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Two rigid plates are vertically suspended by thread such that they are parallel to and opposite each
other. The plates are partially submerged in a dish of liquid that is attached to the top of a vertical
shake table. When the shake table is driven with noise in a frequency band, random surface waves
are parametrically excited, and the plates move toward each other. The reason for this attraction is
that the waves carry momentum, and the wave motion between the plates is visibly reduced. The
behavior is analogous to the Casimir effect, in which two conducting uncharged parallel plates
attract each other due to the zero-point spectrum of electromagnetic radiation. The water wave
analog can be readily demonstrated and offers a visual demonstration of a Casimir-type effect.
Measurements of the force agree with the water wave theory even at large wave amplitudes, where
the theory is expected to break down. The water wave analog applies to side-by-side ships in a rough
sea and is distinct from the significant attraction that can be caused by a strong swell.
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I. INTRODUCTION

In the Casimir effect two conducting uncharged parallel
plates attract each other due to the ground state or “zero-
point” spectrum of electromagnetic radiation at zero absolute
temperature.1 The effect can be understood and calculated as
an imbalance in the radiation force on the inside and the
outside surfaces of the plates.2 A radiation force on a body is
the time-averaged force due to waves that are incident on the
body. The force arises due to the momentum of the waves
and is proportional to the energy density. For the electromag-
netic zero-point spectrum the ground state energy of �� /2
for each normal mode leads to the classical spectral energy
density �energy per unit frequency per unit volume�
��3 /2�2c3 in empty space, where � is the reduced Planck’s
constant, � is the angular frequency, and c is the speed of
light. Although this energy cannot be directly observed, the
presence of the plates discretizes the spectrum between and
transverse to the plates, which causes the imbalance of the
radiation force. The energy density �the integral of the spec-
tral energy density over frequency� is infinite, and thus the
force on either side of a plate is infinite. The use of a regu-
larization procedure2,3 yields the net attractive force per unit
area of �2�c /240d4, where d is the distance between the
plates.

The Casimir effect is not restricted to photons but is ex-
pected to occur for any waves that carry momentum. For
example, two rigid conducting uncharged parallel plates that
are vertically and partially submerged in liquid helium are
expected to attract each other not only due to zero-point pho-
tons but also due to zero-point phonons �acoustic excitations�
and zero-point ripplons �liquid surface wave excitations�. To
our knowledge, this effect has not yet been observed.

Analog
Casimir effects are similarly not restricted. By analog we
mean that the force between bodies arises from driven waves
rather than a zero-point spectrum. Analog Casimir effects
have been investigated for two side-by-side ships in a strong
swell �long-wavelength waves�,4 acoustic waves,5,6 two
beads on a vibrating string,7 and other systems.8 As in the
Casimir effect, the behavior in these driven systems can be
understood and calculated as an imbalance in the radiation

force.
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In this paper we investigate an analog Casimir effect in
which two rigid parallel plates are vertically suspended and
partially submerged in a dish of liquid �Fig. 1�. The dish is
attached to the top of a vertical shake table that is driven
with noise in a finite band of frequencies. Random surface
waves are parametrically excited, and the plates are observed
to move toward each other as a result of the waves. The
longest wavelength in the spectral band is sufficiently small
compared to the size of the dish so that the waves are ap-
proximately homogeneous and isotropic outside the plates
�see Fig. 1�. We are primarily interested in the simple case in
which the plate separation distance is sufficiently small so
that the wave motion is negligible between and transverse to
the plates, as shown in Fig. 1, which can occur because a
smallest wavelength exists in the dish. This situation yields
an attractive force that is independent of the distance and is
proportional to the energy density and thus the mean-square
amplitude of the waves.

The analogy of our water wave system to the Casimir
effect is not exact. Because the water waves are driven, the
energy density of the spectrum is not infinite, so a regular-
ization procedure is not needed. Furthermore, we are prima-
rily concerned with the case of closely spaced plates, which
yields a force that is independent of the separation distance
d. This behavior is in contrast to the Casimir force, which
has a 1 /d4 dependence due to the divergence of the �3 spec-
trum at high frequencies.

An example of an analog Casimir system that is similar, in
principle, to our water wave system is two conducting paral-
lel plates in a microwave cavity, where the microwave radia-
tion is driven in a finite band of frequencies. The maximum
wavelength should be small compared to the size of the cav-
ity so that the electromagnetic field is approximately homo-
geneous and isotropic. As in the water wave case, a suffi-
ciently small plate separation distance yields an attractive
force that is independent of the distance and is proportional
to the mean-square amplitude of the waves. The microwave
force can be easily estimated. The radiation pressure due to
homogeneous and isotropic electromagnetic waves incident
upon a perfectly reflecting surface is I /3c,9 where I is the
average intensity �0Erms

2 , �0 is the vacuum permittivity, and
Erms is the root-mean-square electric field. The attractive

force per unit area for closely spaced plates with a negligible
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field between the plates is thus �0Erms
2 /3c. The electric field

due to a magnetron in a microwave oven is limited by the
dielectric breakdown strength of air, which is 3�106 V /m.
For two 10�10 cm2 closely spaced plates, this field yields a
force that has a mass equivalent of the order of 1 �g, which
is four orders of magnitude smaller than the order-of-
magnitude value of 10 mg in our water wave experiment. To
our knowledge, the microwave analog Casimir effect has not
yet been observed.

Our water wave analog has application to two side-by-side
ships in a rough sea and is distinct from the effect due to a
swell.4 Due to its long wavelength, the swell causes the ships
to roll side-to-side in phase. This motion generates secondary

(b)

(a)

(c)

Fig. 1. Apparatus for demonstrating a water wave analog of the Casimir
effect. �a� Support arrangement for the plates with thread and pendulum
clamps. The thread length is 80 cm. �b� Parallel plates partially but deeply
submerged in ethyl alcohol with the fluorescein dye. The dish has the diam-
eter of 19 cm and is attached to a vertical shake table. �c� Shaker produces
waves that cause a substantial attraction of the plates. There is very little
wave motion between the plates.
waves outside the ships. Between the ships, however, the
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waves are 180° out-of-phase and thus tend to cancel. A wave
propulsion effect consequently occurs in which either ship
drives itself toward the other due to the emission of waves.
As shown in Ref. 4, this attraction can be significant.

Casimir forces can be repulsive in zero-point10 and analog
cases. When the band of waves has a nonzero lower fre-
quency limit, which often occurs in analog Casimir effects, a
repulsive force can occur between two parallel plates for
some separation distances. This force has been calculated
and observed in the acoustics case.5

Our water wave system offers a visual demonstration of an
analog Casimir effect. All three aspects are directly ob-
served: The generation of waves, a substantial reduction in
wave motion between the plates, and the attraction of the
plates. We describe the demonstration in Sec. II. Gravity-
capillary waves are discussed in Sec. III, and the theory of
the radiation force due to random gravity waves is developed
in Sec. IV, where we also estimate the attractive force be-
tween two side-by-side ships in a rough sea. The theory as-
sumes linear �sinusoidal� waves, whereas the waves in the
demonstration can be noticeably nonlinear, so the validity of
the theory is questionable in this case. In addition, other
effects could be playing a role in the observed attraction.
Accordingly, we describe a quantitative experiment in Secs.
V and VI and compare the data to the theory. Concluding
remarks are made in Sec. VII.

II. DEMONSTRATION

It is not difficult to produce a demonstration of the water
wave analog of the Casimir effect �Fig. 1�. We have arranged
the entire apparatus to be on a table that was rolled into a
classroom. We use 9.5 cm square acrylic or PVC plates with
a thickness of 1.6 mm. Each plate is suspended with two 80
cm lengths of thread whose upper ends are secured by
clamps. As shown in Fig. 1�a�, opposing pendulum clamps11

are very convenient for the purpose of the suspension. The
clamps are attached to a common horizontal support rod that
is held by two vertical rods which are clamped to the table.
The plates are separated by approximately 1.7 cm in equilib-
rium �in the absence of wave motion�.

We use a glass dish with diameter of 19 cm and height of
10 cm as a container.12 The dish is filled to a depth of 7 cm
with ethyl alcohol or water, and a small amount of the fluo-
rescein dye is added so that the liquid is easily observable.
The dish rests on a vertical shake table that produces waves.
We use a commercial shaker,13 but a loudspeaker can be
adapted for this purpose.14 We attach the dish to the shaker
because the acceleration amplitude of the shaker can exceed
the acceleration due to gravity for the generation of higher-
amplitude waves. As shown in Fig. 1�b�, the plates are par-
tially but deeply submerged �approximately 2/3 of a plate�.
The deep placement serves two purposes: To prevent the
wave motion from passing under the plates and into the re-
gion between the plates and to increase the viscous damping
to reduce the motion of the plates due to fluctuations of the
random waves.

The shaker causes the effective acceleration due to gravity
to be modulated in the frame of reference of the dish, which
parametrically excites surface waves. A similar excitation
can occur for a pendulum whose pivot is vertically
oscillated.15 To produce random waves, we drive the shaker
with noise from a function generator that is bandpass

16
filtered in the octave band of 10–20 Hz and then power
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amplified. The waves cause the plates to be displaced toward
each other, as shown in Fig. 1�c�. As explained in Sec. I, this
attraction occurs because the waves carry momentum, and
the wave motion between the plates is substantially reduced,
which is clearly visible. The waves are strongly nonlinear at
greater drive amplitudes, as evidenced by liquid droplets that
are occasionally ejected from the dish. For a sufficiently
large drive amplitude of the shaker, the plates eventually
touch, after which surface tension causes them to stick to-
gether. The demonstration can be repeated with the plates far
apart �6 cm is appropriate�. No attraction is observed, which
is consistent with the wave motion between the plates having
the same appearance as the wave motion outside.

Ethyl alcohol yields a noticeably greater force than water,
which is an important advantage because the force is weak.
Although we initially performed the demonstration with wa-
ter, we now only use ethyl alcohol. The greater force of
alcohol is surprising because the smaller density yields less
momentum and thus less force for a fixed wave amplitude.
Moreover, the drive displacement amplitude for our shaker is
the same for alcohol and water, and the kinematic viscosity
of alcohol is greater, so the wave response of alcohol is ex-
pected to be less. However, what is relevant is the quality
factor of the surface wave modes, and alcohol yields a
greater quality factor due to the substantial wetting of the
wall and plates whether or not a wetting agent is added to
water. The greater quality factor of alcohol is especially im-
portant for parametric excitation because there is a
dissipation-dependent drive amplitude threshold for any re-
sponse to occur.15

There are several reasons for our choice of driving in the
frequency band of 10–20 Hz. Lower bands require a higher
amplitude of the shaker for waves to be excited, and the
response consists of intermittent slowly varying high-
amplitude standing waves which can cause the plates to stick
together. Bands higher than 10–20 Hz produce violent stand-
ing waves in the threads, which cause substantial motion of
the plates. Attraction of the plates is still observed, however.
Intermittent small-amplitude standing waves in the threads
occur in the 10–20 Hz band but have a negligible effect on
the plates.

III. GRAVITY-CAPILLARY WAVES

For sufficiently large wavelengths, where gravity is the
dominant restoring force, waves on the surface of a liquid are
called gravity waves. For sufficiently small wavelengths,
where surface tension dominates, the waves are called capil-
lary waves. A linear �small-amplitude� deep gravity-capillary
wave of frequency f and wavelength � has the dispersion
relation17

�2 = gk +
�

	
k3, �1�

where �=2�f is the angular frequency, k=2� /� is the wave
number, g is the acceleration due to gravity, � is the surface
tension coefficient of the liquid, and 	 is the density. The
amplitude of the particle motion due to a wave decreases
exponentially with depth, where the exponential coefficient
equals the wave number k, and thus the liquid is “deep” as
long as the depth exceeds only about a wavelength.

At 20 °C and atmospheric pressure, the density of water is
3
	=0.998 g /cm and the surface tension coefficient is �
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=72.8 dynes /cm; ethyl alcohol has 	=0.791 g /cm3 and �
=22.3 dynes /cm. Figure 2 shows a graph of the dispersion
relation in Eq. �1� for ethyl alcohol �solid curve� and water
�dashed curve� for g=981 cm /s2. The dotted line corre-
sponds to pure gravity waves ��=0�, whose dispersion rela-
tion is independent of the properties of the liquid.

Gravity and surface tension contribute equally to the re-
storing force at the crossover wave number kc, which is
found by equating the two terms on the right side of Eq. �1�,
yielding kc=�	g /�. The crossover frequency and wave-
length are

fc =
1

�
�	g3

4�
�1/4

and �c = 2�� �

	g
. �2�

The crossover values are fc=13.5 Hz and �c=1.71 cm for
water and fc=17.1 Hz and �c=1.07 cm for ethyl alcohol.

In the demonstration and the experiment �see Secs. V and
VI� we drive the shake table in a band of noise from 10 to 20
Hz. Because the drive is parametric, the primary response of
the waves is half of the drive frequency range,15 from 5 to 10
Hz, which we have confirmed by measurement �see Sec. VI�.
The relatively large crossover frequency of 17.1 Hz for ethyl
alcohol and the closeness of ethyl alcohol gravity-capillary
curve and gravity wave line at 10 Hz in Fig. 2 suggest that it
is reasonable to approximate the motion as pure gravity
waves for comparing theory to experimental data. The fact
that the approximation is better for ethyl alcohol than water
is one of the advantages of the use of ethyl alcohol, in addi-
tion to the advantages cited in Sec. II.

IV. THEORY OF THE RADIATION FORCE DUE TO
RANDOM GRAVITY WAVES

It might be thought that the momentum of a traveling
wave averages to zero. A closer inspection reveals a small
asymmetry that leads to a nonzero net momentum. For
sound, the particle velocity in a compression is in the direc-
tion of propagation of the wave, while the particle velocity in
an expansion is in the opposite direction. The average par-
ticle velocity vanishes, but there is a net momentum in the
direction of the wave because the density is greater in the
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Fig. 2. Wavelength as a function of frequency according to the dispersion
relation �1� for deep gravity-capillary waves on ethyl alcohol �solid curve�
and water �dashed curve�, and for pure deep gravity waves �dotted line�.
compression. This momentum is small �second order in the
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amplitude of the wave� because it reduces to the integral of
the product of the particle velocity and the change in the
density, both of which are first order. The momentum can be
demonstrated by the rotation of an acoustic radiometer in a
homogeneous and isotropic noise field.9

An analogous asymmetry occurs for water waves. Con-
sider one wavelength of a small-amplitude deep gravity trav-
eling wave �Fig. 3�, where x is the horizontal coordinate in
the direction of propagation and z is the vertical coordinate,
with z=0 corresponding to the surface in equilibrium. The
vertical displacement of the surface is z=
�x , t�. The particle
motion is circular;17 the bold arrows in Fig. 3 represent the
instantaneous particle velocity. The net vertical momentum
vanishes by symmetry. The negative horizontal momentum
below the negative hump cancels the positive horizontal mo-
mentum below the dashed curve under the positive hump.
Hence, over one wavelength the net momentum per unit
length transverse to the wave is the positive amount in the
hatched region. We next calculate this momentum to leading
order in the amplitude of the wave.

The momentum per unit volume is the product of the den-
sity �which is uniform� and the particle velocity: 	u. To de-
termine the average momentum P per unit horizontal area,
we first integrate the x momentum per unit volume
	ux�x ,z , t� with respect to z from −
 to 
, or double the
integral from 0 to 
 �refer to the hatched region in Fig. 3�.
We then integrate with respect to x over the half-wavelength
and divide by the wavelength. Because ux�x ,z , t� and 
�x , t�
are both first-order quantities, P is second order. The varia-
tion in ux with z produces higher-order terms, and we set
ux=ux�x ,0 , t� for P to be accurate to leading order. The result
is that the average momentum per unit horizontal area is

P =
2	

�
�

x=0

�/2

ux�x,0,t�
�x,t�dx . �3�

We now use some basic results from the linear theory of
deep gravity waves.17 A traveling plane wave of definite fre-
quency has surface displacement 
�x , t�=A sin��t−kx�,
where A is the peak amplitude of the wave �Fig. 3�. The
particle velocity is u=��, where the velocity potential is
��x ,z , t�=cpA cos��t−kx� and the phase velocity is cp

=� /k. If we substitute 
�x , t�=A sin��t−kx� and ux

=cpkA sin��t−kx� into Eq. �3� and perform the integration,
2

�

z

z = �(x,t)A

x0

�A

Fig. 3. Representation of a small-amplitude �A�� deep gravity wave trav-
eling in the positive x direction. The particle motion is circular; the bold
arrows represent instantaneous particle velocity. The net momentum over
one wavelength is the positive amount in the hatched region.
we obtain P=	�A /2. This momentum must move with the
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group velocity cg=d� /dk, which is cg=cp /2 according to the
dispersion relation �1� with �=0. The average momentum
flux density �per unit time per unit transverse length� is thus
S=cgP=	gA2 /4.

It is useful to cast the result for S in terms of the average
energy density �per unit horizontal area� E, which is readily
shown to be twice the average potential energy density and is
thus E=	gA2 /2=2S. For convenience, we use the root-
mean-square vertical displacement amplitude Arms=A /�2 in-
stead of the peak amplitude A of the wave. The average
momentum flux density �per unit transverse length� is then

S = 1
2E = 1

2	gArms
2 . �4�

Whitham18 calculated the momentum flux density for arbi-
trary depth using a Lagrangian method. This situation is
complicated by a mean flow that occurs due to the finite
depth. Whitham’s results in the limit of infinite depth yields
our result S=E /2 in Eq. �4�.

We now determine the radiation force due to random deep
gravity waves incident on one side of a fixed rigid vertical
plate. The waves are assumed to be homogeneous and iso-
tropic with average spectral energy density E�=dE /d�. We
also assume that the plate is sufficiently deep so that it is
subject to essentially all of the wave motion, and the width
of the plate is significantly greater than the largest wave-
length so that geometrical wave theory applies. By Newton’s
second law, the radiation force due to waves that are nor-
mally incident upon the plate equals twice the average mo-
mentum flux density �4� multiplied by the horizontal width a
of the plate; the doubling is due to the perfect reflectivity. For
the angle of incidence � the force is reduced by the factor
cos2 �, which is due to the tensor character of the radiation
stress. The reason is that one factor of cos � arises from the
momentum being spread over a length greater than the cross-
sectional length of a wave; the other factor arises from pro-
jecting the momentum perpendicular to the plate. The radia-
tion force due to waves with frequencies between � and �
+d� and angles between � and �+d� is thus dF
=aE� cos2���d�d� /2�, where the factor of 2� accounts for
the force per unit angle for isotropic waves. Integration over
frequency and angle �from �=−� /2 to � /2� yields the total
radiation force

F =
1

4
	ga� A�

2 d� =
1

4
	gaArms

2 , �5�

where we have used Eq. �4�, and Arms
2 ���=dArms

2 /d� is the
spectral mean-square amplitude of the waves.

Two parallel plates with negligible wave motion between
them will be attracted with the force �5�. As an application,
we consider two side-by-side ships in a rough sea. For his-
toric clipper ships, Boersma4 estimated that a strong swell
causes an attractive force of 2�103 N, which is consistent
with observations that the effect was dangerous but that sail-
ors were able to tow a ship to safety. We assume a ship
length of a=20 m and negligible wave motion between the
ships. For a root-mean-square wave amplitude of Arms
=1 m, the force of attraction according to Eq. �5� is approxi-
mately F=5�104 N, which is a factor of 25 greater than the
force due to the swell. For a root-mean-square amplitude of
only 20 cm, the force is approximately the same as a strong
swell. However, not all wavelengths contribute to the effect

we have calculated. For wavelengths that are significantly
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longer than the depth of the ships and significantly less than
the separation distance, the wave motion between the ships
will be approximately the same as the wave motion outside.
Only the intermediate wavelengths contribute to the force.

V. EXPERIMENTAL APPARATUS

The goal of our experiment is to ascertain whether the
observed displacement of the plates is in quantitative agree-
ment with the theory given in Sec. IV. For reasons discussed
in Secs. II and III, we use ethyl alcohol rather than water.
The demonstration apparatus discussed in Sec. II is em-
ployed, with the exception that we isolate the plate support
rods from the shaker by using heavy-duty floor stands with
extensions. This arrangement reduces vibrations of the
threads and allows us to use longer lengths to increase the
sensitivity of the plate displacements �see the following�.
The length of the threads is 1.0 m.

A plate suspended by threads forms a pendulum. Experi-
mental values of the radiation force can be determined from
measurements of the displacement of the pendulum. Because
the length of the threads is large compared to the size of a
plate, and the mass of the threads is small compared to the
mass of a plate, it can be shown that the pendulum is simple
to a good approximation. For small displacements of a plate
from the vertical equilibrium state, the magnitudes of the
horizontal force F and the horizontal displacement x are re-
lated by

F =
mg

L
x , �6�

where we take L to be the distance from the support to the
top of a plate because the plates remain approximately ver-
tical in the experiment. Buoyancy must be taken into ac-
count. The mass in Eq. �6� has the effective value m=m0
−	V, where m0 is the plate mass, 	 is the density of the
liquid, and V is the submerged volume of a plate. Note that
the pendulum sensitivity �displacement per unit force� is pro-
portional to the length L and inversely proportional to the
mass m. Because the radiation force is small �see Sec. VI�, a
large length and small mass are desirable.

We measure the displacements of the plates by analyzing
pictures taken with a high-resolution digital camera. A steel
rule is rigidly supported just in front of the threads near the
plates. By “zooming in” when we examine a picture, we can
precisely determine the distance from a thread at one plate to
a thread at the other plate. The displacement x of a plate is
then one-half of the difference of the equilibrium separation
�with no waves� and the separation with waves. The equilib-
rium separation is approximately 1.7 cm.

We measure the wave motion with a hand-made two-wire
AC resistive probe in a simple circuit with a series resistance
Rs �see Fig. 4�.19 �DC operation causes chemical reactions
that lead to substantial drifts in the resistance.� We made the
probe by baring the ends of two standard RG-58 coaxial
cables, tying the two cables together, and grounding the
shields. The wires have a diameter of 0.84 mm and are
spaced 2.7 mm between their centers. The probe is securely
attached to the assembly that anchors the dish to the shaker
so that the probe is at rest relative to the dish. The function
generator in the circuit in Fig. 4 supplies a carrier whose
frequency is much greater than the frequencies of the waves.

The voltage across Rs is preamplified and sent to a lock-in
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amplifier20 that demodulates the signal �that is, removes the
carrier�. Ethyl alcohol is very weakly conductive. The fluo-
rescein has the added benefit of increasing the conductivity
of the solution by two to three orders of magnitude, which
substantially reduces unwanted electrical pick-up. The resis-
tance R of the solution is inversely proportional to the depth
of the probe. We choose RsR so that the voltage across Rs
is proportional to the depth. The probe is thus linear. Static
measurements are performed to establish the linearity and to
calibrate the probe. For the parameters in Fig. 4 the typical
value of the sensitivity of our probe �as detected by the
lock-in amplifier� is approximately 12 mV/mm. To measure
the surface motion, we AC couple the output of the lock-in
amplifier to a fast-Fourier transform �FFT� signal analyzer.

Although the parametric drive is a convenient source of
the waves, it has the disadvantage of causing relatively large
fluctuations of the wave amplitude due to modes continually
growing to large amplitudes and then decaying. As a conse-
quence, the plate separation distance also varies substan-
tially. This behavior is due to a combination of a noise drive,
a parametric drive amplitude threshold for excitation, and
exponential growth above this threshold.15 To obtain mean
values of the root-mean-square wave amplitude and plate
separation distance with standard deviations of the mean that
are not large, we perform many measurements of these quan-
tities �25 pictures and 15 or 22 FFT spectra�. The measure-
ments are also performed over the same time period, which
is 2 or 3 min for each drive amplitude.

VI. EXPERIMENTAL RESULTS

Figure 5 shows a typical surface wave spectrum from the
two-wire probe. The primary response is in the band of 6–10
Hz, which is approximately half of the drive frequency range
of 10–20 Hz and is thus in accord with the principal para-
metric resonance.15 Figure 6 shows experimental data for the
equivalent mass F /g of the radiation force on a plate versus
the mean-square amplitude Arms

2 of the waves. The values of

reference frequency

function
lock-ingenerator
amplifier5 kHz, 10 Vp

R � 60 k�

VR =s
300 �

preamplifier
X10

Fig. 4. Diagram of a probe system that measures the vertical displacement
of waves on ethyl alcohol with fluorescein dye. Calibration is done statically
by vertically incrementing the position of the probe wires. Waves are mea-
sured by feeding the output of the lock-in amplifier into a signal analyzer.
F /g are determined from Eq. �6� and measurements of the
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plate displacement x. The solid line in Fig. 6 is the gravity
wave theory, where we assume negligible wave motion be-
tween the plates in accord with our visual observations.
Equation �5� then predicts a linear relation with slope 	a /4,
where a is the horizontal width of a plate. The experimental
data and theory approximately agree, although a systematic
deviation is apparent—the data tend to lie above �or to the
left of� the line. The deviation could be due to the theory
being valid only to second order; specifically, sinusoidal
waves are assumed. A breakdown of the theory is expected in
our case because the wave motion at higher amplitudes is so
strong that drops of liquid are occasionally ejected. However,
if the theory breaks down, experiment and theory would
show good agreement at smaller wave amplitudes, and an
increasing fractional deviation as the amplitude increases.
This behavior is not seen in the data in Fig. 6, so a break-
down due to the second-order accuracy of the theory is un-
likely to be responsible for the deviation.
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Fig. 5. Typical surface wave spectrum from the two-wire probe in Fig. 4.
The root-mean-square surface wave vertical displacement is Arms=1.0 mm,
which corresponds to the midrange of the experiment �see Fig. 6�.
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Further attempts to understand the deviation led us to
question our assumption that the effect of surface tension is
negligible. The radiation force due to a monofrequency
gravity-capillary wave is known.21 The surface tension
causes a frequency dependence, which complicates the
analysis of the force for random waves. We show in the
Appendix that an approximation of the force for a peaked
spectrum can be readily determined. The result in our case is
that the force due to gravity-capillary waves is related to the
pure gravity wave force by an �15% increase in the slope of
the solid line in Fig. 6. The new �dashed� line indicates that
surface tension is responsible for the systematic deviation of
the experimental data from the pure gravity wave theory.

Finally, we consider a possible repulsive force between the
plates, which is expected due to the acoustic analog of the
Casimir effect. As the plate separation distance is increased
for a fixed frequency band of waves, a small repulsive force
should occur when the plates are separated by approximately
a half-wavelength corresponding to the minimum frequency.5

We performed a visual search for the repulsion, increasing
the equilibrium plate separation in increments of 0.25 cm.
The attractive force eventually decreases to approximately
zero, or a possible small repulsive force, at a plate separation
distance of 4.25 cm. For greater separation distances, the
force is weakly attractive. This minimum in the force indi-
cates that a more refined search could conclusively yield a
repulsion force. Our minimum wave frequency of 6.0 Hz
�Fig. 5� corresponds to a wavelength of 4.5 cm �Fig. 2�, and
thus the repulsive force should occur for a half-wavelength
plate spacing of 2.3 cm rather than the observed value of
4.25 cm. The discrepancy could be due to the difference
between acoustics and water waves. Another possibility is
that the discrepancy is a finite-size container effect due to the
width of our plates �9.5 cm� not being small compared to the
diameter of the dish �19 cm�, which could inhibit waves from
entering at the openings of the plates.

VII. CONCLUDING REMARKS

Casimir-type effects occur, in general, for two bodies in a
homogeneous and isotropic spectrum of any kind of random
waves that carry momentum. A net attractive force occurs
between two parallel plates in the typical case where the
radiation force is reduced between them. We have described
a system of plates suspended in a dish of parametrically
driven liquid surface waves, which offers a visual demon-
stration of an analog Casimir effect. We have derived the
force due to gravity waves for the case where the waves are
negligible between the plates, and have shown that this force
can be substantial for two side-by-side ships in a rough sea.
Our measurements are in approximate agreement with the
theory. The observed systematic error is consistent with our
approximation of the effect of surface tension. At greater
plate separation distances such that waves occur between the
plates, we observe an indication of a repulsive force.

We have taken only a first step in quantifying the water
wave analog of the Casimir effect. The situation in which
waves exist both outside and between the plates could be
analyzed and is expected to yield a repulsive force for some
conditions. A related problem is to quantify the force be-
tween two side-by-side ships in a rough sea as a function of
wavelength. A careful experimental search for the expected
repulsive force could be done. Possible improvements to the

apparatus include direct rather than parametric excitation of
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the waves, which would substantially reduce the large fluc-
tuations of amplitude. Rigid pendulums could be constructed
with lightweight rods that are pivoted with very low friction
V-jewel bearings, similar to an acoustic radiometer.9 This
restriction of the motion of a plate to one degree of freedom
would allow much quicker measurements of the displace-
ment with an ultrasonic ranger, optical ranger, or rotary en-
coder. There is also the issue of possible finite-size container
effects. A larger container could be used with a large loud-
speaker that is adapted for use as a shaker if parametric ex-
citation is used. Finally, surface tension could be completely
incorporated into the analysis of the data.

APPENDIX: APPROXIMATE THEORETICAL
FORCE DUE TO RANDOM GRAVITY-CAPILLARY
WAVES

The dispersion relation �1� for gravity-capillary waves can
be expressed as �2=gk�1+B�, where the effect of surface
tension is given by the dimensionless Bond number B
=�k2 /	g.21 We conveniently express the Bond number in
terms of the crossover wavelength in Eq. �2� as B= ��c /��2,
where �c=1.07 cm for ethyl alcohol. From Fig. 5 the wave
spectrum is a maximum at 8.0 Hz, which corresponds to �
=2.8 cm according to Fig. 2. The Bond number at the peak
is Bp=0.15. That this value is not very small compared to
unity indicates that surface tension may not be negligible for
our experiment.

The effect of surface tension in the radiation force of a
monofrequency wave is to multiply the pure gravity wave
force by the factor 1+B.21 From Eq. �5� the radiation force
for a spectrum of waves is then

F =
1

4
	ga� �1 + B����A�

2 d� . �A1�

Surface tension causes a frequency dependence which sub-
stantially complicates the analysis of experimental data. An
approximate value of the force is readily obtained by evalu-
ating B��� at the peak, which yields

F =
1

4
	ga�1 + Bp�� A�

2 d� =
1

4
	ga�1 + Bp�Arms

2 . �A2�

Compared to the pure gravity wave result �5�, the effect of
surface tension is to increase the slope of the line of F /g
versus Arms

2 by approximately the factor 1+Bp=1.15. This

approximation corresponds to the dashed line in Fig. 6.
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