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Abstract—We propose a novel and efficient multiplierless
finite-impulse response (FIR)-based filter architecture for
chromatic dispersion equalization (CDE) in coherent optical
communication systems. After quantizing the FIR coefficients,
we take advantage of the high multiplicity of their real
and imaginary parts, employing the distributive property of
multiplication over addition to sharply reduce the number
of multiplication operations, obtaining the distributive FIR-
CDE (D-FIR-CDE). Furthermore, the implementation of
multiplication operations with shifts and additions allows
to obtain a multiplierless D-FIR-CDE (MD-FIR-CDE). The
proposed equalizers are experimentally validated in a 100G
polarization-multiplexed (PM)-QPSK long-haul optical link and
compared against benchmark FIR-CDE and frequency-domain
(FD)-CDE implementations. We demonstrate computational
resources savings of over 99% in number of multiplication
operations and 40% in number of additions, relatively to the
FIR-CDE implementation. In addition, the D-FIR-CDE is also
shown to compare favorably relatively to the most widely used
FD-CDE, achieving significant gains both in terms of required
chip area and latency: more than 99% and 30% fewer multipliers
and additions, respectively, and a latency reduction of over 90%.
We have also experimentally demonstrated that the performance
penalty imposed by the coefficient quantization tends to decrease
with increasing propagation length, rendering it as an attractive
solution for efficient and high-performance chromatic dispersion
compensation in long-haul optical fiber links.

Index Terms—Coherent detection, optical fiber
communications, digital signal processing, chromatic dispersion,
FIR.

I. INTRODUCTION

W ITH the advent of coherent detection associated
with high-speed digital signal processing (DSP)

technology, near-optimum post-detection equalization of
linear propagation impairments [1], [2], including chromatic
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dispersion (CD) [2]–[13], has become possible provided that
the received signal is sampled and processed with sufficiently
high temporal resolution [2]. Several CD equalization (CDE)
algorithms in time domain (TD) [3]–[8] and frequency domain
(FD) [9]–[11] have been demonstrated and are now being
commercially deployed in 100G transceivers. However, the
computational effort required by CDE still remains a limiting
aspect for compact transceiver manufacturing, due to its
high power dissipation and required chip area [14], [15].
In addition, the complexity associated with multi-step CDE
in backpropatation-based nonlinear compensation algorithms
is still preventing its real-time implementation [16], [17].
Therefore, reducing the complexity associated to CDE is
of critical importance to relax the hardware requirements
and increase the energy efficiency in coherent transceivers.
Besides, a CDE algorithm possessing a very low latency is of
high relevance, since this is one of the requirements of data
center communication [18] and 5G networks [19].

Given the linear time-invariant (LTI) characteristic of
CD, its compensation can be performed by a fractionally-
spaced finite-impulse response (FIR) filter [3], whose tap
coefficients can be determined a priori from the amount of
accumulated CD, through an inverse Fourier transform of
the FD transfer function [3] or applying a closed-form TD
analytical formulation [4].

Alternatively, infinite-impulse response (IIR) filtering has
also been proposed and demonstrated, with the main advantage
of requiring a lower number of taps [6]. However, the
feedback structure of IIR filters is a major drawback for real-
time implementation, as it hinders parallel processing. Taking
advantage of the computational efficiency of fast Fourier
transform (FFT), FD-CDE has been extensively used [9]–[11]
and pointed out as the most adequate solution for commercial
transceivers [12], [13]. Indeed, the complexity of FD-CDE
evolves with NFFTlog2(NFFT), with NFFT being the FFT
block-size, whereas FIR-CDE implies N2 complexity, where
N is the number of FIR filter taps. Consequently, for large
accumulated CD, such as in uncompensated long-haul fiber
links, FD-CDE tends to be more computationally efficient
[13]. However, due to the use of FFTs, FD-CDE requires
the use of overlap-save/add algorithms to implement linear
filtering, while TD implementation avoids this requirement,
which can simplify its practical implementation. Driven by
this motivation, reduced complexity FIR-based CDE methods
have been recently proposed [7], [8]. However, despite of
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Fig. 1. Symmetric FIR filter implementation diagram.

the enhanced computational efficiency provided by these FIR-
based CDE algorithms, there is still a need for a more efficient
algorithm in order to fulfill the requirements (chip area and
power consumption) for commercial coherent transceivers.

In this paper, we propose a multiplierless distributive
FIR-CDE algorithm, in which we apply a quantization
process associated with a signed digit (SD) representation
to decompose the multiplications by the filter coefficients
into simple shift-and-add operations. Taking advantage of
the high multiplicity of the real and imaginary parts of
quantized FIR coefficients, we propose a reduced complexity
FIR-CDE algorithm, which is directly compared with TD
(FIR-CDE) and FD algorithms, considering a 100G long-haul
transmission system. The comparison between TD algorithms
reveals a reduction of the number of multiplier and addition
operations by over 99% and 40%, respectively. In addition,
the comparison with FD-CDE is also shown to be highly
favorable both in terms of hardware requirements (over 99%
less multipliers and 30% less adders) and processing latency
(over 90% reduction).

The rest of the paper is organized as follows. In section II,
the theoretical formulation behind this approach is provided.
In section III, the multiplierless implementation is analysed.
Section IV presents the computational effort analysis of TD
and FD CDE architectures. In Section V the experimental
results are presented, where the performance and complexity
of proposed algorithms are evaluated through the experimental
data. Finally, in section VI, the main conclusions are drawn.

II. DISTRIBUTIVE FIR-CDE IMPLEMENTATION

The equalization of CD can be performed in time domain
using a linear complex-valued FIR filter [4], where each
equalized sample, y(n), is obtained as a linear combination
of N received samples, x(n− k), with k = 0, ..., N − 1, as

y(n) =

N−1∑

k=0

x(n− k)c (k) , (1)

where c(k) represents the complex FIR coefficients, which can
be obtained from the inverse Fourier transform of the linear
transfer function [3], [4]. Since the impulse response of the
FIR filter is given by the inverse of the impulse response
of the dispersive fiber, which is symmetric about its center,
the coefficients c(k) are also symmetric [5]. Therefore, for
an odd number of filter coefficients, the FIR architecture
implementation can follow the one presented in Fig. 1, which
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Fig. 2. Real part of the exact and quantized coefficients for ∆ = 4 and
N = 201. Coefficients are normalized between 1 and -1.

allows a reduction of approximately 50% in terms of complex
multiplication (CM) operations [13]. In Fig. 1, M is the length
of symmetry, excluding the central coefficient, and is given as,

M =
N − 1

2
, (2)

where N is the number of FIR taps. For simplicity,
an odd number of coefficients is assumed in this paper,
however the extension to an even number of coefficients is
straightforward. This standard implementation of CDE using
the FIR architecture of Fig. 1 will be henceforth designated
as FIR-CDE.

The implementation complexity of the FIR-CDE can
be reduced by applying a quantization process to the
filter coefficients and decomposing each CM into 3 real
multiplications (RMs) [20]. The quantization of the filter
coefficients, {c(k)}, into a set of discrete values,

{
cQ(k)

}
,

can be obtained from,

cQ(k) =

⌊
∆ c(k)

max(|cr(k)| , |ci(k)|)

⌉

∆
, k = 0, ..., N − 1, (3)

where ∆ is a positive integer value chosen as a power of
2, cr(k) and ci(k) are the real and imaginary parts of c(k),
respectively, and b·e represents the nearest integer operation.
An illustrative example of exact versus quantized real part
of the coefficients is provided in Fig. 2. Thereby, taking into
account the coefficients symmetry, we achieve the quantized
form of FIR-CDE , which is given after (1) as,

yQ(n) =

(
M−1∑

k=0

xs(n− k)cQ(k)

)
+ x(n−M)cQ(M), (4)

where yQ(n) is the equalized sample computed over M + 1
quantized coefficients, cQ(k), and xs(n − k) are the
symmetrically summed input samples obtained as,

xs(n− k) = x(n− k) + x(n−N + k + 1). (5)

The quantized coefficients can be written in terms of their real
and imaginary components as,

cQ(k) = cQr (k) + jcQi (k), k = 0, ...,M, (6)

where j represents the imaginary unit. Using this approach,
the number of obtained quantization levels is 2∆ + 1, which
depends on the chosen value of ∆, applied to the FIR
coefficients, and therefore it involves a compromise between
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performance and complexity. However, even in the limit of
a very coarse quantization process (small ∆), the number of
multiplication operations of the quantized FIR-CDE remains
quadratically dependent on the number of FIR coefficients,
thus requiring high computational resources in systems with
a large value of accumulated chromatic dispersion and high
throughput.

To further reduce the implementation complexity, we
proceed with a closer inspection into the quantized FIR-CDE.
By analysing the quantization process, we can notice that a
given value of ∆ imposes a set of 2∆ + 1 possible values
for cQr (k) and cQi (k), {cm}, for m = −∆, ...,−1, 0, 1, ...,∆,
where each possible value, cm = m 1

∆ , has a given number
of repetitions (multiplicity) over cQr (k) and cQi (k), with
k = 0, ...,M . This is evident in Fig. 2. Note that for ∆ = 4,
9 quantization levels (possible values) are obtained, each one
with a given multiplicity. The number of allowed possible
values for cQr (k) and cQi (k) decreases with ∆, thus increasing
their multiplicity. Similarly, the coefficients multiplicity also
tends to increase for higher number of taps, N , which we
have identified as being the primary source of complexity.
In these cases of high multiplicity, we can take advantage
of the distributive property of multiplication over addition
to reduce the number of multiplication operations between
input samples and quantized coefficients. However, since each
FIR coefficient is composed of real and imaginary parts, the
multiplicity of the complex-valued coefficients tends to be
much smaller than that of each of its components. Therefore,
to take full advantage of this property, we can independently
treat the real and imaginary parts of the set of coefficients,
performing the CMs between x(n− k) and cQ(k) in (4) as,

xs(n− k)cQ(k) = xs(n− k)cQr (k) + jxs(n− k)cQi (k). (7)

Note that xs(n−k) is a complex number that is multiplied by
the real and imaginary parts of cQ(k) separately. Therefore,
performing CMs acordding to (7) we can rewrite (4) as,

yQ(n) =

[(
M−1∑

k=0

xs(n− k)cQr (k)

)
+ x(n−M)cQr (M)

]

+ j

[(
M−1∑

k=0

xs(n− k)cQi (k)

)
+ x(n−M)cQi (M)

]
, (8)

from which we can define yQcr(n) and yQci (n), as,

yQcr(n) =

(
M−1∑

k=0

xs(n− k)cQr (k)

)
+ x(n−M)cQr (M), (9)

yQci (n) =

(
M−1∑

k=0

xs(n− k)cQi (k)

)
+x(n−M)cQi (M), (10)

and write (8) as,

yQ(n) = yQcr(n) + jyQci (n). (11)

In order to write (9) and (10) in the distributive form, we
consider the multiplicity of each possible value, cm, over
M + 1 values of cQr (k), as ncr

m, and over M + 1 values of
cQi (k), as nci

m, for m = −∆, ...,−1, 0, 1, ...,∆. Thereby, for

each possible value, cm, repeated ncr
m times over cQr (k), we

can obtain a set of input samples, {xcr
m}, by the application

of distributive property of multiplication. The set {xcr
m} is

composed of ncrm elements that have in common the multiplier
value, cm. Similarly, we can obtain the set {xci

m}, associated
with the M + 1 values of cQi (k), which are composed of ncim
elements having the same multiplier value, cm, in common.
Therefore, and considering that c−m = −cm for m 6= 0, we
can rewrite (9) and (10) as,

yQcr(n) =

∆∑

m=1

cm




ncr
m∑

l=1

xcr
m,l −

ncr
−m∑

l=1

xcr
−m,l


 , (12)

yQci (n) =

∆∑

m=1

cm




n
ci
m∑

l=1

xci
m,l −

n
ci
−m∑

l=1

xci
−m,l


 , (13)

where xcr
m,l and xcr

−m,l, for m = 1, ...,∆, are the lth elements
of the sets {xcr

m} and {xcr
−m} respectively. Similarly, xci

m,l

and xci
−m,l, with m = 1, ...,∆, are the lth elements of the

sets {xci
m} and {xci

−m} respectively. We can note that the sets
{xcr

0 } and {xci
0 } are not considered in (12) and (13), since

they correspond to the null coefficients, c0, introduced in the
quantization process. Defining Scr

m and Sci
m as,

Scr
m =

ncr
m∑

l=1

xcr
m,l −

ncr
−m∑

l=1

xcr
−m,l, (14)

Sci
m =

n
ci
m∑

l=1

xci
m,l −

n
ci
−m∑

l=1

xci
−m,l, (15)

we can rewrite (12) and (13) as

yQcr(n) =

∆∑

m=1

cmScr
m, (16)

yQci (n) =

∆∑

m=1

cmSci
m. (17)

Following expressions (11) to (17) we achieve the distributive
FIR-CDE (D-FIR-CDE) architecture, illustrated in Fig. 3.
Since the tap coefficients can be obtained a priori, the
coefficients quantization process can be also a priori
performed, from which the set of its possible values, {cm}
is obtained. The correspondent multiplicities over the M + 1
values of cQr (k) and cQi (k) are also determined, originating
the sets {ncr

m} and {nci
m}, respectively. This information is

provided to two independent Control Units (one associated
with the real part of FIR coefficients, cr, and the other
associated with the correspondent imaginary part, ci), which
are responsible for the routing of the received samples into 2∆
sets of {xcr

m} and {xci
m}, each of which associated with a given

multiplier coefficient, cm. After obtaining the sets ({xcr
m} and

{xci
m}), each equalized sample is computed by applying the

distributive property of multiplication over addition, following
the operation flow depicted in Fig. 3.

For the sake of simplicity, the Control Units are assumed
to be responsible exclusively for the routing of input
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Fig. 4. Implementation of shift-and-add multiplier using SD representation.

samples, based on the provided pre-processed information.
Nevertheless, we do not restrict this idea as the unique
implementation solution. This is an open optimization issue
that should be considered in an hardware implementation.
In this work we assume a dedicated architecture for the
compensation of a fixed amount of CD, focusing our efforts on
optimizing the trade-off between complexity and performance.
Nevertheless, we consider that an in-depth investigation in
terms of hardware implementation should also be performed
to find the best configuration to update the taps coefficients to
allow the equalization of different amounts of CD.

III. MULTIPLIERLESS DISTRIBUTIVE FIR-CDE
IMPLEMENTATION

Previously we presented the D-FIR-CDE architecture,
which only requires ∆ possible values, {cm}, for all the
coefficients. Thereby, the N2 complexity dependence of FIR-
CDE is now avoided, since the number of multiplication
operations becomes only dependent on the value of ∆,
regardless of the number of FIR taps. Therefore, when a
low value of ∆ is chosen, the number of unique quantized
FIR coefficients, cm, will be low, as well as the number of
multiplication operations. These peculiarities render D-FIR-
CDE as an attractive architecture to exploit the implementation

of their multiplication operations employing shift-and-add
operations. Therefore, a practical implementation of D-
FIR-CDE architecture can be facilitated by performing the
multiplication operations between {Sm} and {cm} employing
shift-and-add multipliers (SAMs). A given SAM can be
obtained by decomposing the associated multiplier value, cm,
into shift and addition operations, taking advantage of SD
representation [21]. An example of a SAM implementation
is shown in Fig. 4, where we can note that a cm value
can impose several shifts and additions per SAM. Note that
different values of cm can impose the decomposition into
different number of shift and addition operations.

In order to facilitate the SD representation, the value of ∆
can be chosen as a power of 2, which imposes that the possible
values, {cm}, can be written as a finite sum of negative
powers of 2, which in turn allows a direct decomposition into
shifts and adds. Consequently, all multiplication operations
can be efficiently performed, yielding a multiplierless D-
FIR-CDE (MD-FIR-CDE) architecture. Therefore, the MD-
FIR-CDE keeps the same architecture as D-FIR-CDE with
the exception that the RMs are replaced by the SAMs. In
practice, the multiplierless implementation of the D-FIR-CDE
architectures can be preferable, since the complexity and
energy consumption associated with the RMs are much higher
than the shift and addition operations [15].

IV. COMPUTATIONAL EFFORT

In this section, we assess the computational effort and
the latency of CDE algorithms both in time domain (TD)
and frequency domain (FD). For TD algorithms we have
considered three FIR filter architectures: FIR-CDE, D-FIR-
CDE and MD-FIR-CDE, whereas for FD we have considered
the benchmark FD-CDE. It should be noted that the same
approach of distributive property can also be applied in FD
(by quantizing the CD transfer function), however, since the
complexity of FD-CDE is mainly dominated by FFT and IFFT
processing, major complexity savings are not expected.

The complexity estimation for the FIR-CDE, D-FIR-CDE
and FD-CDE is based on the number of real additions (RAs)
and RMs, whereas the estimation for the MD-FIR-CDE is
based on the number of RAs and shifts. Since, from the
implementation viewpoint, subtraction and addition have the
same complexity, a subtraction is counted as an addition.
Therefore, the implementation of a complex adder (CA)
requires 2 RAs and a CM is considered to require 5 RAs
and 3 RMs [20]. In addition, the latency associated with
each CDE algorithm is estimated in terms of the minimum
number of serial RMs required for its implementation, or
conversely, the respective number of required clock cycles,
assuming that one serial RM can be implemented per clock
cycle. As can be noted the latency associated with the FIR
filter architectures in TD can be considered the same, thus the
latency is estimated only for the D-FIR-CDE and FD-CDE
implementations, considering the delay of data acquisition and
data processing.
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A. FD-CDE

The complexity of FD-CDE is estimated following the
works of [9], [13]. For each polarization, FD-CDE requires
the computation of one fast Fourier transform (FFT), FD
multiplication with the transfer function of the equalizer and
one inverse FFT. Considering a radix-2 algorithm, with FFT
length NFFT, the required number of RMs and RAs per
equalized sample are estimated respectively as,

NRM = NFFT

(
3 log2(NFFT) + 3

N2

)
, (18)

NRA = NFFT

(
9 log2(NFFT) + 5

N2

)
, (19)

where N2 = NFFT−N +1 and corresponds to the number of
valid equalized samples per equalizer output, discounting the
overhead required for overlap-save/overlap-add between FFT
blocks. The latency of FD-CDE is estimated as,

τ = τacq + 2 log2(NFFT) + 1, (20)

where τacq is the latency between data acquisition and
processing, and the remaining is the latency of data processing,
including the latency of FFT/IFFT pairs (2 log2(NFFT)) in
series with an intermediary multiplication stage. The latency
of data acquisition depends on the FFT block-size, NFFT,
and on the number of parallel input samples, Np, which, in a
practical scenario, can be obtained from the ratio between the
ADC sample rate and the DSP clock frequency. Therefore, we
can coarsely estimate τacq as,

τacq =

⌈
NFFT

Np

⌉
. (21)

B. FIR-CDE

The complexity of FIR-CDE is estimated following the
architecture of the complex FIR filter in Fig. 1. Considering
an odd number of taps, N , the filter requires N+1

2 CMs and
2N−1

2 CAs to obtain an equalized sample. The 2N−1
2 CAs

correspond to the symmetric summation over N input samples
and the summation of N+1

2 outputs of CMs. Based on these
considerations, the number of RAs, NRA, and RMs, NRM,
required by the FIR-CDE architecture for the equalization of
each output sample are,

NRA =
9N + 1

2
, (22)

and
NRM = 3

(
N + 1

2

)
, (23)

respectively.

C. D-FIR-CDE

The complexity estimation for the D-FIR-CDE filter is
based on the architecture shown in Fig. 3. It is worth to
mention here that the complexity associated with the Control
Units is neglected, since it can be performed with no cost
in terms of addition, multiplication and shift operations.
However, it should be noted that the cost of the routing engine

may be considerable when the compensation of different
amounts of CD is required. Thus performing a top-down
analysis of the FIR architecture of Fig. 3, each equalized
sample of the D-FIR-CDE filter requires:

i) N−1
2 CAs to symmetrically sum N input samples;

ii) 4∆ complex summation blocks to obtain the sums of the
sets {xcr

m} and {xci
m};

iii) 2∆ CAs to sum the outputs of all complex summation
blocks in ii);

iv) 4(∆ − 1) RMs to multiply the complex values Scr
m and

Sci
m by cm;

v) 2(∆ − 1) CAs for the
∑∆

m=1 cmScr
m and

∑∆
m=1 cmSci

m

summation blocks;
vi) and lastly 1 CA to compute yQcr(n) + jyQci (n).

Therefore, for the D-FIR-CDE architecture, the total number
of RAs, NRA, required to equalize a sample is,

NRA = 2

(
∆∑

m=1

N cr
m +

∆∑

m=1

N ci
m

)
+ 8∆ +N − 3, (24)

where N cr
m and N ci

m are defined as,

N cr
m = ncrm + ncr−m − 2, (25)

N ci
m = ncim + nci−m − 2, m = 1, ...,∆, (26)

where ncrm and ncim represent the multiplicity of each possible
value cm. It should be noted that each complex summation
block is considered to be fully parallel implemented as an
adder tree, thus the implementation of each summation block
with nm elements requires nm − 1 CAs. As enumerated in
point iv) of the previous list, the number of RMs, NRMs, is
given by,

NRMs = 4(∆− 1). (27)

Analogously to the FD-CDE case, the latency of D-FIR-CDE
can be estimated as,

τ =

⌈
M + 1/2

Np

⌉
+ 1. (28)

where the fractional part,
⌈
M+1/2

Np

⌉
, accounts for the latency of

data acquisition and the latency of data processing corresponds
to a single multiplication stage. Note that both in TD and FD
the multiplications are considered to be fully implemented in
parallel.

D. MD-FIR-CDE

The complexity of the MD-FIR-CDE is obtained similarly
to the analysis performed for D-FIR-CDE architecture,
however considering the implementation of RMs with shift-
and-add operations. In this case, the number of RAs, NRA,
required to equalize a sample is estimated as,

NRA = 2

(
∆∑

m=1

N cr
m +

∆∑

m=1

N ci
m

)
+ 8∆ +N − 3

+Na(∆), (29)

where Na(∆) accounts for the additional RAs introduced by
all the SAMs, for a given ∆. Note that the number of RAs for
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MD-FIR-CDE is similar to the D-FIR-CDE, at the exception
of the last right-hand side term that corresponds to the number
of RAs imposed by all shift-and-add operations. In turn, the
number of shift operations, Nshifts, is given by,

Nshifts = Nsf(∆). (30)

where Nsf(∆) directly provides the number of shifts, for
a given ∆. It should be noticed that Nsf(∆) and Na(∆)
depends on ∆ and SD representation of {cm}, and that they
are estimated, respectively, by summing the number of RAs
and shifts imposed by each SAM, in a total of 4(∆−1) SAMs.
Table I shows the values of Nsf(∆) and Na(∆) for trial values
of ∆, using a canonical SD (CSD) representation for {cm}.

V. EXPERIMENTAL RESULTS

In order to experimentally validate the proposed CDE
algorithms, we perform a comprehensive assessment over a
long-haul 100G optical fiber link. The experimental setup for
signal generation, transmission and detection is as follows.
At the transmitter side, the optical carrier is generated by an
external cavity laser (ECL) with 100 kHz of linewidth and
fed to an IQ modulator (IQM), which is electrically driven
by a pulse pattern generator (SHF 121000B), producing a
25 Gbaud QPSK signal. Polarization multiplexing is generated
by an optical delay line with 221 symbols of delay, giving rise
to the transmitted 100 Gb/s PM-QPSK signal. The launched
optical power has been fixed to 0 dBm.

The optical signal is then propagated in a recirculating
loop consisting of two spans of standard single-mode fiber
(SSMF) with 80 km each and group velocity dispersion of
β2 = −20.4 ps2/km. Using acousto-optic switches to control
the recirculating loop, the optical signal is recirculated before
being captured at the receiver, for several propagation lengths.
After coherent detection, the received electrical signal is
sampled at 50 Gsa/s by a Tektronix DPO72004B oscilloscope
with ∼20 GHz of electrical bandwidth and then post-processed
in MATLAB. The DSP subsystem [4] includes: i) frontend
correction to compensate for temporal misalignment and
amplitude imperfections between the in-phase and quadrature
components; ii) chromatic dispersion compensation , applied
either in time- (FIR-CDE and D-FIR-CDE) or frequency-
domain (FD-CDE); iii) adaptive linear equalization using a 25-
taps 2×2 FIR filter driven by the constant modulus algorithm
(CMA); iv) frequency estimation with a 4th-power spectral
method; v) phase estimation with the Viterbi and Viterbi
algorithm and vi) symbol decoding and bit error rate (BER)
counting. Since the use of coefficient quantization is the only
factor impacting CDE performance, for simplicity, in this
section all performance assessment results refer only to the

TABLE I
COMPLEXITY OF SHIFT-AND-ADD OPERATIONS FOR ILLUSTRATIVE

VALUES OF ∆, USING A CSD REPRESENTATION

∆ = 2 ∆ = 4 ∆ = 8

Nsf(∆) 4 28 32
Na(∆) 0 4 16

FIR-CDE and D-FIR-CDE algorithms. In terms of complexity,
our analysis is divided into two scenarios: i) D-FIR-CDE
versus FIR-CDE; ii) D-FIR-CDE versus FD-CDE.

A. Performance Analysis

We start by evaluating the impact of coefficient quantization
on the performance of the D-FIR-CDE in comparison
with the maximum performance achieved by the FIR-CDE,
considering several propagation lengths, L. Fig. 5 a) depicts
the dependence of BER on the propagation length for the
FIR-CDE and D-FIR-CDE, considering different values of ∆.
We can observe that as ∆ increases, the performance for D-
FIR-CDE tends to converge to the FIR-CDE performance. To
facilitate the quantitative analysis of these results, Fig. 5 b)
shows the performance penalty, in Q2-factor, as a function of
the fiber length for trial values of ∆. It now becomes clear
that as the transmission length increases the penalty tends to
decrease, falling below 0.1 dB for high values of ∆ (∆ ≥ 8).
Considering the case, ∆ = 4, we can still achieve a low
penalty (≤ 0.3 dB), which tends to decrease as L increases,
being less than 0.2 dB for L ≥ 5600 km.

In order to provide a more in-depth analysis on the
performance of the D-FIR-CDE, we are now going to focus
on a fixed propagation length. Considering L = 4000 km,
the theoretical value N = 1341 is obtained for the employed
transmission rate and fiber dispersion [4]. Nevertheless, this
value can be significantly reduced without degrading the
equalizer performance [4]. As shown in Fig. 6 a), the FIR-CDE
performance is kept almost constant down to approximately
60% of the theoretical value of N . Based on the results of
Fig. 6 a), we have then identified N = 901 as the minimum
number of taps that yields virtually no performance penalty.
The corresponding constellation diagram is illustrated in the
inset of Fig. 6 a). Note that the optimization of N has been
carried out using the FIR-CDE architecture, which provides
the maximum performance, since its coefficients are not
quantized.

Defining N = 901, we have then evaluated the performance
of the D-FIR-CDE algorithm by analyzing the evolution of
BER as a function of the quantization parameter, ∆, as shown
in Fig. 6 b). Note that ∆ is a critical parameter in the
D-FIR-CDE implementation, since it interferes both on the
complexity and performance of CDE. The obtained results
show that the D-FIR-CDE reaches the maximum performance
obtained with FIR-CDE for high values of ∆, corresponding to
a high-precision quantization of the FIR coefficients. However,
due to the large number of possible coefficient values, 2∆+1,
their multiplicity is expected to be low, in which case the
D-FIR-CDE architecture becomes inefficient. Fortunately, the
results in Fig. 6 b) also demonstrate that the quantization
parameter can be greatly reduced at the expense of a small
and controlled performance loss. Targeting the FEC limit of
1×10−3, the quantization factor can be decreased down to
∆ = 4, corresponding to a Q2-factor penalty of ∼0.24 dB
relatively to the maximum CDE performance. Nevertheless,
note that the D-FIR-CDE algorithm can also be applied with
other values of ∆, thus greatly enhancing the flexibility on the
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Fig. 5. a) Impact of the quantization parameter, ∆, on the performance of D-FIR-CDE in comparison with FIR-CDE, for several transmission length;
b) Performance penalty of D-FIR-CDE over FIR-CDE, in function of transmission length, considering different values of ∆. The values of N for each
transmission length have been determined as 60% of the theoretical value as suggested in [4].

BER=1×10
−3

max. performance

N
=

9
0
1

N

B
E
R

7×10
-4

8×10
-4

9×10
-4

1×10
-3

2×10
-3

600 700 800 900 1000 1100 1200 1300

x-pol               y-pol

(a)

BER=1×10−3

max. performance @ 901 taps

∆ =4

Q2
pen ≃ 0.24 dB

∆

B
E
R

7×10-4

8×10-4

9×10-4
1×10-3

2×10-3

1 5 10 15 20 25 30

x-pol                     y-pol

(b)

Fig. 6. a) Impact of the number of filter taps, N , on the performance of FIR-CDE, enabling to determine the minimum value of N that yields a Q2-factor
penalty of less than 0.1 dB. The considered transmission length is 4000 km; b) Impact of the quantization parameter, ∆, on the performance of D-FIR-CDE,
enabling to determine the minimum value of ∆ that yields a BER below the FEC limit. The considered transmission length is 4000 km.

performance versus complexity tradeoff of CDE. For instance,
the performance penalty can be reduced to < 0.1 dB using
∆ = 8. Note that, due to laboratorial limitations the gross bit
rate is 100 Gb/s, thus the net bit rate is actually lower than
100 Gb/s when FEC is applied for error-free transmission. The
computational effort corresponding to these choices of ∆ is
thoroughly analyzed in the following subsection.

B. Computational Effort and Latency
We assess the computational effort and latency of

the proposed distributive FIR-CDE architecture, directly
comparing with the reference time-domain (FIR-CDE)
and frequency-domain (FD-CDE) algorithms. Due to the
specificities of each proposed and reference algorithm, our
analysis is subdivided between TD and FD comparisons.

The computational effort is usually assessed in terms of
number of operations per processed sample, as a way of
evaluating the efficiency of the algorithm [12], [13]. However,
since this indicator can be misleading when comparing
different parallel processing architectures, in this work we also
perform a comparison in terms of total number of required

hardware units (multipliers and adders), which directly relates
with the chip area. The difference between TD and FD
processing is evidenced in the schematics of Figs. 7 a) and
7 b), which illustrate fully parallel implementations taking
into account the ADC sampling rate, RADC, and DSP clock
frequency, RDSP. It is shown that the degree of parallelization
for FIR-based CDE is directly obtained from the ratio between
the ADC and DSP clocks, Np = RADC/RDSP. In this work,
we assume a typical scenario with an ADC sampling rate of
64 Gsps and a DSP clock frequency of 500 MHz, resulting
in Np = 128. In contrast with the time-domain architecture,
the correspondent fully parallel implementation of FD-CDE
imposes a parallelization degree of NFFT, with part of the
output equalized samples being discarded in order to correctly
transform from circular to linear convolution.

The comparison between D-FIR-CDE and FD-CDE
is then carried out for: i) number of multiplications,
NRM, and additions, NRA, per equalized sample; ii)
total number of multipliers, N t

RM, and adders, N t
RA and

iii) latency, τ . Note that for the D-FIR-CDE algorithm,
N t

RM = NRMNp and N t
RA = NRANp, whereas
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Fig. 7. a) Parallel implementation of CDE in the time-domain. N1 corresponds to the size of the Buffer and is defined as N1 = N +Np − 1; b) Parallel
implementation of CDE in the frequency-domain. N2 corresponds to the number of equalized samples and is defined as N2 = NFFT −N + 1.

for FD-CDE, N t
RM = NRM(NFFT − N + 1) and

N t
RA = NRA(NFFT−N+1). Since we can consider that the

presented TD algorithms share the same latency and parallel
implementation architecture, for simplicity we have performed
the comparison between D-FIR-CDE and FIR-CDE only in
terms of the number of operations per equalized sample. The
same ratios are then applicable in terms of number of hardware
resources. In the end, the complexity analysis for MD-FIR-
CDE is performed relatively to the D-FIR-CDE, evidencing
its ease of implementation.

In order to quantify the reduction gain, GR, in terms of the
complexity and latency we introduce the following figure of
merit,

GR (%) =

(
1− O

Oref

)
× 100%, (31)

where, O represents the number of operations or latency of
the comparing method (D-FIR-CDE) and Oref represents the
number of operations or latency of the reference method
(FIR-CDE or FD-CDE). In case where the reference method
achieves gain over the comparing method, the order is changed
and the negative gain is represented for the comparing method.

1) Comparison of D-FIR-CDE with FIR-CDE: The
computational effort comparison between the FIR-CDE and
D-FIR-CDE algorithms presented in Table II reveals that the
complexity reduction gain achieved by the D-FIR-CDE can
be over 99% in terms of number of RMs. Note that on the
contrary of the standard FIR-CDE implementation, whose
number of RMs per equalized sample directly depends on
the number of taps, N , as given by expression (23), the
number of RMs required by the D-FIR-CDE architecture
only depends on the quantization parameter, ∆, as evidenced
by expression (27). This leads to a very high reduction
of computational effort in scenarios with large accumulated
dispersion, as it is the case of long-haul optical fiber links.

TABLE II
COMPUTATIONAL EFFORT OF THE FIR-CDE AND D-FIR-CDE

ALGORITHMS FOR N = 901 AND FOR TRIAL VALUES OF ∆.

NRMs NRAs

FIR-CDE 1353 4055

D-FIR-CDE
∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8

4 12 28 2396 2542 2618

GR (%) 99.7 99.1 97.9 40.9 37.3 35.4

A similar comparison in terms of number of RAs per sample
reveals a complexity reduction of up to 40.9% for the case
of ∆ = 2. Note that the avoidance of the null coefficients
resulting from the quantization process also contributes to
these gains, depending on the quantization parameter, ∆. In
general, the complexity reduction gain of the D-FIR-CDE,
in terms of number of RAs, increases with the decrease of
∆, due to the increasing multiplicity of the coefficients. For
the selected value of ∆ = 4 in Fig. 6 b), the complexity
reduction gain provided by the D-FIR-CDE is of 99.1% and
37.3% in terms of number of RMs and RAs per output
sample, respectively. Also note that these computational gains
are only slightly reduced for the high performance case of
∆ = 8, demonstrating that the D-FIR-CDE architecture
remains highly efficient even when there is small margin for
tradeoff between complexity and performance.

2) Comparison of D-FIR-CDE with FD-CDE: Despite of
the very high complexity reduction obtained over the standard
time-domain FIR-CDE, it is well-known that FD-CDE is
currently the method of choice for long-haul optical fiber links,
since it generally leads to a more computationally efficient
implementation [13]. Therefore, a comprehensive comparison
with the benchmark FD-CDE is mandatory to assess the merits
of the proposed D-FIR-CDE algorithm. Firstly, it should be
noted that for each value of N there is an optimal value
of NFFT that provides the highest computational efficiency
(lowest complexity per processed sample) for FD-CDE [10].
However, considering a fully parallel FFT implementation, it
should be noted that the total number of hardware resources
(instead of the number of operations per equalized sample)
becomes the primary computational effort indicator, since it
ultimately dictates the chip area. In that case, considering
scenarios of typical long-haul optical links where the required
value of NFFT is large, imposing NFFT > Np [15], we
assume that the complexity of FD-CDE is dictated by NFFT.
Taking into account these considerations, we have conducted
the comparison for the complexity per equalized sample and
total number of operations. Thereby, Fig. 8 a) shows the
reduction gain in terms of NRM and N t

RM and Fig. 8 b)
presents the reduction gain in terms of NRA, N t

RA and latency.
The results in Fig. 8 a) demonstrate that the D-FIR-CDE
is indeed more efficient than the FD-CDE on the use of
multipliers. Even for the optimum value of NFFT = 8192,
the reduction in terms of NRM is over 70% for ∆ = 4,
while the reduction gain in terms of N t

RM is kept over
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Fig. 8. a) The reduction gain in terms of RMs of D-FIR-CDE over FD-CDE for trial values of ∆ and NFFT; b) The reduction gain in terms of RAs and
latency of D-FIR-CDE over FD-CDE for trial values of ∆ and NFFT.

90% and keeps increasing with NFFT. On the other hand,
Fig. 8 b) shows that the FD-CDE tends to be more efficient
on what concerns the required number of additions per
equalized sample, NRA, achieving a gain of more than
90%. Nevertheless, when the impact of parallel processing
is considered through the total number of required hardware
adder units, N t

RA, Fig. 8 b) shows that the comparison rapidly
becomes beneficial for the D-FIR-CDE, enabling a reduction
gain of more than 50% for the optimum value (in terms of
processing efficiency) of NFFT = 8192. Moreover, Fig 8 b)
also shows the higher latency efficiency achieved for D-FIR-
CDE over FD-CDE, which tends to increase with increasing
NFFT. This reduction of latency comes mainly from the
avoidance of FFT/IFFT pairs. Therefore, it is apparent a
compromise between computational efficiency, chip area and
latency in function of a defined value for NFFT. Note that
NFFT = 1024 imposes the lowest chip area and latency
reduction gain for D-FIR-CDE, whereas NFFT = 8192
imposes the lowest computational efficiency reduction gain. To
finalize this analysis, in Table IV we provide a comprehensive
computational effort and latency comparison between the D-
FIR-CDE and FD-CDE algorithms, focusing on a specific
case of study where NFFT = 4096. The obtained results
corroborate the higher efficiency of the D-FIR-CDE in terms
of the number of multipliers per equalized sample (76% gain
for ∆ = 4), total number of multipliers (99% gain for ∆ = 4),
adders (> 30% gain for ∆ = 4) and latency (91% reduction
gain). The only aspect that does not compare favorably for
the D-FIR-CDE is the number of additions per equalized

sample, where FD-CDE was found to be up to 95% more
efficient, even if the D-FIR-CDE still requires a lower number
( 30% less) of adder units for parallel implementation. For an
overall comparison picture, it is important to mention that the
multiplication operations are known to be the most important
indicator of implementation complexity, roughly requiring Nb

times more power consumption than an addition operation,
where Nb is the average number of bits of the operands
[15]. However, an extensive hardware implementation analysis
would be required to fully address the power consumption
issue, taking into account implementation details such as the
varying number of bits and DSP clock frequencies throughout
the processing chain.

3) Comparison of D-FIR-CDE with MD-FIR-CDE
algorithms: Aiming to further evidence the improvement
that can be achieved for MD-FIR-CDE, Table IV shows its
complexity, in terms of RAs and shifts. We have also presented
the complexity of D-FIR-CDE, since we intend to compare
the number of operations between the two architectures.
We can note that the number of operations associated with
the MD-FIR-CDE remains very close to the number of
operations imposed by the D-FIR-CDE implementation,
despite of a slight increase with the increasing ∆. This
may be explained by observing that, although a SAM may
require several shift and addition operations, for low ∆ the
required number of shift and addition operations per SAM is
also low. Considering the benchmark case of study, ∆ = 4,
we observe that the number of shifts for MD-FIR-CDE is
the same as the number of RMs for D-FIR-CDE, and an
increase of less than 0.2% on the number of RAs is added

TABLE III
COMPUTATIONAL EFFORT OF THE FD-CDE AND D-FIR-CDE ALGORITHMS FOR N = 901, NFFT = 4096, Np = 128 AND FOR TRIAL VALUES OF ∆.

NRMs NRAs Nt
RM Nt

RA τ

FD-CDE 50 139.3 159744 471040 57

D-FIR-CDE
∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8

5
4 12 28 2396 2542 2618 512 1536 3584 306688 325376 335104

GR (%) 92.0 76.0 44.0 -93.8 -94.2 -94.4 99.7 99.0 97.8 34.9 30.9 28.9 91.2
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when using the MD-FIR-CDE architecture. Therefore, since
the complexity and energy consumption associated with
the multiplication operations is much higher than the shift
and addition operations [15], a significant improvement can
be obtained when equalization is performed by means of
MD-FIR-CDE.

It is worth to mention that a direct comparison between
multiplierless architectures for FD-CDE and FIR-CDE is not
analysed in this work for the sake of simplicity. However,
we can expect similar reduction gain when the comparison
is performed against MD-FIR-CDE, since we expect that the
total number of shifts and adders continues evolving similarly
with N2 for FIR-CDE and NFFT log2(NFFT) for FD-CDE.

VI. CONCLUSIONS

Taking advantage of the high multiplicity of the real
and imaginary parts of quantized CDE coefficients, we
have proposed a low complexity distributive FIR-CDE filter
architecture for CD equalization in digital coherent receivers.
The hardware implementation of the D-FIR-CDE can be
facilitated by applying an SD representation for the quantized
coefficients, yielding the MD-FIR-CDE, which enables
multiplierless CD equalization. Using a 100G PM-QPSK
testbed with propagation over SSMF, we have experimentally
demonstrated that the distributive FIR-CDE filter enables to
efficiently trade-off performance with computational effort.
Employing a coarse quantization of the FIR coefficients
(∆ = 4) we have found a Q2-factor performance penalty
of < 0.25 dB for transmission distances of more than 4000
km, demonstrating that this architecture is specially well
suited for ultra-long-haul uncompensated optical fiber links.
The computational effort analysis has revealed a drastic
reduction (over 95%) on the number of required multiplier
hardware units relatively to other state-of-the-art TD- and FD-
CDE algorithms, even when very low performance penalty
is tolerated (< 0.1 dB Q2-factor penalty with ∆ = 8). The
sample-wise equalization of distributive FIR-CDE architecture
also ensures a low processing latency, rendering it as an
attractive low-complexity solution for applications that require
very strict communication delays. Overall, the obtained results
allow to conclude that the proposed distributive FIR-CDE
architecture can be an advantageous alternative to the widely
used FD-CDE, enabling significant gains in terms of chip
area and processing latency at the expense of a small and
controllable performance penalty.

TABLE IV
COMPUTATIONAL EFFORT OF THE MD-FIR-CDE ALGORITHMS FOR

N = 901 AND FOR TRIAL VALUES OF ∆.

D-FIR-CDE
NRMs NRAs

∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8

4 12 28 2396 2542 2618

MD-FIR-CDE
Nshifts NRAs

∆ = 2 ∆ = 4 ∆ = 8 ∆ = 2 ∆ = 4 ∆ = 8

4 12 32 2396 2546 2634
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