
Simplified high-order Volterra series transfer
function for optical transmission links
MIRKO GAGNI,1,2 FERNANDO P. GUIOMAR,3 STEFAN WABNITZ,2

AND ARMANDO N. PINTO1,4,*

1Instituto de Telecomunicações, 3810-193, Aveiro, Portugal
2Dipartimento di Ingegneria dell’Informazione, Università di Brescia, Via Branze, 38 - 25123, Brescia,
Italy
3Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129, Torino, Italy
4Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro,
Portugal
*anp@ua.pt

Abstract: We develop a simplified high-order multi-span Volterra series transfer function (SH-
MS-VSTF), basing our derivation on the well-known third-order Volterra series transfer function
(VSTF). We notice that when applying an approach based on a recursive method and considering
the phased-array factor, the order of the expression for the transfer function grows as 3 raised to
the number of considered spans. By imposing a frequency-flat approximation to the higher-order
terms that are usually neglected in the commonly used VSTF approach, we are able to reduce
the overall expression order to the typical third-order plus a complex correction factor. We carry
on performance comparisons between the purposed SH-MS-VSTF, the well-known split-step
Fourier method (SSFM), and the third-order VSTF. The SH-MS-VSTF exhibits a uniform
improvement of about two orders of magnitude in the normalized mean squared deviation with
respect to the other methods. This can be translated in a reduction of the overall number of steps
required to fully analyze the transmission link up to 99.75% with respect to the SSFM, and
98.75% with respect to the third-order VSTF, respectively, for the same numerical accuracy.
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1. Introduction

The digital back-propagation (DBP) method provides a very powerful technique to mitigate
linear and nonlinear signal impairments in optical fiber transmission systems [1,2]. Nevertheless,
the huge computational effort that is required to numerically solve the nonlinear Schrödinger
equation (NLSE) has so far limited the real-time application of the DBP approach [1, 3, 4]. This
computational complexity problem is also present for the direct propagation problem, which
frequently limits both the analysis and the optimization of optical transmission links [5]. It is
therefore of most relevance to search for more efficient techniques to numerically solve the
NLSE in the presence of noise, with the purpose of optimizing the trade-off between accuracy
and computational effort.

The split-step Fourier method (SSFM) is the most commonly used numerical technique to
solve the NLSE [6]. The SSFM was proposed to implement DBP in order to post-compensate
for both linear and nonlinear fiber impairments [1, 2]. Unfortunately, the SSFM requires a
prohibitively high computational effort in numerically solving the inverse NLSE, which virtually
precludes its real-time implementation [7]. An alternative approach is given by the Volterra series
expansion, which is a nonrecursive numerical method that is widely used for modeling time-
invariant nonlinear transmission systems [8]. For solving the NLSE, in [8] a frequency-domain,
third-order Volterra series transfer function (VSTF) approach was introduced. Its application to
wavelength-division multiplexed (WDM) fiber transmission systems was analyzed in [9]. The
use of Volterra series time domain nonlinear equalizers (VSNEs) was proposed for the adaptive
compensation of nonlinear distortions in coherent optical systems [4, 10]. The VSNE approach
provides an accuracy which is comparable with that of the SSFM, under the hypothesis of using
a single step per span [4]. In [3, 6], it was suggested to use an inverse modified VSTF in order to
compensate for fiber propagation impairments in DBP. The VSTF can improve the nonlinear
tolerance by almost 2 dB when is operating at the Nyquist rate [3], if compared with the SSFM.
Moreover, since the VSTF method is based on matrix multiplications, it allows for a parallel
implementation, thus favoring real-time processing [11]. One of the most popular figures of
merit for the complexity of a DSP technique is the number of required complex multiplications
(CM). The VSTF, being based on the fast-Fourier transform (FFT), has a CM number which
grows cubically O(N3), where N is the block length of the FFT. The cubic dependence on N

of its computational complexity represents the main limitation to this technique, especially in
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contexts which are affected by a large accumulated chromatic dispersion [11]. Recent publications
have treated the VSTF complexity problem [12, 13], and a factorized approximation for single-
polarization VSTF has been proposed in [14], which substantially reduces the overall complexity
from O(N3) down to O(N log(N )). In [12], a dual-polarization nonlinear equalizer based on the
VSTF was proposed, whose experimental demonstration and validation was performed in [15].
By considering the symmetries in the VSNE kernel, in [11] it was proposed a simplified VSNE
(sim-VSNE) with an overall complexity of O(NkN ), where Nk represents the number of parallel
frequency-domain filters. In [9], a third-order truncated expression for the VSTF was proposed,
which showed that at the Nyquist rate and for input powers greater than 3 dBm, the VSTF
solution diverges with respect to the SSFM solution, thus confirming the divergence problem
that was already pointed out in [16].

In this work, starting from the general theoretical treatment of the single-polarization VSTF,
and using an iterative approach in order to arrive to a closed form expression for the case of
two spans, we obtained a ninth-order VSTF involving several grafted integrals for the nonlinear
part. Next by making the key hypothesis of an approximately frequency-flat dependence for the
higher-order terms, we are able to reduce the ninth-order VSTF expression to the commonly
used third-order VSTF, plus a complex correction factor, and to generalize the expression to an
higher number of spans. Most remarkably, this approach is able to reduce the normalized mean
squared deviation (NSD) with respect to the standard VSTF by almost two orders of magnitude in
multi-span scenarios. As we shall see, it is also possible to mitigate the divergence problem with
a negligible increase of system complexity, thus substantially improving the trade-off between
computational effort and accuracy.

The organization of the paper is as follows. The hypotheses behind the derivation of the
frequency-flat approximation, which leads to the complex corrective factor to apply to the
nonlinear term of the VSTF are presented in Section 2. Section 3 is devoted to the comparison of
proposed method with the SSFM and the third-order VSTF. The discussion and conclusions are
summarized in Section 4.

2. Theoretical analysis

Let us recall the NLSE that describes pulse propagation in fibers in the presence of dispersion
and nonlinearity [5]

∂A(t , z)
∂z

= −
α

2
A(t , z) − i

β2

2
∂2A(t , z)
∂t2

+ iγ |A(t , z)|2A(t , z), (1)

where A(t , z) describes the complex envelope of the optical field at the retarded time t (in
the frame traveling with the group velocity of the pulse) and position z, α is the attenuation
coefficient of the fiber, β2 is the group velocity dispersion (GVD) coefficient and γ is the nonlinear
coefficient associated with the Kerr effect. As proposed in [17], it is also possible to write Eq. (1)
in the frequency domain as

∂ Ã(ω, z)
∂z

= −
Ã(ω, z)

2

(
α − iβ2ω

2
)

+
iγ

4π2

"
Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z) dω1dω2.

(2)
Considering now the frequency domain representation, we may note that Eq. (2) can be rewritten
by using the Volterra series expansion [8]. When truncating the VSTF expansion up to the
third-order, it is possible to obtain the following single-span transfer function [8] (a fiber span
is defined as a segment of optical fiber between two active elements, such as amplifiers, or an
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amplifier and a transmitter, or a receiver)

Ã(ω, z + Lspan) ≈ H1(ω, Lspan)Ã(ω, z)

+

"
Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z) H ′3(ω,ω1 , ω2 , Lspan) dω1dω2 (3)

where Lspan is the fiber span length,

H1(ω, Lspan) = exp
(
−
α

2
Lspan + i

β2

2
ω2Lspan

)
(4)

is a first-order linear kernel and

H ′3(ω,ω1 , ω2 , Lspan) =
iγ

4π2 H1(ω, Lspan)H3(ω,ω1 , ω2 , Lspan)

=
iγ

4π2 H1(ω, Lspan)
1 − exp

(
− αLspan + iβ2(ω1 − ω)(ω1 − ω2)Lspan

)
α − iβ2(ω1 − ω)(ω1 − ω2)

(5)

is a third-order nonlinear kernel. Since the term iγ

4π2 H1(ω, Lspan) does not depend on ω1 and ω2,
it is possible to move it in front of the double integral of Eq. (3), thus obtaining [8]

Ã(ω, z + Lspan) = H1(ω, Lspan)Ã(ω, z)

+
iγ

4π2 H1(ω, Lspan)
"

Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z) H3(ω,ω1 , ω2 , Lspan) dω1dω2.

(6)

One of the biggest advantage of the VSTF approach is the possibility to separately evaluate the
linear and the nonlinear contributions to the propagated optical field. For the case of a single
span, these two contributions are

ÃLI (ω, z + Lspan) = H1(ω, Lspan)Ã(ω, z) (7)

and

ÃNL(ω, z + Lspan) =

iγ

4π2 H1(ω, Lspan)
"

Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z) H3(ω,ω1 , ω2 , Lspan) dω1dω2.

(8)

Thus one may write

Ã(ω, z + Lspan) = ÃLI (ω, z + Lspan) + ÃNL(ω, z + Lspan). (9)

By taking into account the effect of optical amplifiers between fiber spans, one may extend
Eq. (9) to multi-span scenarios. For doing that, three distinct possibilities are available: (i)
recursively apply Eq. (9) to each fiber span, considering the output of the n-th span as the input
of the n + 1-th span; (ii) take into account the coherent accumulation of nonlinearities from
different spans by using a phased-array factor [18]; (iii) consider the combination of methods (i)
and (ii). We follow the latter approach.

Evaluating the second span output Ã(ω, z + 2Lspan) by using Ã(ω, z + Lspan) as an input, the
following transfer function can be obtained

Ã(ω, z + 2Lspan) = H1(ω, Lspan) exp
(α

2
Lspan

)
Ã(ω, z + Lspan) +

iγ

4π2 H1(ω, Lspan) exp
(3
2
αLspan

)
"

Ã(ω1 , z + Lspan)Ã∗(ω2 , z + Lspan)Ã(ω − ω1 +ω2 , z + Lspan)H3(ω,ω1 , ω2 , Lspan) dω1dω2.

(10)
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Here the exponential factors take into account the gain that is provided by the amplification stage
between the two fiber spans. Let us omit for simplicity of notation the normalizing term 1

4π2 ,
which can be included in a re-defined γ value. By applying the recursive approach, we may insert
Eq. (6) into the first term on the right-hand-side of Eq. (10), which leads to the expression of the
third-order VSTF (Ã(3)) across two successive spans

Ã(3)(ω, z + 2Lspan) = H2
1 (ω, Lspan) exp

(α
2
Lspan

)
Ã(ω, z)

+ iγH2
1 (ω, Lspan) exp

(α
2
Lspan

)"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z) H3(ω,ω1 , ω2 , Lspan) dω1dω2. (11)

On the other hand, by applying the substitutions of the recursive approach into the second term
of Eq. (10), a ninth-order VSTF (Ã(9)) is obtained

Ã(9)(ω, z + 2Lspan) = iγH1(ω, Lspan) exp
(3
2
αLspan

)
"

H3(ω,ω1 , ω2 , Lspan)
[
H1(ω1 , Lspan)

(
Ã(ω1 , z)

+ iγ

"
H3(ω1 , ω

′
1 , ω

′
2 , Lspan)Ã(ω′1 , z)Ã∗(ω′2 , z)

Ã(ω1 − ω
′
1 +ω′2 , z) dω′1 dω

′
2

)] [
H1(ω2 , Lspan)

(
Ã(ω2 , z)

+ iγ

"
H3(ω2 , ω

′′
1 , ω

′′
2 , Lspan)Ã(ω′′1 , z)Ã∗(ω′′2 , z)

Ã(ω2 − ω
′′
1 +ω′′2 , z) dω′′1 dω

′′
2

)]∗ [
H1(ω − ω1 +ω2 , Lspan)(

Ã(ω − ω1 +ω2 , z) + iγ

"
H3(ω − ω1 +ω2 , ω

′′′
1 , ω′′′2 , Lspan)

Ã(ω′′′1 , z)Ã∗(ω′′′2 , z)Ã(ω − ω1 +ω2 − ω
′′′
1 +ω′′′2 , z)dω′′′1 dω′′′2

)]
dω1 dω2. (12)

Unfortunately, the evaluation of the nonlinear contribution of Eq. (12), especially for multi-span
scenarios, is computationally very demanding, because of the necessity of calculating several
multiple integrals. Therefore, in order to significantly improve the trade-off between accuracy
and computational effort, we introduce an approximation for the nonlinear term of Eq. (12),
which allows us to simplify the computation to two integrals only. Focusing our analysis on the
first square bracket present in Eq. (12), we may assume that the cross-phase contribution due to
the third-order nonlinear kernel remains a constant. This approximation leads to the frequency
independence of this term. In the frame of this hypothesis, we may impose that

ω1 = ω′1 , (13)

which leads to
Ã(ω′1 , z) = Ã(ω1 , z) (14)

and to
Ã(ω1 − ω

′
1 +ω′2 , z) = Ã(ω′2 , z). (15)

In this way, it is possible to remove the term Ã(ω1 , z) from the double integral in Eq. (12), thus
reducing it to the single integral ∫

Ã∗(ω′2 , z) Ã(ω′2 , z) dω′2 , (16)
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which is equal to the input power injected in the fiber (P0). Moreover, the expression of the
third-order kernel

H3(ω1 , ω
′
1 , ω

′
2 , Lspan) =

1 − exp
(
− α Lspan + iβ2(ω′1 − ω1)(ω′1 − ω

′
2)Lspan

)
α − iβ2(ω′1 − ω1)(ω′1 − ω

′
2)

(17)

reduces to

HXPM
3 =

1 − exp
(
− α Lspan

)
α

, (18)

where the term HXPM
3 represents the effect of cross-phase modulation that results from the

frequency-flat approximation: this term coincides with the definition of the effective span length
(Leff). Therefore, the square brackets in Eq. (12) can be simplified, and we can write

H1(ωi , Lspan)
(
Ã(ωi , z) + iγ

"
H3(ωi , ω

′
1 , ω

′
2 , Lspan)

Ã(ω′1 , z)Ã∗(ω′2 , z)Ã(ωi − ω
′
1 +ω′2 , z) dω′1 dω

′
2

)
≈ H1(ωi , Lspan)Ã(ωi , z)

(
1 + iγ P0 H

XPM
3

)
(19)

where ωi equals ω1, ω2 and ω − ω1 +ω2 respectively for the three square brackets present in
Eq. (12). It is therefore possible to reduce the original kernel containing eight integrals into a
much simpler form with only two integrals, thus obtaining

Ã(9)(ω, z + 2Lspan) ≈ i γH1(ω, Lspan) exp
(3
2
α Lspan

)
"

H1(ω1 , Lspan) Ã(ω1 , z)
[
1 + i γ P0 H

XPM
3

]
H∗1 (ω2 , Lspan) Ã∗(ω2 , z)

[
1 − i γ P0 H

XPM
3

]
H1(ω − ω1 +ω2 , Lspan) Ã(ω − ω1 +ω2 , z)[
1 + i γ P0 H

XPM
3

]
H3(ω,ω1 , ω2 , Lspan) dω1 dω2. (20)

Under the hypothesis that all HXPM
3 terms have the same relevance, the frequency-flat approx-

imation leads to the appearance of a complex factor that multiplies the nonlinear part of the
third-order truncated version of the VSTF[

1 + i γ P0 H
XPM
3

]2 [
1 − i γ P0 H

XPM
3

]
=

1 + 2 i γ P0 H
XPM
3 − γ2 P2

0

(
HXPM

3

)2
− i γ P0 H

XPM
3

+ i γ3 P3
0

(
HXPM

3

)3
+ 2γ2 P2

0

(
HXPM

3

)2
=

1 + i γ P0 H
XPM
3 + γ2 P2

0

(
HXPM

3

)2
+ i γ3 P3

0

(
HXPM

3

)3
. (21)

Next, bearing in mind the origin of each parameter involved, it is reasonable to assume that the
higher-order terms of Eq. (21) only give a relatively small correction, so that it is possible to
neglect them. In doing so, we obtain

1 + i γ P0 H
XPM
3 + γ2 P2

0

(
HXPM

3

)2
+ i γ3 P3

0

(
HXPM

3

)3

≈ 1 + i γ P0 H
XPM
3 = 1 + i F(·) (22)
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where, to simplify our notation, we introduced the function F(·). Equation (12) can therefore be
rewritten as

Ã(9)(ω, z + 2Lspan) ≈ iγH1(ω, Lspan) exp
(3
2
αLspan

)
"

Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z)
[
1 + iF(·)

]
H1(ω1 , Lspan) H∗1 (ω2 , Lspan) H1(ω − ω1 +ω2 , Lspan)
H3(ω,ω1 , ω2 , Lspan) dω1 dω2. (23)

By using Eq. (4), the product of the three first-order kernels inside the integrals leads to the more
compact expression

H1(ω1 , Lspan) H∗1 (ω2 , Lspan) H1(ω − ω1 +ω2 , Lspan)
= exp(−α Lspan) H1(ω, Lspan)

exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
. (24)

Therefore Eq. (23) can be written as

Ã(9)(ω, z + 2Lspan) ≈ iγH2
1 (ω, Lspan) exp

(α
2
Lspan

)
"

Ã(ω1 , z)Ã∗(ω2 , z)Ã(ω − ω1 +ω2 , z)
[
1 + iF(·)

]
H3(ω,ω1 , ω2 , Lspan) exp

(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
dω1 dω2. (25)

By considering Eqs. (11) and (25) in the general expression of the two-span VSTF, Eq. (10), we
obtain

Ã(ω, z + 2Lspan) = H2
1 (ω, Lspan) exp

(α
2
Lspan

)
Ã(ω, z)

+ iγH2
1 (ω, Lspan) exp

(α
2
Lspan

)"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z)H3(ω,ω1 , ω2 , Lspan)
[

exp
(
iβ2(ω1 − ω2)

(ω1 − ω)Lspan
) [

1 + iF(·)
]

+ 1
]
dω1dω2. (26)

By considering the outer square bracket of (26), we may extract the common factor 1 + iF(·) that
multiplies the following two terms

exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
+

1
1 + iF(·)

, (27)

which can be rewritten as

exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
+

1
1 + F2(·)

−
iF(·)

1 + F2(·)
. (28)

By using the same assumptions that permitted us to derive Eq. (22), we may consider F(·) as a
small correction. This means it is reasonable assume that F2(·) is negligible, which justifies the
following approximations

exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
+

1 − iF(·)
1 + F2(·)

≈ exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
+ 1 − iF(·)

≈ exp
(
iβ2(ω1 − ω2)(ω1 − ω)Lspan

)
+ 1. (29)
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Note that we dropped the −iF(·) term in Eq. (29), which provides a convenient way of keeping
the original phased-array [18] factor formulation, that involves the (i + iF(·)) complex-valued
correction factor. Under this assumption, it is possible to rewrite Eq. (26) as

Ã(ω, z + 2Lspan) = H2
1 (ω, Lspan) exp

(α
2
Lspan

)
Ã(ω, z)

+ iγH2
1 (ω, Lspan) exp

(α
2
Lspan

)"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z) H3(ω,ω1 , ω2 , Lspan)
[

exp
(
iβ2(ω1 − ω2)

(ω1 − ω)Lspan
)

+ 1
] [

1 + iF(·)
]
dω1dω2. (30)

By extending our iterative approach to a larger number of spans, it is possible to obtain a
high-order multi-span VSTF as a sum of a linear and nonlinear contribution, respectively

ÃLI (ω, z + nS Lspan) = H
nS

1 (ω, Lspan) Ã(ω, z)

exp
(α

2
(nS − 1)Lspan

)
(31)

and

ÃNL(ω, z + nS Lspan) = iγH1(ω, nS Lspan)

exp
(
3
α

2
Lspan(nS − 1)

)"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z)
[
1 + iF(·)

]nS−1 [
H1(ω1 , Lspan)

H∗1 (ω2 , Lspan) H1(ω − ω1 +ω2 , Lspan)
]nS−1

H3(ω,ω1 , ω2 , Lspan) dω1 dω2. (32)

Here nS represents the number of spans per step that are used by the VSTF method. The iterative
approach also introduces some mixed nonlinear terms, that are originated from inserting the
nonlinear contribution into the linear part, when using Eq. (11). By applying the decomposition
of the linear kernels as described in Eq. (24), and by using the assumptions that lead to Eq. (29),
it is possible to group all nonlinear contributions associated with the span concatenation into a so-
called phased-array factor, thus obtaining the simplified high-order multi-span VSTF expression
as follows

Ã(ω, z + nS Lspan) = HMS
1 (ω, Lspan)Ã(ω, z)

+ iγHMS
1 (ω, nS Lspan)

"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z)HMS
3 (ω,ω1 , ω2 , nS Lspan)[

1 + iF(·)
]nS−1

dω1dω2 , (33)

where
HMS

1 (ω, nSLspan) = H
nS

1 (ω, Lspan) exp
(α

2
(nS − 1)Lspan

)
(34)

is the first-order multi-span linear kernel, and

H3
MS (ω,ω1 , ω2 , nS Lspan) = H3(ω,ω1 , ω2 , Lspan)
nspans∑
nS=1

exp
(
iβ2(ω1 − ω2)(ω1 − ω) (nS − 1) Lspan

)
(35)
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Table 1. Propagation parameters.
Propagation Parameter Value
Nonlinear coefficient (γ) 1.3

[
1

W ·km

]
GVD coefficient (β2) -20.40

[
ps2/m

]
Attenuation (α) 0.2

[
dB/km

]

is the third-order multi-span nonlinear kernel. Here nspans is the total number of spans in the
transmission link. In this way, we are able to preserve the form of the phased-array factor which
was originally proposed in [18]. By exploiting the assumptions used to derive Eq. (22), and
setting nS > 1, one obtains[

1 + iF(·)
]nS−1

≈ 1 + i nS F(·)

= 1 + i nS γ P0

1 − exp
(
− α Lspan

)
α

. (36)

Finally, by applying Eq. (36) to Eq. (33), we obtain the general expression for describing a
transmission system in terms of a simplified high-order multi-span VSTF (SH-MS-VSTF)

Ã(ω, z + nS Lspan) ≈ HMS
1 (ω, nS Lspan)Ã(ω, z)

+ iγHMS
1 (ω, nS Lspan)

"
Ã(ω1 , z)Ã∗(ω2 , z)

Ã(ω − ω1 +ω2 , z)HMS
3 (ω,ω1 , ω2 , nS Lspan)[

1 + i nS γ P0

1 − exp
(
− α Lspan

)
α

]
dω1dω2. (37)

3. Simulation results and method validation

In this section, we present extensive simulation results, in order to validate the theory and the
approximations involved. The simulation setup adopted, see Fig. 1 , comprises 12 fiber spans
with ideal inline amplification that exactly compensates the fiber loss. As a reference case, we
consider a basic scenario, consisting of a 100 Gbps single channel transmission link with single
polarization and QPSK modulation, involving a standard single mode fiber (SSMF). The range
of input optical powers was chosen in accordance with typical per-channel launch power values
of high baud-rate transmissions [21]. When considering the propagation parameters that appear

G G G
TX

single-pol
QPSK

RX

D N
x Nsteps

G
TX

single-pol
QPSK D N G D N G

RX

x Nsteps x Nsteps

a)

b)

Fig. 1. Simulation setup adopted for the validation of the high-order VSTF analytical
formulation. a) a single-polarization QPSK signal is propagated over 12 fiber spans with
ideal inline amplification providing an optical gain, G, that exactly compensates the fiber
loss. b) a reference solution of nonlinear propagation is obtained with the asymmetric
split-step Fourier method with a very short step-size of 10 m.
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in Eq. (37), we chose to modify the values of the input power and the fiber nonlinear coefficient
(in order to take into account a possible change in the transmission fiber base) as described by
Table 2, while keeping fixed the values of the GVD parameter and of attenuation as shown in
Table 1. As far as the span length Lspan is concerned, we kept it fixed to 100 km, and considering
a 12 spans (i.e., we set nspans = 12) long transmission link, for a total length of 1200 km. It is
important to underline that the number of spans per step nS depends on nspans. In fact, the total
number of steps (Nsteps) that are required to fully simulate the link using SH-MS-VSTF is

Nsteps =
nspans

nS
. (38)

Because Nsteps must be an integer number, by imposing nspans = 12, we can have nS = 1, 2, 3, 4,
6 and 12.

Note that the simulation setup here adopted has been designed for a validation of the analytical
formulation of the high-order VSTF over a wide range of step-sizes, for different impact levels
of nonlinearities. The application of our high-order VSTF approach to DBP purposes requires
further numerical simulations and/or experimental validations that we leave as a topic for future
work.

In order to evaluate the relative performance of the proposed approach, we will compare the
time domain waveforms obtained by applying Eq. (37) with the results of the asymmetric SSFM
and the third-order truncated VSTF, respectively. For doing this, we shall use as a figure of merit
the value of the NSD

NSD =

∫
|Sout − Sre f |

2dt∫
|Sre f |2dt

, (39)

where Sout is the output signal obtained by any of the three methods, and Sre f represents an
accurate numerical solution obtained by using the SSFM with a very small step-size (10 m). We
used the SSFM as a reference, because it leads to precise simulation results, provided that a
sufficiently short step-size is applied.

It is possible to relate the obtained NSD values to the ratio between the optical signal power
(S) and the noise power. One obtains the following relationship for the optical signal-to-noise
ratio (OSNR) of the simulation

OSNRsim =
S

Nreal + Nnum

(40)

where Nreal is the physical optical noise present in the system, usually measured over a 0.1 nm
reference bandwidth, and Nnum is the numerical noise due to the limited precision of the
simulations. Note that Nnum is obtained in a simulation without optical noise and comparing the
reference signal, obtained with a very high numerical precision, with the signal obtained with

Table 2. Values of P0 and γ used in our analysis.

Propagation
Parameter

Reference
scenario

Almost
linear

scenario

Highly
nonlinear
scenario

Input power (P0) -3.0 [dBm] -10 [dBm] 0 [dBm]
Nonlinear

coefficient (γ) 1.3
[

1
W ·km

]
0.8

[
1

W ·km

]
1.8

[
1

W ·km

]
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limited numerical precision, see the numerator of Eq. (39). The following equalities hold

1
OSNRsim

=
Nreal + Nnum

S

=
1

OSNRreal

+
1

OSNRnum

=
1

OSNRreal

+ NSD, (41)

where OSNRreal is the OSNR associated with the physical transmission link, and OSNRnum is
the OSNR determined by numerical noise error. Since we want limit as much as possible the
contribution of Nnum , we need to impose

NSD �
1

OSNRreal

, (42)

which means that
1

OSNRsim

≈
1

OSNRreal

. (43)

In a typical 100 Gbps transmission scenario one has 15 dB ≤ OSNRreal ≤ 21 dB [19, 20].
Whereas we decided to keep the OSNRnum < 30 dB, which means that the NSD should satisfy
the inequality NSD < 10−3.

Although the SSFM and the third-order truncated VSTF methods can also be applied to
simulate sub-span propagation, we will limit our comparisons to the multi-span case, given that
Eq. (37) was only derived for this regime. Note that, for small step-sizes, the contribution of
the complex factor in Eq. (36) becomes negligible, and the solution Eq. (37) reduces to the
third-order VSTF. Let us consider now the comparison of the three simulation methods for the
three scenarios illustrated in Table 2, namely: the quasi-linear case, the highly nonlinear case,
and the reference case.
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Fig. 2. Comparison of the NSD dependence on step-size length for the three methods
(SSFM, third-order VSTF and simplified high-order multi-span VSTF (SH-MS-VSTF)) for
the quasi-linear scenario.

The results for the quasi-linear case are illustrated in Fig. 2. Here it is possible to immediately
notice that both methods based on the VSTF approach provide much better results than the SSFM.
Moreover, the NSD values obtained with the third-order VSTF method remain nearly constant
whenever a relatively short (i.e., < 10 km) step-size is used. For larger step-sizes, the NSD grows
progressively larger, however it remains about one order of magnitude larger than the NSD value
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Fig. 3. Comparison of the NSD dependence on step-size length for the three methods
(SSFM, third-order VSTF and simplified high-order multi-span VSTF (SH-MS-VSTF)) for
the highly nonlinear scenario.
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Fig. 4. Comparison of the NSD dependence on step-size length for the three methods
(SSFM, third-order VSTF and simplified high-order multi-span VSTF (SH-MS-VSTF)) for
the standard scenario.

obtained with the SH-MS-VSTF at 100 km, which is the threshold between the sub-span and
multi-span regime. As can be seen in Fig. 2, the SH-MS-VSTF leads to the lowest values of
the NSD in the multi-span regime. Note that both the third-order VSTF and the SH-MS-VSTF
permit to evaluate the field evolution across the entire link in a single step. Nevertheless, at
1200 km, SH-MS-VSTF presents a NSD reduction of two orders of magnitude with respect to
the third-order VSTF. Conversely, the SSFM cannot respect the constraint imposed by the NSD
threshold for step-sizes larger than 50 km, so that at least 24 steps are required in this case. This
means that the use of the VSTF approach permits to reduce the overall number of steps required
to fully analyze the transmission link by approximately 95.65% with respect to the SSFM.
Considering now the highly nonlinear scenario, Fig. 3 clearly shows that fiber nonlinearity has a
strong impact on the NSD values. It is interesting to notice that, if the NSD threshold should be
respected, only the proposed SH-MS-VSTF method is able to operate in a multi-span regime.
Conversely, the third-order VSTF requires a step-size of no more than 25 km, whereas with
the SSFM the step-size should be at at most of 5 km. Since SH-MS-VSTF can still respect the
NSD threshold with a step-size as large as 600 km, we may conclude that a reduction of the
total number of steps up to 95.8% when compared with the third-order VSTF, and 99.17% when
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compared with the SSFM, respectively, can be achieved.
Finally, when comparing the simulation results obtained in the reference case and with a SSMF,
Fig. 4 shows that using Eq. (37) permits to reduce the NSD values by almost two orders of
magnitude over the entire multi-span regime with respect to the third-order VSTF approach. In
fact, SH-MS-VSTF permits to simulate the entire link in a single step, while still maintaining a
NSD value that is one order of magnitude smaller than the threshold value. On the other hand,
the third-order VSTF requires a step-size less than or equal to 600 km, whereas the SSFM only
permits a step-size of 20 km or less. Thus we may conclude that, in the reference scenario, with
the proposed method we are able to halve the total number of steps required with respect to the
third-order VSTF approach, and to reduce this parameter by approximately 98.3% with respect
to the SSFM method.

Based on these results, we modified the reference transmission link by extending the total
distance up to 6000 km (by imposing nspans = 60). The corresponding results reported in Fig. 5
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Fig. 5. Comparison of the NSD dependence on step-size length for the three methods
(SSFM, third-order VSTF and simplified high-order multi-span VSTF (SH-MS-VSTF)) for
the reference scenario and using 60 spans.

show that the NSD values are significantly increased in this case by the accumulation of nonlinear
impairments. Nevertheless, the SH-MS-VSTF still provides the best results: in particular, it is
the only method that permits to operate in the multi-span regime. In particular, Fig. 5 shows that
the SH-MS-VSTF allows to use a step-size as large as 2000 km, thus requiring only 3 steps to
simulate the entire transmission link. Conversely, the SSFM and the third-order VSTF require at
least 1200 and 240 steps, respectively. In other words, the SH-MS-VSTF permits to reduce the
overall number of steps required to fully analyze the transmission link by 99.75% and 98.75%
with respect to either the SSFM or the third-order VSTF approach.

4. Discussion and conclusions

We derived a simplified version of a high-order multi-span VSTF for describing optical signal
propagation in a fiber optics transmission links in the presence of chromatic dispersion, nonlin-
earity, linear loss and periodic amplification. The key assumption of the proposed approach is
that higher-order terms in the multiple integrals appearing in the nonlinear term of VSTF do
not depend on the optical frequency (frequency-flat approximation). This hypothesis permits
to reduce the overall high-order polynomial to the standard third-order VSTF, except for the
inclusion of a complex factor that multiplies the nonlinear contribution to the output field. This
complex factor has a very simple expression in terms of the propagation parameters of the fiber
optic link. For the validation of the proposed approach, we considered a single polarization, 100
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Gbps single channel transmission link composed by 12 spans of 100 km each. We examined
three representative propagation conditions consisting of a quasi-linear, an intermediate reference
and a highly nonlinear transmission regime, by varying the input signal power as well as the
fiber nonlinear coefficient. In all cases, we studied the evolution of the NSD, used as figure of
merit, as a function of the span length. We thus compared the NSD obtained with the standard
SSFM, with the typical third-order VSTF method, and with the SH-MS-VSTF method. We
consistently observed that the introduction of the complex factor in the nonlinear term of the
third-order VSTF method allows for a drastic reduction of the amount of NSD. With respect
to the third-order VSTF method, this reduction is equal to almost two orders of magnitude
in the multi-span scenario. We have also shown that the SH-MS-VSTF permits a number of
steps reduction as high as 95.8% and 99.17%, when compared with the third-order VSTF and
the SSFM, respectively. When extending the overall SSMF transmission link up to 6000 km
(i.e., 60x100 km spans), once again the SH-MS-VSTF method permits to substantially improve
the computation performance. In fact, the simulation accuracy constraint of NSD < 10−3 can
still be respected even with a step size as large as 2000 km. Whereas the third-order VSTF
requires a step size of no more than 25 km, which is reduced to 5 km whenever the SSFM is
used. Correspondingly, with SH-MS-VSTF the overall number of steps required is reduced by
98.75% when compared with the third-order VSTF, and 99.75% when compared with SSFM.
The reason for the substantial performance improvement of numerical simulations using the
SH-MS-VSTF approach with respect to the standard third-order VSFT method, is that the former
includes, albeit with a frequency flat approximation, higher order terms that are neglected in
the latter method. In brief summary, when considering a multi-span regime the introduction
of a corrective complex factor in the nonlinear part of the standard third-order VSTF permits
to achieve a drastic improvement in the capability to simulate the combined effects of fiber
nonlinearity and dispersion. This leads to a dramatic extension of the integration step-size, which
leads to a huge decrease in the number of iterations and the associated computational complexity.
As a consequence, we expect that the SH-MS-VSTF allows a significant reduction of complexity
in the DBP problem as well, an issue that we plan to investigate in a subsequent work. We
validated the proposed high-order VSTF using a QPSK signal because it is the most common
modulation format for 100 Gbps transmission systems. However, the proposed method can in
principle be readily applied to systems with higher cardinality constellations.
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