exper-
imented with various amounts of topics. Later, we show that the
best results are obtained with 500 topics. Moreover, we tested dif-
ferent amounts of tweets per document, and later show that the
best results are obtained with 20 tweets per document. In MALLET,
we also set the iteration count to 200, which provides more precise
topics at the expanse of a longer processing time.



5 EVALUATION: COMMUNITIES OF
INTEREST

In this section, we examine our first hypothesis that members of a
networked community have similar topics of interest.

5.1 Metrics and Null Model

We validate Hypothesis H1 on our dataset by computing three
entropy-based metrics: completeness, homogeneity, and V-measure of
topics detected in communities. These metrics were first proposed
by Rosenberg and Hirschberg [68], and have been commonly used
for evaluating many natural language processing tasks [19, 68].

All these three criteria produce a score in the interval of [0, 1],
with 1 being ‘good’ and 0 ‘bad. Completeness measures if all doc-
uments of a community are assigned to the same topic, e.g., they
are only about football. Symmetrically, homogeneity measures if
each topic is only observed in a single community, e.g., if all mes-
sages about a local art competition are posted by members of one
community. V-measure is the harmonic mean of completeness and
homogeneity and measures how successfully the two criteria are
met. The computation of these measures is independent of the num-
ber of documents and topics in the communities and the network.

By computing these three metrics, we are able to measure if the
members of a detected community are interested in the same topic.

To further validate that communities provide additional infor-
mation about members’ common interests, we propose comparing
their scores with those of a null model. Statisticians use null models
as baseline points of comparison for assessing goodness of fit [63].
Recently, null models have been used for studying network struc-
tures [16, 61, 63, 77] and community structures [56]. We generate a
null model that randomly partitions documents into groups.

To have a fair comparison between the documents in the actual
communities and those of the random clusters of the null model,
the documents are shuffled so that the distribution of size of groups
in the null model remains the same as in the detected communities
in the network, and the number of communities remains the same.
As a result, if the actual communities have higher scores, then our
hypothesis is validated that users in communities are grouped over
some specific topics of interest, and random clustering of documents
does not provide similar or better scores.

5.2 Communities Discuss Different Matters
While Community Members Talk About
Similar Topics

We examine Hypothesis H1 by comparing the communities of in-

terest that are detected in our neighborhoods with the random

communities of the null model.

Figure 5 compares the scores for these two models. To examine
the effect of the number of communities on the scores, Figure 5
presents them according to the number of communities in the
neighborhoods. The normal results denote the scores obtained from
the model created from actual communities, while the random
results show the results for the null model created from random
communities.
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Figure 5: Both metrics highly decrease for the null model.
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Figure 6: The metrics’ score slightly increase for 500 topics.

Overall, the tests with random communities show a substantial
drop in results. For communities of interest, on average, complete-
ness and homogeneity scores are about 0.16 and 0.90 respectively
while those scores are about 0.063 and 0.49 for random commu-
nities. We also ran a Z-test to compare the homogeneity and the
completeness values for actual and random communities. For both
metrics, the p-values are lower than 0.0001.

The completeness and homogeneity scores indicate that people in
the communities talk about certain topics that are mainly different
from those talked in other communities in their neighborhood. The
homogeneity results also confirm that communities of interest are
effectively distinguishable.

Some parameters can affect our evaluation of the first hypothesis.
For example, the total amount of possible topics is a fixed value
given as a parameter to MALLET. Also, we used a fixed amount of
tweets written into each document. Figure 6 shows the impact of
the amount of topics varying from 100 to 1000. As can be seen, the
amount of topics do not significantly change the scores.

Only the homogeneity score slightly varied, being 0.87 at its
maximum, when the topic count is 500. Similarly, we tested the
impact of document size varying from 5 to 300 tweets per document.
In summary, this parameter only affects the scores slightly (at most
0.17 in the range of [0,1]) and the best scores are provided when
the document contains 20 tweets.

To measure the impact of different community detection algo-
rithms, we also re-run the experiments for communities detected by
several of these algorithms. The topic detection by LDA is indepen-
dent of the community detection algorithm, and each community
includes topics detected for its members.
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Figure 7: The communities and their topics of interest show
high homogeneity but relatively low completeness.

Figure 7 shows the scores for various community detection algo-
rithms. These scores were calculated for each neighborhood, and
then averaged. It illustrates that no matter what community detec-
tion algorithm is used, the communities and their topics of interest
demonstrate high homogeneity, [0.8,0.89]. Higher homogeneity
confirms that communities do have little topics in common and,
hence, are distinguishable. Considering its high homogeneity score,
Infomap was chosen to be applied by POISED. Similarly, no matter
what community detection algorithm is used, the completeness
between communities and their topics is about 0.25. The Walktrap
community detection algorithm provides communities with the
highest completeness, with a score of 0.31. These values show that,
for communities, not one but multiple topics are detectable.

Since the scores for the directed networks are slightly higher,
we used the directed networks for our analysis.

6 EVALUATION: TWITTER SPAM
DETECTION

Here, we examine our second hypothesis that benign and malicious
content diffuse through distinguishable parties of interest, which
can be used to detect Twitter spam messages.

6.1 Clustering Similar Messages

First, POISED needs to observe the diffusion of messages through
communities of interest to learn about their parties of interest. For
this, it applies four-gram analysis to detect similar messages in
every neighborhood. We cleaned tweets by removing stop words
and punctuation. Also, each URL is considered as a word.

In total, in our dataset, we found 1,219,991 groups of similar mes-
sages with the size range being between 2 and 94,382. Figure 8(a)
shows the CCDF of the size of groups of similar messages in our
dataset, which follows a power law distribution, with a small num-
ber of big groups and many small ones.

6.2 Create a Labeled Dataset

To evaluate the probabilistic models for spam detection, we need
to have a ground-truth dataset including both spam and benign
messages. Since it is not possible to manually label over 1 million
clusters of similar messages, we picked the top 5000 groups after
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Figure 8: Size of groups of similar messages in the whole
dataset and labeled dataset.

ordering them by their size, and labeled these groups. The group
size picked for labeling ranges from 68 to 94,382. We may find more
malicious campaigns by looking at larger clusters compared to all
data. However, many large clusters also contain benign messages
such as simple “happy birthday” wishes, as well as memes and
trending topics.

The tweets in this dataset were manually checked by a group of
14 security researchers who labeled them independently, following
a similar methodology to the one applied by previous work [14].
The researchers were advised on the risks of clicking on suspicious
links and took precautions not to get infected (e.g., by using virtual
machines to lookup URLs). Each group of similar tweets is evaluated
and labeled by three researchers, and then the majority vote is
considered as the final label. We provided some guidelines for the
researchers and defined some categories so that they can label each
tweet with one of those categories. These categories are defined as:
Spam: A message that is encouraging users to do something, such
as buying an item, voting for someone, visiting a URL, etc. Encour-
aging users is not by itself a malicious activity, however, if a tweet
is doing it, then a more careful assessment is needed. For example,
coders had to visit the websites these URLs refer to. If the URL is
suspicious, then the message is spam. Note that memes also may
include URLs. If in some cases, the URLs are not functional, then
the coders were advised to label the groups based on their subject,
and their tone.

App-generated: A message that is automatically posted by an ap-
plication on the user timeline. Some examples are weather alerts
posted by IFTTT? and health-related reports posted by fitness track-
ers such as Fitbit.? In the process, we also found that some of the
bigger clusters are the result of some apps such as Twittascope,
which regularly post tweets on behalf of the users. These tweets
usually contain links to some articles.

Quote: A message that is a popular quote. In the first round of
labeling, we found that many tweets consisted of quotes, so we
created a separate category for them, and asked the researchers to
fix their labels accordingly.

https://ifttt.com
Shttps://www.fitbit.com



Table 1: Examples of messages in each category

“Fellas need a mix 2 get ur lady in the mood heres a mix to help u succeed. [_URL]”

Spam

“@X Listen To My Lul Song XXX Hot! Download And Share [_URL]”
“Wow! another great item; available on eBay [_URL]”

“WOW! No Cost Traffic For Your Website Home Based Business Blog Click Here Now Please #retweet [ URL]”

“4 tweeps unfollowed (goodbye!) me in the past week. Thank you [_URL]”

App-generated

“New week; new tweets; new stats. 2 followers; 3 unfollowers. Via good old [_URL]”
“August 28; 201X #Fitbit activity: 11XXX steps taken; 5.XX miles walked/ran; and 2XXX calories burned.”

“Your key planet Venus is now moving through your 12th House of... More for Libra [ URL]”

“Either you run the day or the day runs you. - Jim Rohn”

“You’re only as good as the people you hire. - Ray Kroc”

Quote “Do you want to know who you are? Don’t ask. Act! Action will delineate and define you. - Thomas Jefferson”
“Problems are only opportunities in work clothes. - Henry J. Kaiser”
“If you could ask a business consultant any question; what would you ask?”

Normal “Brendan Rodgers: Liverpool boss has no plans to leave club [_URL]”

“RT @X: Thank you XX for last night. Hope you all enjoyed the show; you’ve always been lovely to us”
“RT @X: Puppy caught eating paper decides killing the witness is the only way out [ URL]

Normal: A message that seems normal and has become popular
(trending) because of its content. Examples are memes about current
news and links to interesting reads, videos, photos, etc.
Unknown: If the coders were unsure about the category of a mes-
sage, they could choose 'Unknown. However, researchers were
advised to try not to choose this option.

Table 1 provides some examples of manually labeled messages.
Table 2 shows the size of each category after labeling all 5,000 clus-
ters of similar messages. It also shows the number of tweets in each
category. In total, by labeling these 5,000 groups, we obtained labels
for 1,277,833 tweets. As you can see, clusters of similar messages
are almost evenly labeled as normal (44%) and spam (42%). Most
tweets though are labeled as normal (38%) because groups labeled
as normal include more tweets. While only about 8% of groups are
labeled as app, they include about 33% of tweets.

Labeling the tweets also can be utilized to classify users into two
groups of spam and benign users. Table 2 shows the amount of
unique users identified in each category. The total amount of unique
users in all the groups is 66,788. However, some users appear in
multiple categories. For users who appear in both spam and normal
categories, three possible explanations are: First, spam accounts
may try to emulate normal users to avoid suspension by Twitter;
second, accounts may have been compromised, and, therefore, some
posts on their timeline are benign while others are spam; and, third,
their tweets are mislabeled.

Another interesting observation is that the amount of tweets in
the normal category is only about 5% and 10% more than that in the
spam and app categories, respectively, while the number of unique
users in the normal category is almost 4 and 6 times more than
that in the spam and app categories. These considerable differences
indicate that spam accounts or campaigns are responsible for larger
clusters that repeatedly post similar spam messages.

6.3 Identifying Parties of Interest

The probabilistic table representing the parties of interest is gen-
erated using the labeled dataset. As it was explained in Section 2,
for each cluster of similar messages, POISED computes the prob-
abilities of messages in that group being posted in each of the
communities of interest. As an example, let us assume that in a

neighborhood with three communities, the topic detection algo-
rithm has found eight topics of interest and four-gram analysis
has identified ten clusters of similar messages. The probabilistic
table will then include ten rows and eight columns corresponding
to groups and topics, respectively. The table entry for row i and
column j is the probability that the messages in group i is being
observed in communities with an interest in topic j.

Ideally, the probabilistic model should be built on the whole data
of a social network. However, we cannot perform topic modeling
on all data because of the resource constraints imposed by the use
of MALLET. Instead, the topic detection is run and a probabilistic
table is generated for each neighborhood separately. Each neigh-
borhood includes multiple communities. We show that even while
performing the analysis locally on each neighborhood, POISED
detects spam messages effectively. This technique of running the
analysis on neighborhoods can also help scaling our approach, so
that it can be applied on much larger datasets. For example, Twit-
ter can divide its large dataset into a few partitions that are then
independently analyzed.

A probabilistic table for a neighborhood includes the clusters
of similar messages that are posted in that neighborhood. Also, if
messages of one large group are observed in multiple neighbor-
hoods, then the probabilities for this group is computed separately
and listed in the probabilistic table of every neighborhood. As a
result, the size of probabilistic tables varies for each neighborhood.
Some include thousands of clusters of similar messages while oth-
ers include only a few of them. Because of the lack of enough
observations in some neighborhoods, we did not run POISED on
neighborhoods with less than 10 benign or 10 spam clusters of
similar messages.

Therefore, our ‘ground-truth’ dataset for testing the second hypoth-
esis includes the data for 202 neighborhoods with 2,896 clusters of
similar messages and close to 1.3M tweets generated by more than
64K users.

Table 2 summarizes some statistics on this dataset. It shows that
the number of spam groups and tweets in the ground-truth dataset
are about 12% and 10% less than those in the ‘labeled’ dataset. In
contrast, the number of app groups and tweets in the ‘ground-truth’
dataset are about 2% and 8% more than those in the ‘labeled’ dataset.



Table 2: Statistics for the manually labeled and ground-truth datasets

Spam App Quote Normal Unknown
Labeled Dataset (300 neighborhoods)
No. of groups 2,110 (42.2%) 376 (7.5%) 335 (6.7%) 2,178 (43.6%) 1(0%)
No. of tweets 344,540 (27%) 416,099 (32.5%) 34,138 (2.7%) 482,975 (37.8%) 81 (0%)
No. of users 13,179 9,740 3,819 55,473 1

Ground-truth Dataset (202 neighborhoods)

No. of groups 854 (30%)
No. of tweets 168,181 (17%)
No. of users 12,504 9,614

274 (9%)

408,395 (40%)

6.4 Classification on Parties of Interest

We employed machine learning to detect spam messages. The fea-
tures are the list of topics in a neighborhood that are automatically
detected by the topic modeling algorithm. An observation indicates
the parties of interest represented by a row in the probabilistic table
that includes the probabilities that a group of similar messages has
been observed in communities interested in each of the topics. In
addition to these features, we also consider the number of users
per total number of messages in a group as a feature. This feature
aims at capturing if a message is posted by several users or only by
a small number of them.

The class of a group is the label in the ground-truth dataset.
We define a class as a binary variable: ‘benign’ or ‘spam’. While
five categories were defined for manual labeling, for evaluation,
we examined different combinations of these categories: Comb.
1: Spam = {spam}, and Benign = {normal, quote, app}, Comb. 2:
Spam = {spam}, and Benign = {normal} and Comb. 3: Spam =
{spam, app}, and Benign = {normal, quote}. Later, we show that
regardless of the combination, ‘spam’ messages are detected with
high accuracy. The distinction between spam and benign messages
can be specified by a policy and fed to POISED as a parameter.

The datasets are not balanced, i.e., the number of spam and be-
nign messages is not equal. We overcome this limitation by using
a well-known over-sampling technique called SMOTE in which
the minority class is over-sampled by creating “synthetic” exam-
ples [15].

To assess the effectiveness of our spam detection algorithm,
we use the standard information retrieval metrics including recall,
precision, F1-score, and accuracy.

After creating all the probabilistic models over the ground-truth
dataset, we applied k-fold cross validation on each of the 202 neigh-
borhoods separately. Then, we averaged their measures. We tested
with three values of k = {3, 5, 10} and found very similar results.
Since k = 10 is one of the most common practices [10, 41, 66], we
report the results for that value. We also tested several classification
algorithms including Naive Bayes, SVM and Random Forest and all
provide similar results.

Table 3 shows the results provided by SVM on different observa-
tion combinations. Since most groups of messages are labeled as
‘spam’ or ‘normal’, these combinations do not highly impact the
results of the classifier. The results suggest that with high preci-
sion (91%) and recall (93%) our classifier successfully detects spam
messages.
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Figure 9: Percentage of spam posted by individual users.

6.5 Spam Accounts in Labeled Dataset

While some users only posted either benign or spam messages, some
users have posted messages from both classes. Figure 9 indicates
the histogram of spam message percentages for all users in the
labeled dataset. It illustrates two main clusters of users who either
post benign or spam content. This confirms that by examining
the distribution of an account’s messages, it is possible to label an
account as benign or spam.

To identify spam accounts, we compute s, the percentage of spam
messages to the total number of messages that a user has posted. A
user is identified as a spam account if s > 7. 7 is a parameter that
can be configured based on the dataset and the desired or accepted
false positive values for the system. We set 7 = 0.4 and assume that
if more than 40 percentage of the messages posted by an account
are spam messages, then this account is more likely a spam account.

Finally, our labeled dataset includes 15,055 (23%) spam accounts
and 49,675 (77%) honest users. The high percentage of spam ac-
counts may be due to our selection of larger groups of similar
messages as a labeled dataset, which may relatively include more
spam messages compared to the whole Twitter data.

6.6 Comparison with state of the art systems

We compare POISED to three state-of-the-art systems that have
been proposed by the research community in the past: SPAMDE-
TECTOR [75], which is a system that detects fake accounts on so-
cial networks by examining characteristics of these profiles (e.g.,
the fraction of messages posted that contain a URL), COMPA [27],
which detects social network accounts that have been compromised
by learning the typical behavior of an account and flagging any



Table 3: The performance of POISED as well as state of the art systems. The +/- values indicate standard error.

System Label Combination Accuracy F1-score Precision Recall
POISED Comb. 1 0.89 (+/- 0.02)  0.90 (+/- 0.02)  0.85 (+/- 0.02)  0.95 (+/- 0.02)
POISED Comb. 2 0.90 (+/- 0.02)  0.91 (+/- 0.02)  0.87 (+/- 0.02)  0.95 (+/- 0.02)
POISED Comb. 3 0.90 (+/- 0.02)  0.90 (+/- 0.02)  0.91 (+/- 0.02)  0.93 (+/- 0.02)
SPAMDETECTOR [75] Comb. 3 0.67 0.20 0.21 0.20
COMPA [27] Comb. 3 NA 0.55 1.0 0.38
BoTORNoOT [25] Comb. 3, thr=0.8 0.76 0.07 0.36 0.04

activity that deviates from that behavior as a possible compromise,
and BoTORNoT [25, 29], which leverages more than one thousand
features to evaluate if a Twitter account exhibits similarity to the
known characteristics of social bots. We could not compare POISED
with a couple of more recent work due to either the difficulty in
obtaining their systems, or not being applicable on Twitter data.
We discuss them in more details in Section 7.

Note that the threat model tackled by our approach is much
broader than the one that these systems focused on: we aim to
detect any malicious message regardless whether it was posted by a
fake account or by a compromised one, while previous approaches
only focused on one of these two categories. Because of this rea-
son, our results in Table 3 show that our system outperforms both
SpaMDETECTOR and COMPA, as well as BOTORNOT.

SpaMDETECTOR and COMPA were developed as part of previous
work by some of the authors of this paper, therefore we had access
to their source code. In the case of SPAMDETECTOR, we performed
a 10-fold cross validation on our labeled dataset using Random
Forest as a classification algorithm. For COMPA, performing a 10-
fold cross validation would not make sense, since this system does
not take into account two classes of spam or benign accounts, but
rather learns the typical behavior of an account and determines
whether new messages that an account sends are malicious or not.
Therefore, in this experiment we used COMPA to learn the typical
behavior of the accounts that sent spam in our ground-truth dataset,
and determine whether the spam messages that they sent were the
consequence of a compromise.

Table 3 illustrates that our system outperforms both COMPA
and SPAMDETECTOR considerably. The perfect precision reported
by COMPA is an artifact of the fact that we only tested that system
on malicious accounts (which is also the reason why we could not
calculate accuracy), but the low recall of 0.38 (possibly due to the
fact that only a minority of the accounts in our labeled dataset
were compromised and not just fake) shows that POISED is a better
candidate to fight the problem at hand.

We called the BorOrRNoT API for all the users in our labeled
dataset. The classification system of BoTORNOT is based on more
than 1,000 features extracted from interaction patterns and content.
When testing on a user, it returns the probability of that user being a
social bot (Sybil account). To label users as bots, we picked multiple
values, {0.7,0.8,0.9}, as a threshold. Here, we reported the values
of measures for 0.8. We ran BoTORNoOT in February of 2016. Since
both tools were run relatively close to each other, 60550 out of
63600 accounts still existed and were accessible for BOTORNOT. In
all cases, POISED outperforms BorORNoOT. Overall, the precision
of BoTORNOT is around 40% while the recall is as low as 0.03.

6.7 Missed Spam Messages and Accounts

All of the above systems are relying on classifiers that find the
abnormalities based on some features that can be adopted over
time. The systems that we compared against POISED are either
based on specific characteristics of the accounts under scrutiny
(SPAMDETECTOR, BOTORNOT) or look for changes in the behavior
of an account that might be indicative of a compromise (COMPA).
Given these peculiarities, these systems can only detect certain
types of spam. In contrast, the feature set in POISED is adopted
over time by detecting parties of interest and this makes its de-
tection more comprehensive. In addition, POISED uses the main
characteristic of spam messages, i.e., their need to propagate in
large-scale campaigns, which can not easily be mitigated by the
attackers, who, by doing so, would directly affect the efficiency of
their campaigns.

We further manually examined a sample of ‘spam’ accounts that
are not detected by other approaches, to understand how POISED
allows to improve the detection of spam over previous work.

Some of the users not detected by SPAMDETECTOR were users
aggressively advertising products, while others were bots only
tweeting about a specific hashtag. Also these accounts have multiple
bots in their friends. We believe that these bots were able to evade
the fairly simple threat model of SPAMDETECTOR, but were caught
by the statistical models of POISED.

Some of the missed spam accounts by COMPA were users who
retweeted quotes to appear legitimate, but also posted spam from
their blog. Again we found multiple bots in their friends. We be-
lieve that these accounts were not compromised, but rather bot
accounts, and were therefore outside the threat model used by
COMPA. Both COMPA and SPAMDETECTOR did not identify users
posting automated content from applications.

BoTORNOT, on the other hand, falsely detected some benign
users as bots, possibly because of their high follower-to-friend ratio
and low count of tweets. It also missed some accounts that were
detected by POISED, that have since been suspended by Twitter,
possibly for spamming. These examples show that POISED is able
to identify a broader category of spammers than previous systems,
and is therefore more effective in fighting this problem.

6.8 Early Spam Detection

POISED is more effective if it can identify spam messages early
on, before they are fully distributed throughout the network. We
investigated the impact of “early detection” on the performance of
POISED. We implemented a simulation, where at the probabilistic
table creation phase, for each spam observation, the propagation
probabilities are only obtained for some percentage of communities,
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Figure 10: Effective in early detection of spam messages

and assumes that the message has not been observed in the remain-
ing communities. We ran experiments for different percentages of
communities, 10%-100%, where communities are picked randomly.
For each percentage, we repeated the experiments three times.

Figure 10 indicates that POISED is effective in detecting spam
messages at the early stage when they have only propagated through
30% of the communities with 90% precision and 75% recall.

6.9 Adversarial Machine Learning Attacks

To evade the protection, adversaries actively manipulate data to
make the classifier produce false negatives [4, 21, 34, 46, 52, 58, 71].
These attacks will usually target two different stages of classifica-
tion: 1) at the training phase, where an adversary may attempt to
mislead the classifier by “poisoning” its training data with carefully
designed attacks [70], or 2) at the testing phase where an adversary
may attempt to evade a deployed system by carefully manipulating
attack samples [5]. These attacks are called poisoning and evasion
attacks respectively. We investigated the robustness of POISED
against both of these adversarial settings to understand to what
extent our classifier can resist the targeted attacks.

In both attacks, an adversary attempts to make the propagation
of her spam message be as similar as possible to that of a benign
message in the whole network.

For that, we assume that the adversary has the ability to create
sybil accounts, establish connections with honest users and pretend
to share the same interest as target communities by sending topical
messages. As the result of these malicious activities, we assume that
the adversary obtains the knowledge of: 1) the message counts in
each of the communities of interest, and 2) the number of users who
have posted those messages in each of those communities of interest.
Moreover, we assume that the number of fake or compromised
accounts is equivalent to the number of users (re-)posting that
specific benign message because this is one of the features used in
the classifier.

However, we assume that in non-compromised communities, the
adversary is unable to control any of these variables. For example,
let us take a network with 200 communities, where the attacker
has compromised 50 communities. She observes that some similar
benign messages are always posted in 30 of these communities.
Using this information, she posts her malicious content with a
similar distribution in those same 30 communities. However, since
she has no control over 150 of the 200 communities, her messages
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Figure 11: POISED vs. adversarial machine learning attacks

most likely propagate differently than benign messages through
the network.

We simulated the attacks by randomly picking some percentage
of communities as compromised by the adversary.

The poisoning attack is performed during the training phase.
At this phase, the adversary deliberately interferes with both the
topic detection and community detection algorithms. She joins com-
munities in order to modify the network and the community struc-
tures. In these now compromised communities, she posts messages
resembling the propagation of benign messages in the compromised
communities, therefore modifying the probability distribution of
topics in these communities. The propagation probabilities for this
spam message is actually the combination of probabilities for the
chosen benign message in the compromised communities and those
of the spam message in the non-compromised communities. How-
ever, since the observations in the training set are (manually) la-
beled, the spam messages should still be correctly labeled as spam.
The classifier might not be able to accurately distinguish and detect
either spam or benign messages because the parties of interest for
benign and spam messages are partially identical.

The evasion attack is performed during the testing phase. The
training set is not polluted while the testing set includes the in-
stances of spam messages that attempt to resemble the probabilistic
propagation of benign messages. In this attack, we assume that
the attacker has partial knowledge about the model built on the
training set, and modifies the probability distribution of her mes-
sages in compromised communities, as explained previously at the
poisoning attack.

For both attacks, in each of the neighborhoods and for each per-
centage of compromised communities, we ran the simulations three
times and averaged all the results. In the case of the poisoning attack,
the observations of all the spam messages in the ground-truth are
modified based on the attack to represent simulated spam messages,
while the observations for benign messages remain unmodified.
To evaluate the attack, we performed 10-fold cross-validation on a
balanced dataset generated by SMOTE algorithm [15].

In the case of the evasion attack, the testing set includes all
simulated spam messages that are generated based on the attack. It
also includes a random set of x benign messages where x is equal
to the number of spam messages in the testing set. The training set
is the entire ground-truth dataset excluding those benign messages
appearing in the testing set.



Figure 11 shows the impact of these attacks on the performance
of POISED when the percentage of compromised communities
increases from 0 to 100. As it can be seen in the results, by increasing
the percentage of compromised communities, the performance
gradually decreases in both attacks. In the poisoning attack, F-1
decreases from 90% to 65%, while in the evasion attack, it decreases
from 90% to 15% when the number of compromised communities
increases from 0 to 100%. POISED is more robust to the poisoning
attack because simulated spam messages and their propagation
probabilities in non-compromised communities are observed in the
training set and the classifier has learned from them.

These results suggest that the attacker needs to have a great
knowledge about the network to highly impact the performance
of the classifier. For example, even if 30% of the network is com-
promised, the precision and recall remain at 82% and 87% in the
case of a poisoning attack, and at 75% and 52% in the case of an
evasion attack. Moreover, we argue that the poisoning attack is a
more realistic attack because, in practice, the ground-truth dataset
gets updated over time and the training set most probably includes
spam messages generated by the adversary.

7 RELATED WORK

POISED is the first system able to detect spam on Twitter by looking
at the differences in which legitimate and malicious messages prop-
agate through the network. In the following, we discuss previous
work in the area of spam detection on social networks. Broadly
speaking we identify two types of approaches: those that look at
identifying malicious messages and those that look at flagging mali-
cious accounts. We then revise the academic literature that studied
message propagation on online social networks.

Malicious Messages Detection. Identifying spam messages
on social networks has been extensively studied [47, 78, 80, 90,
92, 94, 95]. Yardi et al. [94] studied Twitter spammers who abuse
trending topics. Analyzing URLs in messages is another method
employed to detect malicious messages [47, 80]. MONARcH [80] is a
system for crawling URLs spread in social network and identifying
malicious messages and compromised accounts. Lee and Kim [47]
also proposed WARNINGBIRD, a system that analyzes correlated
redirection chains of URLs in a number of URLs posted on Twitter
to identify malicious tweets. Some researchers have proposed offline
spam analysis to identify large-scale social spam campaigns [32, 36].
They mostly apply clustering algorithms based on URL blacklisting
on a complete set of messages. Xu et al. [92] presented an early
warning worm detection system that monitors the behavior of users
to collect suspicious worm propagation evidences.

In summary, these works concentrate on limited aspects of the
spam detection problem, such as messages URL analysis, user be-
havior analysis, offline spam analysis, etc. In POISED, we provide a
generic solution that detects spam messages from their propaga-
tion patterns through communities of interest, regardless of their
content.

Malicious Accounts Detection. Today, normal users in popu-
lar social networks are increasingly becoming the target of attackers.
Many research works investigated this problem and proposed vari-
ous solutions for this challenge [3, 8, 9, 11, 12, 22, 28, 29, 32, 75, 91].
COMPA [28] is a system that detects compromised Twitter accounts

based on their behaviors over time. The authors showed that nor-
mal users have almost stable habits over time, unlike compromised
users who likely show anomalous habits. Liu et al. [51] calculated
user topics with LDA, and then employed supervised learning to
identify spammers based on topics of discussion. Cai et al. [11] pre-
sented a machine learning-based platform to detect Sybil attacks
in social networks. They split a social network into communities,
and tried to identify communities that connect in an unnatural or
inconsistent way with the rest of the social network. Sybillnfer [22]
detects compromised accounts using a Bayesian Inference approach.
Stringhini et al. [75] investigated spammers’ behavior by creating
a set of honey-profiles on popular social networks. By studying
spammers’ characteristics, they introduced a spam detection tool.
Link Farming in Twitter where spammers acquire large number of
follower links has been investigated by Ghosh et al. [33]. By analyz-
ing over 40,000 spammer accounts, they discovered that a majority
of farmed links comes from a small number of legitimate and highly
active users. Wang et al. [87] analyzed user click patterns to create
user profiles and identify fake accounts using both supervised and
unsupervised learning. Viswanath et al. [85] applied Principal Com-
ponents Analysis (PCA) to find patterns among features extracted
from spam accounts. Cao et al. proposed SynchroTrap [13], a de-
tection system that clusters malicious accounts according to their
actions and the time at which they are made. EviLCOHORT [76] is
a system that identifies sets of social network accounts used by
botnets, by looking at communities of accounts that are accessed
by a common set of IP addresses.

These works aim to detect a particular type of malicious user
(e.g., compromised accounts or fake accounts). Instead, we propose
a comprehensive spam detection system independent from the type
of malicious user spreading it.

Message Propagation. POISED is the first system that pro-
poses to detect spam on Twitter by looking at how legitimate and
malicious messages spread on the social network. Previous work,
however, looked at message propagation on social networks for
other purposes.

Ye and Wu [95] studied propagation patterns of general messages
and breaking news in Twitter. They inspected a massive number
of messages collected from 700K users. Moreover, they evaluated
different social influences by analyzing their changes over time,
and how they correlate with each other. By analyzing Twitter hash-
tags, Weng et al. [90] showed that network communities can help
predicting viral memes. In summary, the popularity of a meme can
be predicted by quantifying its early spreading pattern in terms
of community concentration: the more communities a meme per-
meates, the more viral it is. Nematzadeh et al. [59] demonstrated
that strong communities with high modularity can facilitate global
diffusion by enhancing local, intra-community spreading. Through
a simulation, Mezzour et al. [55] showed how the diffusion of mes-
sages by hacked accounts differs from normal accounts. Similar
to these works, we analyze how messages propagate in social net-
works. We combine this to learn parties of interest and detect spam
messages.



8 DISCUSSION

Data Collection. Not having access to the whole Twitter data,
including the users’ data and Twitter network, imposes some con-
straints to our approach. For example, it may affect the quality of
the communities of interest as well as the groups of similar mes-
sages. Nonetheless, with these limitations, POISED performed well
in detecting diverse spam messages.

Complexity and Scalability. POISED is practical even at the
scale of Twitter. Here, we discuss the complexity of the multiple
phases of our approach. The time complexity for Infomap is es-
timated at O(m), where m is the number of nodes. It can classify
millions of nodes in minutes [2, 44].

The topic detection algorithm, LDA, has a complexity of O(NKV),
where N, K, and V are the number of documents, topics and words
in the vocabulary, respectively. The efficiency of LDA can be im-
proved with the use of heuristics, e.g., by running it on each neigh-
borhood independently, decreasing the number of documents by
having more tweets per document, and specifying a lower number
of topics. Recent work has also explored multiple approaches for
increasing the performance of LDA [35, 57, 65, 73, 88], which can
be applied to POISED.

Identifying groups of similar messages is a string searching prob-
lem. POISED classifies messages based on four-gram matches. The
length of tweets is short, and each of them only contains a few con-
secutive four-grams. The time complexity and memory complexity
for four-gram analysis are O(N2M?), where N is the number of
messages and M is the maximum size of a message (i.e., 140 charac-
ters in the case of Twitter). However, the analysis can be optimized
from O(N?M?) to close to linear in the number of similar groups
returned [17, 24, 40].

In our experiments, running the four-gram analysis using a com-
modity desktop took approximately an hour. Running LDA on 300
neighborhoods, with 15M tweets, took nine hours on a commodity
desktop. Each neighborhood analysis can be run independently, and
thus, can be parallelized in order to scale. For 500M tweets a day,
which consists in the daily average on Twitter, we estimate that it
would require approximately 150 machines to run our distributed
analysis in two hours.

Finally, POISED successfully detects spam messages in neigh-
borhoods. Therefore, to increase the efficiency, POISED can be run
on some partitions of networks. Furthermore, the most demanding
steps are topic detection and message matching, which prepare the
training data for the probabilistic model. These can be run offline
and less frequently. The SVM classifier itself is highly efficient.

Live implementation. Although POISED involves many oper-
ations, testing new messages on a live system would require fewer
steps. The actual process involved in identifying messages as spam
would be to 1) establish groups of similar messages, 2) observe their
propagation through parties of interest, and 3) test them on the
probabilistic model that is obtained in advance. Twitter can collect
user reports over time and use them as the ground-truth to build the
probabilistic model. The communities of interest must be computed
regularly, as the network likely evolves through time.

Ground-truth dataset. For online social networks such as Twit-
ter and Facebook, obtaining a ground-truth dataset requires mini-
mal effort; they already have some mechanisms in place for their

users to report malicious behavior. Over time, following the network
evolution, they can update or add to their ground-truth dataset.
Note that our results show that POISED is able to detect unseen
malicious content.

Limitations. Similar to other spam detection systems [27, 74],
POISED groups similar messages before applying the probabilistic
model to classify spam. An attacker aware of this feature could
evade the four-gram analysis used to identify messages similarity.
However, in that case, the similarity analysis could be extended
with more complex similarity measures [27].

Our approach requires a minimum number of users and mes-
sages to form communities of interest. A malicious user with a
small number of connections might be able to evade our detection.
However, this goes directly against the interest of malicious users,
who want to reach as many victims as possible.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented POISED, a novel and general approach
for detecting social network spam based on its diffusion through
parties of interest. First, we established that members of networked
communities share common topics of interest distinct from other
surrounding communities. We then built a probabilistic model that
detects spam based on the dissemination of messages through com-
munities of interest with high efficiency. We also showed that
POISED outperforms other spam detection systems proposed in
recent work, while its threat model is also more general. Moreover,
we showed how POISED is effective in the early detection of spam
messages and how it is resilient against two well-known adversarial
machine learning attacks.

In this paper, we assumed that users are only member of one
particular community. A possible future work is to explore detect-
ing overlapping communities of interest. We can also explore the
combination of our framework to existing systems that analyze the
characteristics of user accounts or messages to detect spam. Finally,
another future work is to employ and test POISED on other online
social networks.
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