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Abstract 

External radiation treatment (ERT) is one of the treatment methods against breast 
cancer. As all therapies, radiation is linked with side effects. Utmost goal during the 
treatment with radiation is to maximize the benefit for the patient (efficacy of the 
treatment) while sparing other vital organs from radiation that could lead to organ’s 
toxicity. The assessment of the overall benefit of a radiation treatment can be 
modelled with the help of linear quadratic model. That model simulates the cell killing 
for a specific type of cell (each cell cancerous or healthy has different properties: 
radiosensitivity, proliferation) under a given radiation prescription and schema. With 
the help of modelling, oncologists and medical physicists can simulate and predict 
the outcome of a radiation treatment schema.  

1. Introduction 

Breast cancer is the most common malignant disease among Western women and 
represents a major public health problem, with more than 370.000 new cases and 
130.000 deaths per year in women aged 35–64 years in Europe alone. It accounts 
for one third of the cancer-related deaths in women aged 35–55 years [1, 2].  
For women with newly diagnosed, non-metastatic breast cancer, treatment consists 
of a multidisciplinary approach that involves input from surgery, radiation oncology, 
and medical oncology. The aim of adjuvant radiation therapy is to eradicate any 
tumour cells remaining following surgery for patients treated by either breast-
conserving surgery or mastectomy. 
However, as all therapies, radiation is also linked with side effects. Some studies 
have shown association with a greater toxicity profile while others do not [23,35]. 
The degree of the toxicity strongly depends on anatomical structures and the 
associated radiation treatment plan [3, 4]. 

mailto:is@medicalinnovation.gr
mailto:luis@eresa.com
mailto:amparo@eresa.com


Early toxicities could range from arm edema, breast skin dermatitis, decreased range 
of motion, and pneumonitis and pericarditis to fat necrosis and rib fracture. 

2. RT Dose and scheduling 

Most women receive conventionally whole breast radiation treatment, which is 
delivered to the entire breast in 1.8 to 2 Gy daily fractions over 4.5 to 5 weeks to a 
total dose of 45 to 50 Gy. Another option is a hypofractionated schedule that has 
been associated with fewer toxicities[5]. In general, a hypofractionated regimen 
delivers more radiation per dose, but the overall treatment duration is shorter (40 to 
42.5 Gy in approximately three to five weeks with or without a boost).  

3. Tumour control probability 

Tumour control probability (TCP) for a given tumour is represented by a sigmoid 
curve in which an increase in dose results in greater tumour cell kill. 
 

= ܲܥܶ  ݁ିேబష  ഀಳಶವ (Eq. 1) 

Where: ܰ is the initial number of clonogenic cells, α [Gy-1] is a constant for the 
radiosensitive and BED [Gy] is the biologically effective dose[6] aka EQD0, as 
defined in the linear quadratic model [7, 8]. 

 
Figure 1: Tumour control probability against of α parameter values 

4. Normal tissue control probability 

The normal tissue complication probability (NTCP) is also represented by a sigmoid 
curve. Example of a model for normal tissue complications is the relative seriality 
model[9, 10]. The basic assumption of the model is the poison statistics for 



describing the cell survival and the organization of the normal tissue in serial and 
parallel substructures. 
 
The formula of the model is: 
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(Eq. 2) describes the response to a homogeneous dose distribution. Parameter D50 
gives the 50% complication probability [11], while the slope of the dose-response 
curve is given by the parameter γ. ΔVi is defined as vi/V where vi is the volume of a 
particular sub-volume in the DDVH (differential DVH) and V is the volume of the 
whole organ.  
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(Eq. 3) describes the tissue response in respect to arbitrary dose distribution. The 
parameter “s” is the seriality factor of the tissue/organ. The values of “s” parameter 
range between zero (parallel structure) to one (serial structure).  

 
Figure 2: Presentation of NTCP and TCP and the principle of therapeutic ratio 

The relationship between these two sigmoid curves (TCP and NTCP) is called the 
therapeutic ratio (see Figure 2). Ideally, the TCP and NTCP curves are separated 
so that a dose can be delivered to tumour without any concern for toxicity. In addition, 
in Figure 2, we show the complication free tumour control probability P+. It evaluates 
the effectiveness of a given dose distribution by the comparison of its advantages in 



terms of tumour control probability against its disadvantages considering normal 
tissues complications probability[10]. P+ is given by (Eq. 4. 
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(Eq. 4) 

 

5. NTCP calculation based on DVHs 

In this section, we will give an example of calculating NTCP for the heart structure 
for a clinical case. In the literature [9] can be found that parameters of D50 and γ and 
s for the heart: 
 

Parameters Heart 
Value Asymmetric error 

D50 (Gy) 52.3 (-3.3 to +4.7) 
γ 1.28 (-0.24 to +0.36) 
s 1.00 (-0.27) 

Table 1: Relative seriality parameters for heart 
 

Following, we plot the Pinjury  = 1 – NTCP, where NTCP is given by (Eq. 3).  
 

 
Figure 3: Pinjury for D50=52.3Gy, γ = 1.28, s=1 values 



 
Figure 4: Pinjury for D50=52.3Gy, γ = 1.28, s=1 with asymmetric errors as shown in 

Table 1 
As we can see in Figure 4, uncertainties in parameter D50, γ and s play a central 
role to the outcome of the normal tissue control probability. The above figures have 
been produced with the assumption of a homogeneity/uniform dose.  
Now, we will calculate the NTCP on a simulated clinical plan, where the dose is not 
uniform distributed. 
In Figure 5a, the targets and organs at risk have been delineated. In Figure 5b, we 
can see the dose distribution for the right breast eradiation of external treatment 
plan. 
 

  

Figure 5: (a) Delineation of targets and organs at risks, (b) Dose distribution 



Based on 3D dose distribution and the geometry of the contoured targets and organs 
at risk (OARs), we can calculate the dose-volume-histograms for each ROI (region 
of interest), as depicted in Figure 6. 
 
 

 
Figure 6: Cumulative dose-volume-histogram 

 
Calculating the NTCP for D50=52.3Gy, γ = 1.28, s=1 and the differential DVH as 
input, we have NTCP = 0.14%. (α/β = 3 Gy, #fractions = 17). 
Taking into account the parameters uncertainties, as shown in Table 1, we 
calculated the NTCP value for 306E+06 iterations for the plan above. 
The mean value of NTCP was 0.88% with standard deviation 1.94%. The minimum 
and maximum values of NTCP were [0%, 16.26%]. 



 
Figure 7: NTCP distribution over parameter uncertainties 

6. Conclusions  

Modelling of normal tissue complication is a very helpful tool for the evaluation and 
comparison of radiation treatment plans[12]. It can also be a quick check of the 
quality of the produced plans in the clinical routine. However, great attention should 
be paid to the parameters of the model(s) and their uncertainties. As we depicted in 
previous section model parameter uncertainties introduce deviations to the 
probability outcomes. Without any statistical uncertainties in place the NTCP is 
calculated to 0.14%. However, with uncertainties in parameters the mean values of 
NTCP is calculated to 0.88% with a standard deviation of 1.94%. 
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