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Try not to become a man of success but rather try to become a man of value.

By A. Einstein, an American theoretical physicist.
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Duality Theorems of Multiobjective

Generalized Disjunctive Fuzzy Nonlinear Fractional Programming

E.E.Ammar

(Department of Mathematics, Faculty of Science, Tanta University, Egypt)

E-mail: amr.saed@ymail.com

Abstract: This paper is concerned with the study of duality conditions to convex-concave

generalized multiobjective fuzzy nonlinear fractional disjunctive programming problems for

which the decision set is the union of a family of convex sets. The Lagrangian function

for such problems is defined and the Kuhn-Tucker Saddle and Stationary points are char-

acterized. In addition, some important theorems related to the Kuhn-Tucker problem for

saddle and stationary points are established. Moreover, a general dual problem is formulated

together with weak; strong and converse duality theorems are proved.

Key Words: Generalized multiobjective fractional programming; Disjunctive program-

ming; Convexity; Concavity; fuzzy parameters Duality.

AMS(2010): 49K45

§1. Introduction

Fractional programming models have been became a subject of wide interest since they provide

a universal apparatus for a wide class of models in corporate planning, agricultural planning,

public policy decision making, and financial analysis of a firm, marine transportation, health

care, educational planning, and bank balance sheet management. However, as is obvious, just

considering one criterion at a time usually does not represent real life problems well because

almost always two or more objectives are associated with a problem. Generally, objectives

conflict with each other; therefore, one cannot optimize all objectives simultaneously. Non-

differentiable fractional programming problems play a very important role in formulating the

set of most preferred solutions and a decision maker can select the optimal solution.

Chang in [8] gave an approximate approach for solving fractional programming with absolute-

value functions. Chen in [10] introduced higher-order symmetric duality in non-differentiable

multiobjective programming problems. Benson in [6] studied two global optimization problems,

each of which involves maximizing a ratio of two convex functions, where at least one of the two

convex functions is quadratic form. Frenk in [12] gives some general results of the above Benson

problem. The Karush-Kuhn-Tucker conditions in an optimization problem with interval-valued

objective function are derived by Wu in [29].

1Received December 09, 2010. Accepted May 8, 2011.
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Balas introduced Disjunctive programs in [3, 4,]. The convex hull of the feasible points has

been characterized for these programs with a class of problems that subsumes pure mixed integer

programs and for many other non-convex programming problems in [5]. Helbig presented in [17,

18] optimality criteria for disjunctive optimization problems with some of their applications.

Gugat studied in [15, 16] an optimization a problem having convex objective functions, whose

solution set is the union of a family of convex sets. Grossmann proposed in [14] a convex

nonlinear relaxation of the nonlinear convex disjunctive programming problem. Some topics

of optimizing disjunctive constraint functions were introduced in [28] by Sherali. In [7], Ceria

studied the problem of finding the minimum of a convex function on the closure of the convex

hull of the union of a finite number of closed convex sets. The dual of the disjunctive linear

fractional programming problem was studied by Patkar in [25]. Eremin introduced in [11]

disjunctive Lagrangian function and gave sufficient conditions for optimality in terms of their

saddle points. A duality theory for disjunctive linear programming problems of a special type

was suggested by Gon?alves in [13].

Liang In [21] gave sufficient optimality conditions for the generalized convex fractional

programming. Yang introduced in [30] two dual models for a generalized fractional program-

ming problem. Optimality conditions and duality were considered in [23] for nondifferentiable,

multiobjective programming problems and in [20, 22] for nondifferentiable, nonlinear fractional

programming problems. Jain et al in [19] studied the solution of a generalized fractional pro-

gramming problem. Optimality conditions in generalized fractional programming involving

nonsmooth Lipschitz functions are established by Liu in [23]. Roubi [26] proposed an algorithm

to solve generalized fractional programming problem. Xu [31] presented two duality models for

a generalized fractional programming and established its duality theorems. The necessary and

sufficient optimality conditions to nonlinear fractional disjunctive programming problems for

which the decision set is the union of a family of convex sets were introduced in [1]. Optimal-

ity conditions and duality for nonlinear fractional disjunctive minimax programming problems

were considered in [2]. In this paper we define the Langrangian function for the nonlinear gen-

eralized disjunctive multiobjective fractional programming problem and investigate optimality

conditions. For this class of problems, the Mond-Weir and Schaible type of duality are proposed.

Weak, strong and converse duality theorems are established for each dual problem.

§2. Problem Statement

Assume that N = {1, 2, · · · , p} and K = {1, 2, · · · , q} are arbitrary nonempty index sets. For

i ∈ N , let gi
j : Rn → R be a vector map whose components are convex functions, gi

j(x) ≤ 0,

1 ≤ j ≤ m. Suppose that f ik
r , hi+m+k

r : Rn+q → r are convex and concave functions for

i ∈ N , k ∈ K, r = 1, · · · , s respectively, and hik
r (x, b̃r) > 0. Here, these ãr, b̃r, r = 1, 2, · · · ,m

represent the vectors of fuzzy parameters in the objectives functions. These fuzzy parameters

are assumed to be characterized as fuzzy numbers [4].

We consider the generalized disjunctive multiobjective convex-concave fractional program
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problem as in the following form:

GDFFVOP(i) inf
x∈Zi

max
k∈K

{
f ik

r (x, ãr)

hik
r (x, b̃r)

, r = 1, 2, · · · , s

}
, (1)

Subject to x ∈ Zi, i ∈ N, (2)

where Zi = {x ∈ Rn : gi
j(x) ≤ 0, j = 1, 2, · · · ,m}. Assume that Zi 6= ∅ for i ∈ N .

Definition 1([1]) The α-level set of the fuzzy numbers ã and b̃ are defined as the ordinary set

Sα(ã, b̃) for which the degree of their membership functions exceeds level α:

Sα(ã, b̃) = {(a, b) ∈ R2m|µar(ar) ≥ α, r = 1, 2, · · · ,m}.

For a certain degree of α, the GDFVOP(i) problem can be written in the ordinary following

form [11].

Lemma 1([7]) Let αk, βk, k ∈ K be real numbers and αk > 0 for each k ∈ K. Then

max
k∈K

βk

αk
≥

∑
k∈K

βk

∑
k∈K

αk
. (3)

By using Lemma 1 and from [9] The generalized multiobjective fuzzy fractional problem

GDFFVOP(i) may be reformulated [3] as in the following two forms:

GDFFNLP(i, t, α):

inf
i∈N

inf
x∈Zi(S)





s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)

, (ar, br) ∈ Sα(ã, b̃), r = 1, 2, · · · ,m




, (4)

where tk ∈ Rq
+. Denote by

Mi = inf
x∈Zi

s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)

, (ar, br) ∈ Sα(ã, b̃), r = 1, 2, · · · ,m

the minimal value of GDFFNLP(i, t, α), and let

Pi =





x ∈ Zi :

s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)

= Mi, i ∈ N






be the set of solutions of GDFFNLP(i, t, α). The generalized multiobjective disjunctive fuzzy

fractional programming problem is formulated as:

GDFFNLP(t, α) : inf
i∈N

inf
x∈Z





s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)




, (5)
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where tk ∈ Rq
+, k ∈ K and Z =

⋃
i∈N

Zi is the feasible solution set of problem GDFFNLP(t, α).

For problem GDFFNLP(t, α), we assume the following sets:

(I) M = inf
i∈N

Mi is the minimal value of GDFFNLP(t, α).

(II) Z∗ =




x ∈ Z : ∃i ∈ I(X), inf

i

s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)

= M





is set of these of solutions

on the problem GDFFNLP(t, α), where I = {i ∈ I ′ : x ∈ Z}, I ′ = {i ∈ N : Z∗ 6= ∅} and

I ′ = {1, 2, · · · , a} ⊂ N . Problem GDFFVOP(t, α) may be reformulated in the following form:

GDFFNLP(t, α, d):

inf
i∈I

inf
x∈Z

{
F i(x, t, di, a, b) =

s∑

r=1

K∑

k=1

tkf ik
r (x, ar) − di

s∑

r=1

K∑

k=1

tkhik
r (x, br)

}
, (6)

where

di =

s∑
r=1

K∑
k=1

tkf ik
r (x, ar)

s∑
r=1

K∑
k=1

tkhik
r (x, br)

> 0, i ∈ I.

We define the Lagrangian functions of problems GDFFNLP(t, α, d) and GDFFNLP(t, α) [21,

24, and 25] in the following forms:

GLi(x, λi, a, b) = F i(x, t, di, a, b) + λ

m∑

j=1

λi
jg

i
j(x) (7)

and

Li(x, u, λi, a, b) =

ui
s∑

r=1

K∑
k=1

tkf ik
r (x, ar) +

m∑
j=1

λi
jg

i
j(x)

ui
s∑

r=1

K∑
k=1

tkhik
r (x, br)

, (8)

where λi
j ≥ 0 and ui ≥ 0, i ∈ I are Lagrangian multipliers. Then the Lagrangian functions

GL(x, λ, a, b) and L(x, u, λ, a, b) of GDFFNLP(t, α, d) are defined by:

GL(x, λ, a, b) = inf
i∈I

GLi(x, λi, a, b) = inf
i∈I




F
i(x, t, di, a, b) +

m∑

j=1

λi
jg

i
j(x)




 (9)

and

L(x, u, λ, a, b) = inf
i∈I

Li(x, u, λi, a, b) = inf
i∈I





ui
s∑

r=1

K∑
k=1

tkf ik
r (x, ar) +

m∑
j=1

λi
jg

i
j(x)

ui
s∑

r=1

K∑
k=1

tkhik
r (x, br)




, (10)

where x ∈ Z, tk ∈ Rq
+, u ∈ Rq

+ and λ ∈ Rq
+ are Lagrangian multipliers, respectively.
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§3. Optimality Theorems with Differentiability

Definition 3.1 A point (x0, λ0, a), b)) in Rn+p+2m with λ) ≥ 0 is said to be a GL-saddle point

of problem GDFFNLP(t, α, d) if and only if

GL(x0, λ, a, b) ≤ GL(x0, λ0, a0, b0) ≤ GL(x, λ0, a0, b0) (11)

for all with x ∈ Rn+p and λ ∈ Rm
+ .

Definition 3.1 A point (0, u0, λ0) in Rn+p+m, with u0 ≥ 0 and λ0 ≥ 0 is said to be an L-saddle

point of problem GDFFNLP(t, α) if and only if

L(x0, λ, a, b) ≤ L(x0, λ0, a0, b0) ≤ L(x, λ0, a0, b0) (12)

for all with x ∈ Rn+p, u ∈ Rm
+ and λ ∈ Rm

+ .

The proof of the following theorems follows as in [3].

Theorem 3.1(Sufficient Optimality Criteria) If for d0i ≥ 0 the point (x0, u0, λ0, a0, b0) is a

saddle point of GL(x, λ, a, b) and F i(x, t, d0i, a0, b0), gi
j(x) are bounded and convex functions.

Then x0 is a minimal solution for the problem GDFFNLP(t, d).

Corollary 3.1 If the point (x0, u0, λ0, a0, b0) is a saddle point of L(x, u, µ) and F i(x, t, di, a0, b0),

gi
j(x) are bounded and convex functions. Then x0 is a minimal solution for the problem

GDFFNLP(t, α).

The proof is follows similarly as proof of Theorem 3.1.

Assumption 3.1 Let F i(x, y, di, a, b) = 0 be a convex function on Conv Z ( Z =
⋃
i∈I

). If for

all x ∈ Conv Z, the functions F i(x, t0, d0i, a0, b0) − F i(x0, t0, d0i, a0, b), x0 ∈ Conv Z, i ∈ I,

t0 ∈ Rq
+ and (a0, b0) ∈ R2m are bounded, then inf

i∈I

{
F i(x, t0, d0i, a0, b) − F i(x0, t0, d0i, a0, b)

}
is

a convex function on Conv Z.

Proposition 3.1 Under the Assumption 3.1, and if the system

inf
i∈I

F i(x, t0, d0i, a0, b) − F i(x0, t0, d0i, a0, b0) < 0,

gi
j(x) ≤ 0 for at least one i ∈ I





has no solution on Conv Z, then ∃λ0 ∈ R+, λ0i ∈ Rm
+ , (λ0, λ0i) ≥ 0 and t0 ∈ Rq

+ such that

µ0 inf
i∈i

F i(x, t0, d0i, a0, b0) + inf
i∈i

m∑

j=1

µ0i
j g

i
j(x) ≥ 0

for ∀x ∈ Conv Z.

Corollary 3.2 With Assumption 3.1, gi
j(x), i ∈ I, j = 1, 2, · · · ,m satisfy the CQ and x0 is

an optimal solution of problem GDFFNLP(t, α), then there exists u0 ≥ 0 and λ0 ≥ 0 such that

(x0, t0, λ0, a0, b0) is a saddle point of L(x0, t0, λ0, a0, b0).
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The proof is follows similarly as proof of Theorem 3.2.

§4. Optimality Theorems without Differentiability

Definition 4.1 The point (x0, λ0, a0, b0), x0 ∈ x ∈ Rn+p, λ0, a0, b0 ∈ R3m, if they exist such

that

∇xGL(x0, λ0, a0, b0) ≥ 0, x0∇xGL(x0, λ0, a0, b0) = 0, (13)

∇λxGL(x0, λ0, a0, b0) ≥ 0, λ0∇λGL(x0, λ0, a0, b0) = 0, (14)
m∑

j=1

λ0i
j g

i
j(x

0) = 0, λi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m. (15)

is could Kuhn- Tucker stationary point of problem GDFFNLP(t0, α0, d0). Or, equivalently,

∇x inf
i∈I

{
F i(x0, t0, d0i, a0, b0) + λ0i

j g
i
j(x

0)
}

= 0, i ∈ I, (16)

gi
j(x

0) ≤ 0, i ∈ I, j = 1, 2, · · · ,m, (17)
m∑

j=1

λ0i
j g

i
j(x

0) = 0, λi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m. (18)

Definition 4.2 The point (x0, u0, λ0, a0, b0), x ∈ Rn+p+2m, u ∈ Rq
+ and λ ∈ Rm

+ , if they exist

such that

∇xL(x0, u0, λ0, a0, b0) ≥ 0, x0∇xL(x0, u0, λ0, a0, b0) = 0, (19)

∇uL(x0, u0, λ0, a0, b0) ≥ 0, u0∇λL(x0, u0, λ0, a0, b0) = 0, (20)

∇µL(x0, u0, λ0, a0, b0) ≥ 0, µ0∇λL(x0, u0, λ0, a0, b0) = 0, (21)
m∑

j=1

λ0i
j g

i
j(x

0) = 0, λi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m. (22)

is could Kuhn- Tucker stationary point of problem GDFFNLP(t0, α0). Or, equivalently,

∇x inf
i∈I





u0i
s∑

r=1

K∑
k=1

t0kf ik
r (x0, a0) +

m∑
j=1

λ0i
j g

i
j(x

0)

u0i
s∑

r=1

K∑
k=1

t0khik
r (x0, b0)





= 0, (23)

gi
j(x

0) ≤ 0, i ∈ I, j = 1, 2, · · · ,m, (24)
m∑

j=1

λ0i
j g

i
j(x

0) = 0, λi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m. (25)

The proof of the following theorem follows as in [3].

Theorem 4.1 Assume that F i(x, t, di, a, b), gi
j(x), i ∈ I, j = 1, 2, · · · ,m are convex differ-

entiable functions on Conv S. If F i(x, t, di, a, b) and gi
j(x) are bounded functions for each

x ∈ Cov S and gi
j(x) satisfy CQ for i ∈ I, then x0 is an optimal solution of GDFFNLP(t, α, d)

if and only if there are Lagrange multipliers λ0 ∈ Rp+m, λ ≥ 0 such that (13)-(15) are satisfied.
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Corollary 4.1 Suppose that F i(x, t, di, a, b), gi
j(x), i ∈ I, j = 1, 2, · · · ,m are convex dif-

ferentiable functions on Conv S. If F i(x, t, di, a, b) and gi
j(x) are bounded functions for each

x ∈ Cov S and gi
j(x) satisfy CQ for i ∈ I, then x0 is an optimal solution of GDFFNLP(t, α, d)

if and only if there are Lagrange multipliers u0 ≥ 0, λ ≥ 0, u ∈ Rq
+ and λ0 ∈ Rp+m such that

(19)-(22) are satisfied.

The proof is follows similarly as the proof of Theorem 4.1.

Theorem 4.2 Assume that F i(x, t, di, a, b) is a pseudoconvex function at x ∈ Conv S and that
m∑

j=1

λi
jg

i
j(x) is a quasiconvex function. If F i(x, t, di) and gi

j(x) are bounded functions for each

x ∈ Conv S, and if the equations (28)-(30) are satisfied for tinRk
+ and λ0 ∈ Rp+m

+ , then x0 is

an optimal solution of GDFFNL(t, α, d).

Corollary 4.2 Assume that F i(x, t, di, a, b) is a pseudoconvex function at x ∈ Conv S and

that
m∑

j=1

λi
jg

i
j(x) is a quasiconvex function. If F i(x, t, di, a, b) and gi

j(x) are bounded functions

for each x ∈ Conv S and there exists u0 ∈ Rk
+ and λ0 ∈ Rp+m

+ such that equations (16)-(18)

are satisfied, then x0 is an optimal solution of GDFFNLP(t, α, d).

The proof is follows similarly as proof of Theorem 4.2.

§5. Duality Using Mond-Weir Type

According to optimality Theorems 4.1 and 4.2, we can formulate the Mond-Weir type dual

(M-WDGF) of the disjunctive fractional minimax problem GDFFNLP(t, α, d) as follows:

M − WDGF max
y∈Rn

sup
i∈I

(
Hi(y, t, α,D, a, b) =

s∑

r=1

K∑

k=1

tkf ik
r (y, a) −Di

s∑

r=1

K∑

k=1

tkhik
r (y, b)

)
, (26)

where

Di =

s∑
r=1

K∑
k=1

tkf ik
r (y, a)

s∑
r=1

K∑
k=1

tkhik
r (y, b)

> 0, i ∈ I.

Problem (M-WDGF) satisfies the following conditions:

sup
i∈I

∇y

{
H(y, t,D, a, b) +

∑
λi

jg
i
j(y)

}
= 0, (27)

m∑

j=1

λi
jg

i
j(y) = 0, λi

j ≥ 0, i ∈ I, j = 1, 2, · · · ,m, (28)

s∑

r=1

K∑

k=1

tkf ik
r (y, a) −Di

s∑

r=1

K∑

k=1

tkhik
r (y, b) ≥ 0, i ∈ I, Di > 0. (29)

Theorem 5.1(Weak Duality) Let x be feasible for GDFFNLP(t, α, d) and (u, λ, t, a, b) be

feasible for (M-WDGFD). If for all feasible (y, λ, t, a, b), Hi(y, t, α,D, a, b) are pseudoconvex
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for each i ∈ I, and
m∑

j=1

λi
jg

i
j(y) are quasiconvex for i ∈ I, then inf(GDFFNLP (t, α, d)) ≥

sup(M −WDGF ).

Proof If not, then there must be that

inf
i∈I

inf
x∈Z

(
s∑

r=1

K∑

k=1

tkf ik
r (x) − di

s∑

r=1

K∑

k=1

tkhik
r (x)

)

< sup
i∈I

sup
y∈Rn

(
s∑

r=1

K∑

k=1

tkf ik
r (y) −Di

s∑

r=1

K∑

k=1

tkhik
r (y)

)
.

Hence, for i ∈ I, we get that

s∑

r=1

K∑

k=1

tkf ik
r (x) − di

s∑

r=1

K∑

k=1

tkhik
r (x) <

s∑

r=1

K∑

k=1

tkf ik
r (y) −Di

s∑

r=1

K∑

k=1

tkhik
r (y). (30)

and by the pseudoconvexity of Hi(y, t,D), (30) implies that

(x− y)t∇x

(
s∑

r=1

K∑

k=1

tkf ik
r (y) −Di

s∑

r=1

K∑

k=1

tkhik
r (y)

)
< 0. (31)

Equation (31) implies that

sup
i∈I

sup
y∈Rn

(
(x− y)t∇x

(
s∑

r=1

K∑

k=1

tkf ik
r (y) −Di

s∑

r=1

K∑

k=1

tkhik
r (y)

))
< 0. (32)

From equation (27) and inequality (32) it follows that

sup
i∈I




(x− y)t∇x

m∑

j=1

µi
jg

i
j(y)




 > 0. (33)

By (26), inequality (33) implies that

sup
i∈I

m∑

j=1

µi
jg

i
j(x) > sup

i∈I

m∑

j=1

µi
jg

i
j(u) > 0.

Then
m∑

j=1

µi
jg

i
j(x) > 0, which contradicts the assumption that x is feasible with respect to

GDFFNLP(t, α, d). �

Theorem 5.2(Strong Duality) If x0 is an optimal solution of GDFFNLP(t, α, d) and CQ

is satisfied, then there exists (y0, λ0, t0, a0, b0) ∈ Rn+m is feasible for (M-WDGF) and the

corresponding value of inf(GDFFNLP (t, α, d)) = sup(M −WDGF ).

Proof Since x0 is an optimal solution of DGFFNLP(t0, α0, d0) and satisfy CQ, then there

is a positive integer λ∗i
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m such that Kuhn-Tucker conditions (27)-(29)
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are satisfied. Assume that λ0 = τ−1λ∗ in the Kuhn-Tucker stationary point conditions. It

follows that (y0, λ0, t0, a0, b0) is feasible for (M-WDGF). Hence

inf
i∈I




K∑
k=1

t0kf ik
r (x0, a0)

s∑
r=1

K∑
k=1

t0khik
r (x0, b0)


 = sup

i∈I




K∑
k=1

t0kf ik
r (y0, a0)

s∑
r=1

K∑
k=1

t0khik
r (y0, b0)


 . �

Theorem 5.3(Converse Duality) Let x0 be an optimal solution of DGFFNLP(t0, α0, d0) and

CQ is satisfied. If (y∗, µ∗) is an optimal solution of (M-WDFD) and Hi(y∗, t∗, D∗) is strictly

pseudoconvex at y∗, then y∗ = x0 is an optimal solution of GDFFNLP(t, α, d).

Proof Let x0 be an optimal solution of DGFFNLP(t0, α0, d0) and CQ is satisfied. Assume

that y∗ 6= x0. Then (y∗, µ∗) is an optimal solution of (M-WDGF). Whence,

inf
i∈I

inf
k∈K

F i(x0, t0, d0i) = sup
i∈I

sup
k∈K

Hi(y∗, t∗, D∗i) (34)

Because (y∗, µ∗) is feasible with respect to (M-WDGF), it follows that

m∑

j=1

µ∗i
j g

i
j(x

0) ≤
m∑

j=1

µ∗i
j g

i
j(y

∗).

Quasiconvexity of
m∑

j=1

µ∗i
j g

i
j(x) implies that

sup
i∈i

(x0 − y∗)

m∑

j=1

∇xµ
∗i
j g

i
j(y

∗) ≤ 0. (35)

From (34) and (35), it follows that

sup
i∈i

(x0 − y∗)∇yH
i(y∗, t∗, D∗i) ≥ 0. (36)

From (36) and the strict pseudoconvexity of at y∗, it follows that

sup
i∈i

∇xF
i(x0, t0, d0i) > sup

i∈i
∇yH

i(y∗, t∗, D∗i).

This contradicts to (35). Hence y∗ = x0 is an optimal solution of DGFFNLP(t0, α0, d0). �

§6. Duality Using Schaible Formula

The Schaible dual of GDFFNLP(t, α, d) has been formulated in [27] as follows:

(SGD) max
(y,µ)∈Rn+m

D,
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where (y, µ) ∈ Rn × Rm
+ satisfying:

sup
i∈I

∇x





K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y) +
m∑

j=1

µi
jg

i
j(y)



 = 0, (37)

m∑

j=1

µi
jg

i
j(y) ≥ 0, i ∈ I, (38)

K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y) ≥ 0, i ∈ i, (39)

Di ≥ 0 and µi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m. (40)

Theorem 6.1(Weak Duality) Let x be feasible with respect to GDFFNLP(t, α, d). If for all

feasible (y, µ), sup
i∈I

Hi(y, t, d) is pseudoconvex at u and sup
i∈I

K∑
j=1

µi
jg

i
j(y) is quasiconvex, then

inf GDFFNLP (t, α, d) ≥ sup(SGD).

Proof For each i ∈ I, suppose that

K∑
k=1

tkf ik(y)

K∑
k=1

tkhik(y)

< Di.

Hence, for each y ∈ Rn and i ∈ I, we get that

K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y) < 0.

Therefore,

sup
i∈I

(
K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y)

)
< 0. (41)

From (39) and (41) with t 6= 0, we have

(
K∑

k=1

tkf ik(x) − di
K∑

k=1

tkhik(x)

)
<

(
K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y)

)
.

By the pseudoconvexity of sup
i∈I

Hi(y, t,D) at u, it follows that

(x− y)T

(
K∑

k=1

tkf ik(y) −Di
K∑

k=1

tkhik(y)

)
< 0. (42)

Consequently, (38) and (42) yield that

(x− y)T
m∑

j=1

µi
j∇xg

i
j(y) > 0. (43)
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and, by the quasiconvexity of
m∑

j=1

µi
jg

i
j(y), inequality (43) implies that

m∑

j=1

µi
jg

i
j(x) >

m∑

j=1

µi
jg

i
j(y). (44)

From inequalities (38) and (44) it follows that

m∑

j=1

µi
jg

i
j(x) > 0. (45)

But, from the feasibility of x ∈ S and µi
j ≥ 0, i ∈ I, j = 1, 2, · · · ,m, (1) implies that

m∑
j=1

µi
jg

i
j(x) ≤ 0, this contradicts (45). Hence,

K∑
k=1

tkf ik(y)

K∑
k=1

tkhik(y)

≥ Di,

i.e., inf GDFFNLP (t, α, d) ≥ sup(SGD). �

Theorem 6.2(Strong Duality) Let x0 be an optimal solution of GDFFNLP(t, α, d) so that

CQ is satisfied. Then there exists (y0, µ0) is feasible for (SDD) and the corresponding value

of inf GDFFNLP (t, α, d) = sup(SDD). If, in addition, the hypotheses of Theorem 6.1 are

satisfied, then (x0, µ0) is an optimal solution of (SDD).

Proof The proof is similar to that of Theorem 5.2. �

Theorem 6.3(Converse Duality) Suppose that x) is an optimal solution of GDFFNLP(t, α, d)

and gi
j(x) satisfy CQ. Let the hypotheses of the above Theorem 6.1 hold. If (y∗, µ∗) is an optimal

solution of (SDD) and is strictly pseudocovex at y∗, then y∗ = x0 is an optimal solution of

DGFFNLP(t0, α0, d0).

Proof Assume that y∗ 6= x0, x0 is an optimal solution DGFFNLP(t0, α0, d0) and try to

find a contraction. From Theorem 4.2, for each i ∈ I, it follows that

K∑
k=1

t0kf ik(x0)

K∑
k=1

t0khik(x0)

= d0i. (46)

Applying (1) with (38) we get that

m∑

j=1

µ∗i
j g

i
j(x

0) ≤
m∑

j=1

µ∗i
j g

i
j(y

∗).

By quasiconvexity of
m∑

j=1

µ∗i
j g

i
j(x) and for each i ∈ I, it follows that

(x0 − y∗)

m∑

j=1

∇xµ
∗i
j g

i
j(y

∗) ≤ 0. (47)
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From (37) and (47) it follows that

(x0 − y∗)∇x

(
K∑

k=1

t∗kf ik(y∗) −D∗i
K∑

k=1

t∗khik(y∗)

)
≤ 0. (48)

From (39), (48) and the strict pseudoconvexity of

(
K∑

k=1

t∗kf ik(y) −D∗i
K∑

k=1

t∗khik(y)

)
for each

i ∈ I at y∗, it follows that

(
K∑

k=1

t0kf ik(x0) − d0i
K∑

k=1

t0khik(x0)

)
>

(
K∑

k=1

t∗kf ik(y∗) −D∗i
K∑

k=1

t∗khik(y∗)

)
. (49)

Inequality (49) implies that

(
K∑

k=1

t0kf ik(x) − d0i
K∑

k=1

t0khik(x)

)
> 0, i ∈ I. (50)

i.e., for each i ∈ I it is follows that

K∑
k=1

t0kf ik(x)

K∑
k=1

t0khik(x)

> d0i. (51)

Consequently,

K∑
k=1

t0kf ik(x0)

K∑
k=1

t0khik(x0)

≥

K∑
k=1

t0kf ik(x)

K∑
k=1

t0khik(x)

> d0i, (52)

contradicts to that (46). So that y∗ = x0 is an optimal solution of DGFFNLP(t0, α0, d0). �

§7. Conclusion

This paper addresses the solution of generalized multiobjective disjunctive programming prob-

lems, which corresponds to minmax continuous optimization problems that involve disjunctions

with convex-concave nonlinear fractional objective functions. We use Dinkelbach‘s global ap-

proach for finding the maximum of this problem. We first describe the Kuhn-Tucker saddle

point of nonlinear disjunctive fractional minmax programming problems by using the decision

set that is the union of a family of convex sets. Also, we discuss necessary and sufficient optimal-

ity conditions for generalized nonlinear disjunctive fractional minmax programming problems.

For the class of problems, we study two duals; we propose and prove weak, strong and converse

duality theorems.
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Abstract: This paper provides a way to observe embedings of a graph on surfaces based

on join trees and then characterizations of orientable and nonorientable embeddabilities of

a graph with given genus.
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§1. Introduction

A drawing of a graph G on a surface S is such a drawing with no edge crosses itself, no adjacent

edges cross each other, no two edges intersect more than once, and no three edges have a

common point. A Smarandache λS-drawing of G on S is a drawing of G on S with minimal

intersections λS . Particularly, a Smarandache 0-drawing of G on S, if existing, is called an

embedding of G on S.

The term joint three looks firstly appeared in [1] and then in [2] in a certain detail and

[3] firstly in English. However, the theoretical idea was initiated in early articles of the author

[4–5] in which maximum genus of a graph in both orientable and nonorientable cases were

investigated.

The central idea is to transform a problem related to embeddings of a graph on surfaces

i.e., compact 2-manifolds without boundary in topology into that on polyhegons (or polygons

of even size with binary boundaries). The following two principles can be seen in [3].

Principle A Joint trees of a graph have a 1–to–1 correspondence to embeddings of the graph

with the same orientability and genus i.e., on the same surfaces.

Principle B Associate polyhegons (as surfaces) of a graph have a 1–to–1 correspondence to

joint trees of the graph with the same orientability and genus, i.e., on the same surfaces.

The two principle above are employed in this paper as the theoretical foundation. These

enable us to discuss in any way among associate polyhegons, joint trees and embeddings of a

graph considered.

1Received January 28, 2011. Accepted May 12, 2011.
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§2. Layers and Exchangers

Given a surface S = (A). it is divided into segments layer by layer as in the following.

The 0th layer contains only one segment, i.e., A(= A0);

The 1st layer is obtained by dividing the segment A0 into l1 segments, i.e., S = (A1, A2,

· · · , Al1), where A1, A2, · · · , Al1 are called the 1st layer segments;

Suppose that on k − 1st layer, the k − 1st layer segments are An(k−1)
where n(k−1) is an

integral k − 1-vector satisfied by

1(k−1) 6 (n1, n2, · · · , nk−1) 6 N (k−1)

with 1(k−1) = (1, 1, · · · , 1), N (k−1) = (N1, N2, · · · , Nk−1), N1 = l1 = N(1), N2 = lAN(1)
,

N3 = lAN(2)
, · · · , Nk−1 = lAN(k−2)

, then the kth layer segments are obtained by dividing each

k − 1st layer segment as

An(k−1),1
, An(k−1),2

, · · · , An(k−1),lAn(k−1)
(1)

where 1(k) = (n(k−1), 1) 6 (n(k−1), i) 6 N (k) = (N (k−1), Nk) and Nk = lAN(k−1)
. Segments in

(1) are called successors of An(k−1)
. Conversely, An(k−1)

is the predecessor of any one in (1).

A layer segment which has only one element is called an end segment and others, principle

segments. For an example, let

S = (1,−7, 2,−5, 3,−1, 4,−6, 5,−2, 6, 7,−3,−4).

Fig.2.1 shows a layer division of S and Tab.2.1, the principle segments in each layer.

For a layer division of a surface, if principle segments are dealt with vertices and edges

are with the relationship between predecessor and successor, then what is obtained is a tree

denoted by T . On T , by adding cotree edges as end segments, a graph G = (V,E) is induced.

For example, the graph induced from the layer division shown in Fig.1 is as

V = {A,B,C,D,E, F,G,H, I} (2)

and

E = {a, b, c, d, e, f, g, h, 1, 2, 3, 4, 5, 6, 7}, (3)

where
a = (A,B), b = (A,C), c = (A,D), d = (B,E),

e = (C,F ), f = (C,G), g = (D,H), h = (D, I),

and
1 = (B,F ), 2 = (E,H), 3 = (F, I), 4 = (G, I),

5 = (B,C), 6 = (G,H), 7 = (D,E).

By considering ET = {a, b, c, d, e, f, g, h}, ET = {1, 2, 3, 4, 5, 6, 7}, δi = 0, i = 1, 2, · · · , 7, and

the rotation σ implied in the layer division, a joint tree T̂ δ
σ is produced.
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〈1,−7, 2 − 5; 3,−1, 4,−6, 5;−2, 6, 7,−3 − 4〉

〈1;−7, 2;−5〉 〈3,−1; 4,−6; 5〉 〈−2, 6; 7;−3,−4〉

〈1〉 〈−7; 2〉 〈−5〉 〈3;−1〉 〈4;−6〉 〈5〉 〈−2; 6〉 〈7〉 〈−3;−4〉

〈−7〉 〈2〉 〈3〉 〈−1〉 〈4〉 〈−6〉 〈−2〉 〈6〉 〈−3〉 〈−4〉

Fig.1 Layer division of surface S

Layers Principle segments

0th layer A = 〈1,−7, 2− 5; 3,−1, 4,−6, 5;−2, 6, 7,−3− 4〉

1st layer B = 〈1;−7, 2;−5〉, C = 〈3,−1; 4,−6; 5〉,

D = 〈−2, 6; 7;−3,−4〉

2nd layer E = 〈−7; 2〉, F = 〈3;−1〉, G = 〈4;−6〉,

H = 〈−2; 6〉, I = 〈−3;−4〉

Tab.1 Layers and principle segments

Theorem 1 A layer division of a polyhegon determines a joint tree. Conversely, a joint tree

determines a layer division of its associate polyhegon.

Proof For a layer division of a polyhegon as a polyhegon, all segments are treated as

vertices and two vertices have an edge if, and only if, they are in successive layers with one as

a subsegment of the other. This graph can be shown as a tree. Because of each non-end vertex

with a rotation and end vertices pairwise with binary indices, this tree itself is a joint tree.

Conversely, for a joint tree, it is also seen as a layer division of the surface determined by

the boundary polyhegon of the tree. �

Then, an operation on a layer division is discussed for transforming an associate polyhegon

into another in order to visit all associate polyhegon without repetition.

A layer segment with all its successors is called a branch in the layer division. The operation

of interchanging the positions of two layer segments with the same predecessor in a layer division

is called an exchanger.

Lemma 1 A layer division of an associate polyhegon of a graph under an exchanger is still a

layer division of another associate polyhegon. Conversely, the later under the same exchanger

becomes the former.

Proof On the basis of Theorem 1, only necessary to see what happens by exchanger on

a joint tree once. Because of only changing the rotation at a vertex for doing exchanger once,
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exchanger transforms a joint tree into another joint tree of the same graph. This is the first

conclusion. Because of exchanger inversible, the second conclusion holds. �

On the basis of this lemma, an exchanger can be seen as an operation on the set of all

associate surfaces of a graph.

Lemma 2 The exchanger is closed in the set of all associate polyhegons of a graph.

Proof From Theorem 1, the lemma is a direct conclusion of Lemma 1. �

Lemma 3 Let A(G) be the set of all associate polyhegons of a graph G, then for any S1,

S2 ∈ A(G), there exist a sequence of exchangers on the set such that S1 can be transformed

into S2.

Proof Because of exchanger corresponding to transposition of two elements in a rotation

at a vertex, in virtue of permutation principle that any two rotation can be transformed from

one into another by transpositions, from Theorem 1 and Lemma 1, the conclusion is done. �

If A(G) is dealt as the vertex set and an edge as an exchanger, then what is obtained in

this way is called the associate polyhegon graph of G, and denoted by H(G). From Principle A,

it is also called the surface embedding graph of G.

Theorem 2 In H(G), there is a Hamilton path. Further, for any two vertices, H(G) has a

Hamilton path with the two vertices as ends.

Proof Since a rotation at each vertex is a cyclic permutation(or in short a cycle) on the set

of semi-edges with the vertex, an exchanger of layer segments is corresponding to a transposition

on the set at a vertex.

Since any two cycles at a vertex v can be transformed from one into another by ρ(v)

transpositions where ρ(v) is the valency of v, i.e., the order of cycle(rotation), This enables us

to do exchangers from the 1st layer on according to the order from left to right at one vertex

to the other. Because of the finiteness, an associate polyhegon can always transformed into

another by |A(G)| exchangers. From Theorem 1 with Principles 1–2, the conclusion is done.�

First, starting from a surface in A(G), by doing exchangers at each principle segments

in one layer to another, a Hamilton path can always be found in considering Theorem 2 and

Theorem 1. Then, a Hamilton path can be found on H(G).

Further, for chosen S1, S2 ∈ A(G) = V (H(G)) adjective, starting from S1, by doing ex-

changers avoid S2 except the final step, on the basis of the strongly finite recursion principle, a

Hamilton path between S1 and S2 can be obtained. In consequence, a Hamilton circuit can be

found on H(G).

Corollary 1 In H(G), there exists a Hamilton circuit.

Theorem 2 tells us that the problem of determining the minimum, or maximum genus of

graph G has an algorithm in time linear on H(G).
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§3. Main Theorems

For a graph G, let S(G) be the the associate polehegons (or surfaces) of G, and Sp and Sq̃, the

subsets of, respectively, orientable and nonorientable polyhegons of genus p > 0 and q > 1.

Then, we have

S(G) =
∑

p>0

Sp +
∑

q>1

Sq̃.

Theorem 3 A graph G can be embedded on an orientable surface of genus p if, and only if,

S(G) has a polyhegon in Sp, p > 0. Moreover, for an embedding of G, there exist a sequence of

exchangers by which the corresponding polyhegon of the embedding can be transformed into one

in Sp.

Proof For an embedding of G on an orientable surface of genus p, from Theorem 1 there

is an associate polyhegon in Sp, p > 0. This is the necessity of the first statement.

Conversely, given an associate polyhegen in Sp, p > 0, from Theorems 1–2 with Principles

A and B, an embedding of G on an orientable surface of genus p can be done. This is the

sufficiency of the first statement.

The last statement of the theorem is directly seen from the proof of Theorem 2. �

For an orientable embedding µ(G) of G, denote by S̃µ the set of all nonorientable associate

polyhegons induced from µ(G).

Theorem 4 A graph G can be embedded on a nonorientable surface of genus q(> 1) if, and only

if, S(G) has a polyhegon in S̃q, q > 1. Moreover, if G has an embedding µ̃ on a nonorientable

surface of genus q, then it can always be done from an orientable embedding µ arbitrarily given

to another orientable embedding µ′ by a sequence of exchangers such that the associate polyhegon

of µ̃ is in S̃µ′ .

Proof For an embedding of G on a nonorientable surface of genus q, Theorem 1 and

Principle B lead to that its associate polyhegon is in Sq, q > 1. This is the necessity of the first

statement.

Conversely, let Sq̃ be an associate polyhegon of G in S̃q, q > 1. From Principles A and

B, an embedding of G on a nonorietable surface of genus q can be found from Sq̃. This is the

sufficiency of the first statement.

Since a nonorientable embedding of G has exactly one under orientable embedding of G

by Principle A, Theorem 2 directly leads to the second statement. �

§4. Research Notes

A. Theorems 1 and 2 enable us to establish a procedure for finding all embeddings of a graph

G in linear space of the size of G and in linear time of size of H(G). The implementation of

this procedure on computers can be seen in [6].

B. In Theorems 3 and 4, it is necessary to investigate a procedure to extract a sequence of

transpositions considered for the corresponding purpose efficiently.
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C. On the basis of the associate polyhegons, the recognition of operations from a polyhegon

of genus p to that of genus p+ k for given k > 0 have not yet be investigated. However, for the

case k = 0 the operations are just Operetions 0–2 all topological that are shown in [1–3].

D. It looks worthful to investigate the associate polyhegon graph of a graph further for accessing

the determination of the maximum(orientable) and minimum(orientable or nonorientable) genus

of a graph.
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§1. Introduction

All graphs considered here are finite, undirected and without loops or multiple edges. We refer

the terminology of [2]. For any graph G, L(G) denote the line graph of G.

A Smarandache P-drawing of a graph G for a graphical property P is such a good drawing

of G on the plane with minimal intersections for its each subgraph H ∈ P. A Smarandache

P-drawing is said to be optimal if P = G and it minimizes the number of crossings. A graph

is planar if it can be drawn in the plane or on the sphere in such a way that no two of its edges

intersect. The crossing number cr(G) of a graph G is the least number of intersections of pairs

of edges in any embedding of G in the plane. Obviously, G is planar if and only if cr(G) = 0.

It is implicit that the edges in a drawing are Jordan arcs(hence, non-selfintersecting), and it is

easy to see that a drawing with the minimum number of crossings(an optimal drawing) must

be good drawing, that is, each two edges have at most one vertex in common, which is either a

common end-vertex or a crossing. Theta is the result of adding a new edge to a cycle and it is

denoted by θ. The corona G+ of a graph G is obtained from G by attaching a path of length

1 to every vertex of G.

The plick graph P (G) of a graph G is obtained from the line graph by adding a new vertex

corresponding to each block of the original graph and joining this vertex to the vertices of the

line graph which correspond to the edges of the block of the original graph(see[4]).

The following will be useful in the proof of our results.

1Received January 6, 2011. Accepted May 18, 2011.
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Theorem A([5]) The line graph of a planar graph G is planar if and only if ∆(G) ≤ 4 and

every vertex of degree 4 is a cut-vertex.

Theorem B([3]) Let G be a nonplanar graph. Then cr(L(G)) = 1 if and only if the following

conditions hold:

(1) cr(G) = 1;

(2) ∆(G) ≤ 4, and every vertex of degree 4 is a cut-vertex of G;

(3) There exists a drawing of G in the plane with exactly one crossing in which each crossed

edge is incident with a vertex of degree 2.

Theorem C([3]) The line graph of a planar graph G has crossing number one if and only if

(1) or (2) holds:

(1) ∆(G) = 4 and there is a unique non-cut-vertex of degree 4;

(2) ∆(G) = 5, every vertex of degree 4 is a cut-vertex, there is a unique vertex of degree

5 and it has at most 3 incident edges in any block.

Theorem D([4]) The plick graph P (G) of a graph G is planar if and only if G satisfies the

following conditions:

(1) ∆(G) ≤ 4, and

(2) every block of G is either a cycle or a K2.

Theorem E([1]) A graph has a planar ilne graph if and only if it has no subgraph homeomorphic

to K3,3, K1,5, P4 +K1 or K2 +K3.

Remark 1([4]) For any graph, L(G) is a subgraph of P (G).

§2. Results

The following theorem supports the main theorem.

Theorem 1 Let x be any edge of K4. If G is homeomorphic to K4 − x, then cr(P (G)) = 1.

Proof We prove the theorem first for G = (K4−x). One can see that the graph P (K4−x)

has 6 vertices and 13 edges. But a planar graph with 6 vertices has at most 12 edges. This

shows that P (K4 − x) has crossing number at least 1. Figure 1, being drawing of P (K4 − x)

concludes that cr(P (K4 − x)) = 1. Suppose now G is the graph as in the statement. Referring

to Figure 1, it is immediate to see that cr(P (K4 − x)) = 1. �



Plick Graphs with Crossing Number 1 23

P (K4 − x)K4 − x

Figure 1

The following theorem gives a necessary and sufficient condition for graphs whose plick

graphs have crossing number 1.

Theorem 2 A graph G has a plick graph with crossing number 1 if and only if G is planar

and one of the following holds:

(1) ∆(G) = 3, G has exactly two non-cut-vertices of degree 3 and they are adjacent.

(2) ∆(G) = 4, every vertex of degree 4 is a cut-vertex of G, there exists exactly one theta

as a block in G such that at least one vertex of theta is a non-cut- vertex of degree 2 or 3 and

every other block of G is either a cycle or a K2.

(3) ∆(G) = 5, G has a unique cut-vertex of degree 5 and every block of G is either a cycle

or a K2.

Proof Suppose P (G) has crossing number one. Then by Remark 1, and Theorem B, G is

planar. By Theorem D, ∆(G) ≤ 4, then at least one block of G is neither a cycle nor a K2.

Suppose ∆(G) ≤ 6. Then K1,6 is a subgraph of G. Clearly L(K1,6) = K6. It is known that

cr(K6) = 3. By Remark 1, K6 is a subgraph of P (G) and hence cr(P (G)) > 1, a contradiction.

This implies that ∆(G) ≤ 5. If ∆(G) ≤ 2, then P (G) is planar, again a contradiction. Thus

∆(G) = 3 or 4 or 5.

We now consider the following cases:

Case 1. Suppose ∆(G) = 3. Then by Theorem D and since cr(P (G)) = 1, G has a non-

cut-vertex of degree 3. Clearly G contains a subgraph homeomorphic to K4 − x, so that there

exist at least two non-cut-vertex of degree3. More precisely, there is an even number, say 2n,

of non-cut-vertex of degree 3. Now suppose G has at least two diagonal edges. Then there are

two subcases to consider depending on whether 2 diagonal edges exist in one cycle or in two

different edge disjoint cycles.

Subcase 1.1 If two diagonal edges exist in one cycle of G. Then G has a subgraph homeo-

morphic from K4. The graph P (K4) has 7 vertices and 18 edges. It is known that a planar

graph with 7 vertices has at most 15 edges. This shows that P (K4) must have crossing number

exceeding 1 and hence P (G) has crossing number greater than 1, a contradiction.

Subcase 1.2 If two diagonal edges exist in two different edge-disjoint cycles of G. Then by
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Theorem 1, we see that for every subgraph of G homeomorphic to K4 − x, there corresponds

at least one crossing of G. Hence P (G) has at least 2 crossings, a contradiction.

Hence G has exactly two non-cut-vertices of degree 3 and every other vertex of degree 3 is

a cut-vertex.

Suppose a graph G has two non-cut-vertices of degree 3 and they are not adjacent. Then

G contains a subgraph homeomorphic to K2,3. On drawing P (K2,3) in a plane one can see that

cr(P (K2,3)) = 2. Since P (K2,3) is a subgraph of P (G), P (G) has crossing number exceeding

1, a contradiction(see Figure 2).

Therefore, we conclude that G contains exactly two non-cut-vertices of degree 3 and these

are adjacent. This proves (1).

K2,3 P (K2,3)

Figure 2

Case 2. Assume ∆(G) = 4. We show first that every vertex of degree 4 is a cut-vertex. On the

contrary suppose that G has non-cut-vertex v of degree 4. Then by Theorem C, cr(L(G)) ≥ 1.

The vertex u1 in P (G) corresponding to the block which contains a non-cut-vertex of degree 4

is adjacent to every vertex of L(G). We obtain the drawing of P (G) with 3 crossings.

Assume now G has at least two blocks each of which is a theta. By Theorem 1 and case 1

of this theorem, we see that for every subgraph of G homeomorphic to K4−x, there correspond

to at least 2 crossings of G, a contradiction.

Suppose there exists exactly one theta S as a block in G such that none of its vertices is

a non-cut-vertex of degree 2 or 3. Assume all vertices of theta S have degree 4 in G. Then by

Theorem A, L(S) is planar. Let v1 be the vertex of L(G) corresponding to the chord of a cycle

C of theta. The vertex w1 in P (G) corresponding to the block theta S is adjacent to every

vertex of L(C) without crossings. In P (G)− v1w1, the vertex w1 is adjacent to every vertex of

L(S) − v1 without crossings. By the definition of P (G), the vertices v1 and w1 are adjacent in

P (G). The edge v1w1 crosses at least two edges of L(G). On drawing of P (G) in the plane, it

has at least two crossings, a contradiction. This proves that ∆(G) = 4, there exist exactly one

theta as a block in G such that at least one vertex of theta is either a non-cut-vertex of degree

2 or 3.

Suppose every block of G different from theta block is neither a cycle nor a K2. It implies

that G has a block which is a subgraph homeomorphic to K4 − x. By Cases 1 and 2 of this

theorem, we see that for every subgraph of G homeomorphic to K4 − x, there corresponds at
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least one crossing of G. Hence P (G) has at least 2 crossings, a contradiction.
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Case 3. Assume ∆(G) = 5. Suppose G has at least two vertices of degree 5. Then by Theorem

C, L(G) has crossing number at least 2. By Remark 1, cr(P (G)) ≥ 2, which is a contradiction.

Thus G has a unique vertex of degree 5.

Suppose G has a vertex v of degree 5 and at least one block of G is neither a cycle nor

a K2. Then some block of G has a subgraph homeomorphic to K4 − x. By Case 1 of this

theorem cr(P (K4 − x)) ≥ 1 and the 5 edges incident to v form K5 as a subgraph in P (G).

Hence cr(P (K4 − x)) ≥ 2, a contradiction.

Conversely, suppose G is a planar graph satisfying (1) or (2) or (3). Then by Theorem

D, P (G) has crossing number at least 1. We now show that its crossing number is at most 1.

First suppose (1) holds. Then G has exactly one block, say H , homeomorphic to K4 − x which

contains 2 adjacent non-cut-vertices of degree 3. By Theorem 1, cr(P (H)) = 1. By Theorem

D, all other remaining blocks of G have a planar plick graph. Hence P (G) has crossing number

1.

Assume (2) holds. Let u be a cut-vertex of degree 4. The vertex u has a non-cut-vertex of

degree 3 in a block for otherwise, G does contain a subgraph homeomorphic to K4 − x which

is impossible. By virtue of Theorem 1, for a non-cut-vertex of G of degree 3, there corresponds

one crossing in P (G). However P (G) can not have more than one crossing since the removal of

any edge in a block containing u, yields a graph H such that P (H) is planar by Theorem D. It

follows easily that P (G) has crossing number 1.

Suppose (3) holds. The edges at the vertex v of the degree 5 can be split into sets of sizes
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2 and 3 so that no edges in different sets are in the same block. Transform G to G′ as in Figure

3. Then P (G′) is again planar. Thus P (G) can be drawn with only one crossing as shown in

Figure 4. �

§3. Forbidden Subgraphs

By using Theorem 2, we now characterize graphs whose plick graphs have crossing number 1

in terms of forbidden subgraphs.

Theorem 3 The plick graph of a connected graph G has crossing number 1 if and only if G

has no subgraphs homeomorphic from any one of the graphs of Figure 5 or G has subgraph θ+

such that none of the vertices of theta have non-cut-vertices of degree 2 or 3.
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Figure 5

Proof Suppose G has a plick graph with crossing number one. We now show that all

graphs homeomorphic from any one of the graphs of Figure 5 or a subgraph θ+ such that

none of the vertices of theta have non-cut-vertices of degree 2 or 3, have no plick graph with

crossing number one. This result follows from Theorem 2, since graphs homeomorphic from

G1, G2 or G3 have more than two non-cut-vertices of degree three. Graphs homeomorphic from

G4 have two non-cut-vertices of degree 3 which are not adjacent. Graphs homeomorphic from
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G5 have a vertex of degree 4 which is a non-cut-vertex. Graphs homeomorphic from G6 have

more than one theta. θ+ has exactly one block which is a theta and none of its vertices have

non-cut-vertices of degree 2 or 3. Graphs homeomorphic from G7 have ∆(G7) > 5. Graphs

homeomorphic from G8 or G9 have two or more vertices of degree 5. Graphs homeomorphic to

G10 or G11 have a block which is neither a cycle nor a K2.

Conversely, suppose G is a graph which does not contain a subgraph homeomorphic from

any one of the graphs of Figure 5 or G has exactly one subgraph theta as a block such that

none of the vertices of theta have non-cut-vertices of degree 2 or 3. First we prove condition (1)

of Theorem 2. Suppose G contains more than two non-cut-vertices of degree 3. Then it is easy

to see that G is a planar graph with at least 2 diagonal edges. Now consider 2 cases depending

on whether the 2 diagonal edges exist in one block or in two different blocks.

Case 1. Suppose two diagonal edges exist in one block of G, then G has a subgraph homeo-

morphic from G1 or G2.

Case 2. Suppose two diagonal edges exist in two different blocks of G, then G has a subgraph

homeomorphic from G3.

In each case we have a contradiction. Hence G has at most two non-cut-vertices of degree

3. Suppose G has exactly two nonadjacent non-cut-vertices of degree 3. Then there exist 3

disjoint paths between these two non-cut-vertices of degree 3. Clearly G contains a subgraph

homeomorphic from G4, a contradiction. Thus G has exactly two adjacent non-cut-vertices of

degree 3.

Since G does not contain a subgraph homeomorphic from G7 i.e, K1,6 , ∆(G) ≤ 5. Also

since ∆(G) ≥ 4, if it follows that ∆(G) = 4 or 5.

Suppose G has a vertex v of degree 4. We prove that v is a cut-vertex. If not, let a, b, c and d

be the vertices of G adjacent to v. Then there exist paths between every pair of vertices of a, b, c

and d not containing v. Then it is proved in Theorem E, G has a subgraph homeomorphic from

G5, this is a contradiction. Thus v is a cut-vertex and every vertex of degree 4 is a cut-vertex.

Suppose that a cut-vertex of degree 4 lies on two blocks, each of which is a theta. Then

G has a subgraph homeomorphic from G6. This is a contradiction. G has exactly one block

which is a theta such that at least one vertex of theta is either a non-cut-vertex of degree 2 or

3, for otherwise a forbidden subgraph has exactly one theta as a block such that none of the

vertices of theta have non-cut-vertices of degree 2 or 3 would appear in G.

Suppose G has two vertices v1 and v2 of degree 5. Since G is a connected, v1 and v2 are

connected by a path P and let (v1, ai) and (v2, bj), i, j = 1, 2, 3, 4, be edges of G. We consider

the following possibilities.

If ai 6= bj for i, j = 1, 2, 3, 4, then G contains a subgraph homeomorphic from G8, a

contradiction.

If there exists a path between a vertex of ai and a vertex of bj, then G has a subgraph

homeomorphic from G9, a contradiction.

If ai = bj , for i, j = 1, 2, then clearly G contains a subgraph homeomorphic from G10, a

contradiction.

This proves that G has exactly one vertex v of degree 5.
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Suppose G has a vertex v of degree 5. We show that v is a cut-vertex. If possible let us

assume that G has a non-cut-vertex of degree 5. In this case Greenwell and Hemminger showed

in [1] that G must contain a subgraph homeomorphic from G5, a contradiction.

Suppose G has a unique cut-vertex v of degree 5 and it lies on blocks, one block which is

neither a cycle nor a K2. Then G contains a subgraph homeomorphic from G10 or G11.

Thus Theorem 2 implies that G has a plick graph with crossing number one. �
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§1. Introduction

In this article the concept of foldings will be discussed from viewpoint of algebra. The effect

of foldings on the manifold M or on a finite number of product manifolds M1xM2x...xMn on

the fundamental group π1(M) and π1(M1xM2x · · ·xMn) will be presented. The folding of a

manifold was, firstly introduced by Robertson 1977 [14]. More studies on the folding of many

types of manifolds were studied in [2-4 and 6-9]. The unfolding of a manifold introduced in [5].

Some application of the folding of a manifold discussed in [1]. The fundamental groups of some

types of a manifold are discussed in [10-13].

§2. Definitions

1. The set of homotopy classes of loops based at the point x◦ with the product operation

[f ][g] = [f · g] is called the fundamental group and denoted by π1(X,x◦) [11].

2. Let M and N be two smooth manifolds of dimension m and n respectively. A map

f : M → N is said to be an isometric folding of M into N if for every piecewise geodesic path

γ : I → M the induced path f ◦ γ : I → N is piecewise geodesic and of the same length as γ

[14]. If f does not preserve length it is called topological folding [9].

3. Let M and N be two smooth manifolds of the same dimension. A map g : M → N is

said to be unfolding of M into N if every piecewise geodesic path γ : I →M , the induced path

g ◦ γ : I → N is piecewise geodesic with length greater than γ [5].

1Received January 1, 2011. Accepted May 20, 2011.
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4. Given spaces X and Y with chosen points xo ∈ X and yo ∈ Y , then the wedge sum

X ∨ Y is the quotient of the disjoint union X ∪ Y obtained identifying xo and yo to a single

point [11].

5. Let S be an arbitrary set. A free group on the set S is a group F together with a

function φ : S → F such that the following condition holds: For any function ψ : S → H , there

exist a unique homomorphism f : F → H such that f ◦ φ = ψ [12].

§3. Main Results

Paving the stage to this paper, we then introduce the following

(1) π1(T ) = {([α1]
k, [β1]

m), ([α2]
k, [β2]

m), ...., ([αn]k, [βn]m); [αi], [βi] ∈ π1(S
1), k,m ∈ Z, k 6=

0,m 6= 0, i = 1, 2, ...., n}

(2) π1(T )mod(k,m) = {([α1], [β1]), ([α2], [β2]), ...., ([αn], [βn]) : [αi]
k = 1, [βi]

m = 1 [αi], [βi] ∈

π1(S
1), k,m ∈ Z+, k 6= 0,m 6= 0, i = 1, 2, ...., n}.

Where, π1(S
1) is a fundamental group of the circle ,T is the torus [α]n = [α] × [α] × ....× [α]︸ ︷︷ ︸

n−terms

,

and T n = T × T × ....× T︸ ︷︷ ︸
n−terms

.

Let π1(S
1
1) , π1(S

1
2 ) be two fundamental groups. Then the free product of π1(S

1
1 ) , π1(S

1
2)

is the group π1(S
1
1)∗ π1(S

1
2 )consisting of all reduced words a1a2a3....am of an arbitrary finite

length m ≥ 0 such that ai ∈ π1(S
1
1 ) or ai ∈ π1(S

1
2 ), i = 1, 2, ....,m , then we can represent the

elements ai as of the forms ai = [α]ni or ai = [β]ni where ni ∈ Z, ni 6= 0 and α, β are two loops

that goes once a round S1
1 , S

1
2 respectively. Also, if F : S1

1 ∨ S1
2 −→ S1

1 ∨ S1
2 is a folding, then

the induced folding F :π1(S
1
1) ∗ π1(S

1
2) −→ π1(S

1
1) ∗ π1(S

1
2) has the following forms:

F (π1(S
1
1) ∗ π1(S

1
2)) = F (π1(S

1
1 )) ∗ π1(S

1
2),

F (π1(S
1
1) ∗ π1(S

1
2)) = π1(S

1
1) ∗ F (π1(S

1
2)),

F (π1(S
1
1) ∗ π1(S

1
2)) = F (π1(S

1
1 )) ∗ F (π1(S

1
2 )).

Theorem 3.1 If Fi : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 , i = 1, 2 are two types of of foldings, where

FI(S
1
j ) =.S1

j , j = 1, 2, then there are induced foldings Fi :π1(S
1
1) ∗ π1(S

1
2) −→ π1(S

1
1) ∗ π1(S

1
2)

such that Fi(π1(S
1
1 ))∗π1(S

1
2 ) ≈ Z.

Proof First, let F1 : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 is folding such that F1(S
1
1) = S1

1 , F1(S
1
2 ) = S1

1

as in Fig.1. Then we can express each element g = a1a2a3....am , m ≥ 1 of π1(S
1
1) ∗ π1(S

1
2) in

the following forms

[α]
n1 [β]

n2 [α]
n3 .... [α]

nm−1 [β]
nm , [α]

n1 [β]
n2 [α]

n3 · · · [β]
nm−1 [α]

nm ,

[β]
n1 [α]

n2 [β]
n3 .... [β]

nm−1 [α]
nm , or [β]

n1 [α]
n2 [β]

n3 .... [α]
nm−1 [β]

nm ,

where n1, n2, · · · , nm are nonzero integers and [α]
nk ∈ π1(S

1
1), [β]

nk ∈ π1(S
1
2), k = 1, 2, ..m .
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Then, the induced folding of the element g is

F1(g) = F1([α]
n1)F1([β]

n2)F1([α]
n3) · · ·F1([α]

nm−1)F1([β]
nm),

F1([α]
n1)F1([β]

n2)F1([α]
n3) · · ·F1([β]

nm−1)F1([α]
nm),

F1([β]
n1)F1([α]

n2)F1([β]
n3) · · ·F1([β]

nm−1)F1([α]
nm),

F1([β]
n1)F1([α]

n2)F1([β]
n3)....F1([α]

nm−1)F1([β]
nm).

Since F1([α]nk) = [α]nk , F1([β]nk) = [α]nk it follows that F1(a1a2a3...a) = [α](n1+n2+···+nm).

Hence, there is an induced folding Fi :π1(S
1
1)∗π1(S

1
2) −→ π1(S

1
1)∗π1(S

1
2) such that Fi(π1(S

1
1 )∗

π1(S
1
2)) = π1(S

1
1 ), and so Fi(π1(S

1
1 ) ∗ π1(S

1
2)) ≈ Z. Similarly , if F2 : S1

1 ∨ S1
2 −→ S1

1 ∨ S1
2 is

folding, such that F2(S
1
1 ) = S1

2 , F2(S
1
2) = S1

2 , then there is an induced folding F2 :π1(S
1
1) ∗

π1(S
1
2) −→ π1(S

1
1) ∗ π1(S

1
2) such that F2(π1(S

1
1) ∗ π1(S

1
2 )) ≈ Z.-F

Fig.1

Theorem 3.2 If Fi : S1
1 ∨S

1
2 −→ S1

1 ∨S
1
2 , i = 1, 2 are two types of foldings such that Fi(S

1
j ) =

S1
i , j = 1, 2. Then,π1( lim

n→∞
Fin

(S1
1 ∨ S1

2)) is isomorphic to Z.

Proof Let Fi(S
1
j ) = S1

i then lim
n→∞

Fin
(S1

1∨S
1
2) = S1

i as in Fig.2. Thus, π1( lim
n→∞

Fin
(S1

1∨S
1
2 ))

=S1
i , Therefore π1( lim

n→∞
Fin

(S1
1 ∨ S1

2)) is isomorphic to Z. �- - -Fi1 Fi2
lim

n→∞
Fin

Fig.2

Theorem 3.3 Let F : S1
1 ∨S

1
2 −→ S1

1 ∨S
1
2 be a folding, where F (S1

i ) 6= S1
i , i = 1, 2.Then there

is an induced folding F : π1(S
1
1 ) ∗ π1(S

1
2) −→ π1(S

1
1) ∗ π1(S

1
2)such that Fπ1(S

1
1) ∗ π1(S

1
2 )) = 0.

Proof Let F : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 be a folding such that F (S1
1) 6= S1

1 , F (S1
i ) 6= S1

i as in

Fig. (3) .Then, we can express each element g = a1a2a3....am , m ≥ 1 of π1(S
1
1) ∗ π1(S

1
2) in the

following forms:

[α]
n1 [β]

n2 [α]
n3 · · · [α]

nm−1 [β]
nm , [α]

n1 [β]
n2 [α]

n3 · · · [β]
nm−1 [α]

nm ,

[β]
n1 [α]

n2 [β]
n3 · · · [β]

nm−1 [α]
nm , [β]

n1 [α]
n2 [β]

n3 · · · [α]
nm−1 [β]

nm ,

where n1, n2, · · · , nm are nonzero integers and [α]
nk ∈ π1(S

1
1), [β]

nk ∈ π1(S
1
2), k = 1, 2, · · · ,m.
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Then the induced folding of the element g is

F1(g) = F1([α]
n1)F1([β]

n2)F1([α]
n3) · · ·F1([α]

nm−1)F1([β]
nm)

= [α]n1 [β]n2 [α]n3 · · · [α]nm−1 [β]nm ,

F1([α]
n1)F1([β]

n2)F1([α]
n3) · · ·F1([β]

nm−1)F1([α]
nm)

= [α]
n1 [β]

n2 [α]
n3 · · · [β]

nm−1 [α]
nm ,

F1([β]
n1)F1([α]

n2)F1([β]
n3) · · ·F1([β]

nm−1)F1([α]
nm)

= [β]
n1 [α]

n2 [β]
n3 · · · [β]

nm−1 [α]
nm ,

F1([β]
n1)F1([α]

n2)F1([β]
n3) · · ·F1([α]

nm−1)F1([β]
nm)

= [β]
n1 [α]

n2 [β]
n3 · · · [α]

nm−1 [β]
nm .

It follows from
[

f
α
]
,

[
f

β

]
−→ identity element, that there is an induced folding F :π1(S

1
1) ∗

π1(S
1
2) −→ π1(S

1
1) ∗ π1(S

1
2)such that F (π1(S

1
1 ) ∗ π1(S

1
2)) = 0.-F

Fig.3

Corollary 1 If Fi : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 , i = 1, 2 are two types of foldings such that

Fi(S
1
i ) = S1

i , Fj(S
1
i ) 6= S1

i , j = 1, 2, i 6= j.

Then there are induced foldings Fi :π1(S
1
1 ) ∗ π1(S

1
2) −→ π1(S

1
1) ∗ π1(S

1
2)such that Fi(π1(S

1
1) ∗

π1(S
1
2)) ≈ Z.

Theorem 4 If F : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 is a folding such that F (S1
i ) 6= S1

i , i = 1, 2. Then,

π1( lim
n→∞

Fn(S1
1 ∨ S1

2))

is the identity group.

Proof If F (S1
i ) 6= S1

i , i = 1, 2 then lim
n→∞

Fn(S1
1 ∨ S1

2) is a point as in Fig.4, and so

π1( lim
n→∞

Fn(S1
1∨S

1
2 )) is the fundamental group of a point. Therefore, we get that π1( lim

n→∞
Fn(S1

1∨

S1
2)) = 0. �- - -F1 F2

lim
n→∞

Fn

Fig.4

Theorem 5 If Fi : S1
1 ∨ S1

2 −→ S1
1 ∨ S1

2 , i = 1, 2 are two types of foldings such that

Fi(S
1
i ) = S1

i , Fj(S
1
i ) 6= S1

i , j = 1, 2, i 6= j. Then π1( lim
n→∞

Fin
(S1

1 ∨ S1
2)) is isomorphic to Z.
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Proof It follows from Fi(S
1
i ) = S1

i , Fj(S
1
i ) 6= S1

i , j = 1, 2, i 6= j.that the limit of one circle

is a circle and the limit of the other circle is a point, so lim
n→∞

Fn(S1
1 ∨ S1

2)) = S1
i as in Fig.5.

Thus, π1( lim
n→∞

Fin
(S1

1 ∨ S1
2)) = π1(S

1
i ) . Therefore π1( lim

n→∞
Fin

(S1
1 ∨ S1

2)) is isomorphic to Z. �- - -Fi1 Fi2
lim

n→∞
Fin

Fig.5

Now, we will generalize the above concepts for the tours Consider π1(T
1
1 ) ,π1(T

1
2 ) , are two

fundamental groups. Then, the free product of π1(T
1
1 ) ,π1(T

1
2 ), is the group π1(T

1
1 ) ∗π1(T

1
2 )

consisting of all reduced words of a1a2a3....am of an arbitrary finite length m ≥ 0 such that

ai ∈ π1(T
1
1 ) or ai ∈ π1(T

1
2 ) and so, we can represent the elements ai as of the forms ai =

([α1]
ni , [β1]

ki) or ai = ([α2]
ni , [β2]

ki) where ni, ki ∈ Z, ni 6= 0 , ki 6= 0 where ([α1]
ni , [β1]

ki) ∈

π1(T
1
1 ), ([α2]

ni , [β2]
ki) ∈ π1(T

1
2 )and αj , βj are loops that goes once a round the generators

of Tj for j = 1, 2.Then if F : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 is a folding, then the induced folding

F :π1(T
1
1 ) ∗ π1(T

1
2 ) −→ π1(T

1
1 ) ∗ π1(T

1
2 ) has the following forms:

F (π1(T
1
1 ) ∗ π1(T

1
2 )) = F (π1(T

1
1 )) ∗ π1(T

1
2 ),

F (π1(T
1
1 ) ∗ π1(T

1
2 )) = π1(T

1
1 ) ∗ F (π1(T

1
2 )),

F (π1(T
1
1 ) ∗ π1(T

1
2 )) = F (π1(T

1
1 )) ∗ F (π1(T

1
2 )).

Theorem 6 If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 , i = 1, 2 are two types of foldings, where Fi(T
1
j ) =

Ti, j = 1, 2 . Then, there are induced foldings Fi :π1(T
1
1 )∗π1(T

1
2 ) −→ π1(T

1
1 )∗π1(T

1
2 ) such that

Fi(π1(T
1
1 ) ∗ π1(T

1
2 )) ≈ Z × Z.

Proof First, if F1 : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 is a folding such that F1(T
1
1 ) = T1, F1(T

1
2 ) = T1

as in Fig.6. Then we can express each element g = a1a2...am,m ≥ 1 of π1(T
1
1 ) ∗ π1(T

1
2 ) in the

following forms.

([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α1]
nm−1 , [β1]

km−1)([α2]
nm [β2]

km),

([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3) · · · ([α1]
nm−1 , [β1]

km−1)([α1]
nm [β1]

km),

where n1, n2, · · · , nm , k1, k2, · · · , km are nonzero integers,

([αi]
n1 , [βi]

k1) ∈ π1(T
1
1 ), ([αi]

n2 , [βi]
k2) ∈ π1(T

1
2 ).

Since F1([α1]
n1 , [β1]

k1) = ([α1]
n1 , [β1]

k1), F1([α2]
n1 , [β2]

k1) = ([α1]
n1 , [β1]

k1) , it follows that

there is an induced folding Fi :π1(T
1
1 ) ∗ π1(T

1
2 ) −→ π1(T

1
1 ) ∗ π1(T

1
2 ) such that F1(π1(T

1
1 ) ∗

π1(T
1
2 )) = π1(T

1
1 ) , and so F1(π1(T

1
1 ) ∗ π1(T

1
2 )) ≈ Z × Z. Similarly , if F2 : T 1

1 ∨ T 1
2 −→
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T 1
1 ∨ T 1

2 is folding, such that F2(T
1
1 ) = T1, F2(T

1
2 ) = T1 , then there is an induced folding

F2(π1(T
1
1 ) ∗ π1(T

1
2 )) = π1(T

1
1 ) such that F2(π1(T

1
1 ) ∗ π1(T

1
2 )) ≈ Z × Z. �-F

Fig.6

Theorem 7 If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 , i = 1, 2 are two types of foldings, where Fi(T
1
j ) =

Ti, j = 1, 2. Then π1( lim
n→∞

Fin
(T 1

1 ∨ T 1
2 )) ≈ Z × Z.

Proof If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 , i = 1, 2 are two types of foldings, where Fi(T
1
j ) =

Ti, j = 1, 2, then lim
n→∞

Fin
(T 1

1 ∨ T 1
2 ) = T 1

i as in Fig.7. Thus π1( lim
n→∞

Fin
(T 1

1 ∨ T 1
2 )) = π1(T

1
i )

,since π1(T
1
i ) ≈ Z × Z we have π1( lim

n→∞
Fin

(T 1
1 ∨ T 1

2 )) ≈ Z × Z. �-Fi1 -
-

Fi2

lim
n→∞

Fin

Fig.7

Corollary 2 If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 , i = 1, 2 are two types of foldings, where Fi(T
1
j ) =

Ti, j = 1, 2. Then π1( lim
n→∞

Fin
(T 1

1 ∨ T 1
2 )) is a free Abelian group of rank 2n.

Proof Since Fi(T
1
j ) = Ti, j = 1, 2 we have the following chain T 1

1 ∨ T 1
2

Fi1−→ T n
i

Fi2−→

T n
i ....

lim
n→∞

Fin

−→ T n
i Since π1(T

n
i ) = π1(Ti × Ti × ....× Ti)︸ ︷︷ ︸

n−terms

, , it follows that π1(T
n
i ) ≈ Z × Z × ....× Z︸ ︷︷ ︸

2n−terms

.

Hence ,π1( lim
n→∞

Fin
(T 1

1 ∨ T 1
2 )) is a free Abelian of rank 2n. �

Theorem 8 If F : T 1
1 ∨T 1

2 −→ T 1
1 ∨T 1

2 is a folding by cut such that F1(T
1
1 ) 6= T1, F1(T

1
2 ) 6= T1

.Then there is induced folding F :π1(T
1
1 ) ∗ π1(T

1
2 ) −→ π1(T

1
1 ) ∗ π1(T

1
2 ) such that F (π1(T

1
1 ) ∗

π1(T
1
2 )) ≈ Z ∗ Z.

Proof Let F : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 is a folding such that F1(T
1
1 ) 6= T1, F1(T

1
2 ) 6= T1as

in Fig.8. Then, we can express each element g = a1a2 · · ·am,m ≥ 1 of π1(T
1
1 ) ∗ π1(T

1
2 ) in the
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following forms

([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α1]
nm−1 , [β1]

km−1)([α2]
nm [β2]

km),

([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3) · · · ([α1]
nm−1 , [β1]

km−1)([α1]
nm [β1]

km),

where n1, n2, · · · , nm , k1, k2, · · · , km are nonzero integers and

([αi]
n1 , [βi]

k1) ∈ π1(T
1
1 ), ([αi]

n2 , [βi]
k2) ∈ π1(T

1
2 ).

Then, the induced folding of the element g is

F (g) = F ([α1]
n1 , [β1]

k1)F ([α2]
n2 , [β2]

k2)F ([α1]
n3 , [β1]

k3)

· · ·F ([α1]
nm−1 , [β1]

km−1)F ([α2]
nm [β2]

km)

= ([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α1]
nm−1 , [β1]

km−1)([α2]
nm [β2]

km),

F ([α1]
n1 , [β1]

k1)F ([α2]
n2 , [β2]

k2)F ([α1]
n3 , [β1]

k3)

· · ·F ([α2]
nm−1 , [β2]

km−1)F ([α1]
nm [β1]

km)

= ([α1]
n1 , [β1]

k1)([α2]
n2 , [β2]

k2)([α1]
n3 , [β1]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

F ([α2]
n1 , [β2]

k1)F ([α1]
n2 , [β1]

k2)F ([α2]
n3 , [β2]

k3)

· · ·F ([α2]
nm−1 , [β2]

km−1)F ([α1]
nm [β1]

km)

= ([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3) · · · ([α2]
nm−1 , [β2]

km−1)([α1]
nm [β1]

km),

F ([α2]
n1 , [β2]

k1)F ([α1]
n2 , [β1]

k2)F ([α2]
n3 , [β2]

k3)

· · ·F ([α1]
nm−1 , [β1]

km−1)F ([α1]
nm [β1]

km)

= ([α2]
n1 , [β2]

k1)([α1]
n2 , [β1]

k2)([α2]
n3 , [β2]

k3)....([α1]
nm−1 , [β1]

km−1)([α1]
nm [β1]

km).

It follows from [β̂1], [β̂2] → 0 ( identity element) that there is an induced folding such that

F :π1(T
1
1 ) ∗ π1(T

1
2 ) −→ π1(S

1
1) ∗ π1(S

1
2) . Therefore, F (π1(T

1
1 ) ∗ π1(T

1
2 )) ≈ Z ∗ Z. �-F

Fig.8

Corollary 3 If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 , i = 1, 2 are two types of foldings such that Fi(T
1
j ) =

T 1
i , Fj(T

1
i ) 6= T 1

i , i, j = 1, 2,i 6= j. Then there are induced foldings Fi :π1(T
1
1 ) ∗ π1(T

1
2 ) −→

π1(T
1
1 ) ∗ π1(T

1
2 ) . such that Fi(π1(T

1
1 ) ∗ π1(T

1
2 )) ≈ (Z × Z) ∗ Z.

Theorem 9 If F : T 1
1 ∨T 1

2 −→ T 1
1 ∨T 1

2 are a folding by cut such that F (T 1
i ) 6= T 1

i , for i = 1, 2

. Then π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )), is a free group of rank ≤ 2 or identity group.

Proof Consider ,F (T 1
i ) 6= T 1

i , for i = 1, 2 , then we have the following: lim
n→∞

Fn(T 1
1 ∨T

1
2 ) =

S1
1∨S

1
2 as in Fig.9(a) then ,π1( lim

n→∞
Fn(T 1

1 ∨T
1
2 )) ≈ π1(S

1
1)∨π1(S

1
2) , and so π1( lim

n→∞
Fn(T 1

1 ∨T
1
2 ))
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≈ Z ∗ Z. Hence, π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )) is a free group of rank 2.Also, If lim
n→∞

Fn(T 1
1 ∨ T 1

2 ) as

in Fig.9(b), then π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )) = 0. Moreover, if lim
n→∞

Fn(T 1
1 ∨ T 1

2 ) as in Fig.9(c), then

π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )) ≈ π1(S
1
1 ) ≈ Z .Therefore, π1( lim

n→∞
Fn(T 1

1 ∨ T 1
2 )) is a free group of rank

≤ 2 or identity group. �-F1 -F2

-lim
n→∞

Fn
(a)

or -
or

(b)

- (c)

lim
n→∞

Fn

lim
n→∞

Fn

Fig.9- -
- (a)

or - (b)

lim
n→∞

Fin

lim
n→∞

Fin

Fig.10

Theorem 10 If Fi : T 1
1 ∨ T 1

2 −→ T 1
1 ∨ T 1

2 ,i = 1, 2 are two types of foldings such that
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Fi(T
1
i ) = T 1

i , Fj(T
1
i ) 6= T 1

i , i, j = 1, 2,i 6= j. Then π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )) is either isomorphic

(Z × Z) ∗ Z to or (Z × Z).

Proof Since Fi(T
1
i ) = T 1

i , Fj(T
1
i ) 6= T 1

i , i, j = 1, 2,i 6= j, we have the following:

If lim
n→∞

Fin
(T 1

1 ∨T 1
2 ) = T 1

i ∨S1
i as in Fig.10(a), then π1( lim

n→∞
Fn(T 1

1 ∨T 1
2 )) = π1(T

1
i ∨S1

i ) ≈

(Z × Z) ∗ Z. Also, if π1( lim
n→∞

Fn(T 1
1 ∨ T 1

2 )) = π1(T
1
i ) as in Fig.10(b) then π1( lim

n→∞
Fn(T 1

1 ∨

T 1
2 )π1(T

1
i ) ≈ Z × Z . Hence, π1( lim

n→∞
Fn(T 1

1 ∨ T 1
2 )) is either isomorphic to (Z × Z) ∗ Z or

(Z × Z). �

Theorem 11 If F : T n
1 ∨ T n

2 −→ T n
1 ∨ T n

2 is a folding such that F (T n
1 ) = T n

1 and F (T n
2 ) 6=

T n
2 where F (T n

2 ) = F (T 1
2 ) × F (T 1

2 ) × ....× F (T 1
2 )︸ ︷︷ ︸

n−terms

,F (T 1
2 ) 6= T 1

2 is a folding by cut. Then,

π1( lim
n→∞

Fn(T n
1 ∨ T n

2 )) is isomorphic to (Z × Z × ....× Z︸ ︷︷ ︸)∗
2n−terms

Z × Z × ....× Z︸ ︷︷ ︸
n−terms

.

Proof Since F (T n
1 ) = T n

1 , F (T n
2 ) 6= T n

2 we have the following chain:

T n
1 ∨ T n

2 F−→ T n
1 ∨ F (S1

1) × S1
2 × F (S1

1) × S1
2 × · · · × F (S1

1) × S1
2︸ ︷︷ ︸

2n−terms

F−→,

T n
1 ∨ T n

2 F−→ T n
1 ∨ F (S1

1) × S1
2 × F (S1

1) × S1
2 × · · · × F (S1

1) × S1
2︸ ︷︷ ︸

2n−terms

F−→,

T n
1 ∨ F (F (S1

1)) × S1
2 × F (F (S1

1 )) × S1
2 × · · · × F (F (S1

1 )) × S1
2︸ ︷︷ ︸

2n−terms

lim
n→∞

Fn

−−−−−→
,

T n
1 ∨ (S1

2 × S1
2 × · · · × S1

2)︸ ︷︷ ︸
n−terms

.

Hence, π1( lim
n→∞

Fn(T n
1 ∨ T n

2 )) is isomorphic to (Z × Z × · · · × Z︸ ︷︷ ︸)∗
2n−terms

Z × Z × · · · × Z︸ ︷︷ ︸
n−terms

. �

Theorem 12 Let F : M → M is a folding by cut or with singularity , and M is a manifold

homeomorphic to S1 or T 1. Then, there are unfoldings unf : F (M) ⊂ M → M such that

π1( lim
n→∞

unfn(F (M)) is isomorphic to Z or Z × Z.

Proof We have two cases following.

Case 1. Let M be a manifold homeomorphic to S1 , if F : S1 → S1 is a folding by cut.- - -F (S1) unf1 unf2 -lim
n→∞

Fin

Fig.11

Then, we can define a sequence of unfoldings
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unf1 :F (S1) →M1, F (S1) 6= S1,M1 ⊆ S1, unf2 : M1 →M2,..., unfn : M1 → M2,

lim
n→∞

unfn(F (M)) = S1 as in Fig.11. Thus π1( lim
n→∞

unfn(F (M)) ≈ Z.

Case 2. Let M be a manifold homeomorphic to T 1 , if F : T 1 → T 1 is a folding such that

F (S1
1) = S1

1 and F (S1
2) 6= S1

2 . So we can define a sequence of unfoldings following.

unf1 :F (T 1) →M1, unf2 : M1 →M2,· · · , unfn : M1 →M2,

lim
n→∞

unfn(F (M)) = T 1 as in Fig.12. Thus π1( lim
n→∞

unfn(F (M)) ≈ Z × Z.- - -F (T 1) unF1 unF2 -lim
n→∞

Fin

Fig.12

Therefore, π1( lim
n→∞

unfn(F (M)) is isomorphic to Z or Z × Z. �

Corollary 4 Let F : M → M be a folding by cut or with singularity, M is a manifold

homeomorphic to Snor T n, n ≥ 2 . Then there are unfoldings unf : F (M) ⊂ M → M such

that π1( lim
n→∞

unfn(F (M)) is the identity group or a free Abelian group of rank 2n.
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Abstract: Absolutely harmonious labeling f is an injection from the vertex set of a graph

G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is assigned f(u) + f(v) then the

resulting edge labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q − i or q + i, 0 ≤

i ≤ q − 1 . However, when G is a tree one of the vertex labels may be assigned to exactly

two vertices. A graph which admits absolutely harmonious labeling is called absolutely

harmonious graph. In this paper, we obtain necessary conditions for a graph to be absolutely

harmonious and study absolutely harmonious behavior of certain classes of graphs.

Key Words: Graph labeling, Smarandachely k-labeling, harmonious labeling, absolutely

harmonious labeling.

AMS(2010): O5C78

§1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a

label for each edge xy depending on the vertex labels. For an integer k ≥ 1, a Smarandachely

k-labeling of a graph G is a bijective mapping f : V → {1, 2, · · · , k|V (G)| + |E(G)|} with

an additional condition that |f(u) − f(v)| ≥ k for ∀uv ∈ E. particularly, if k = 1, i.e., such

a Smarandachely 1-labeling is the usually labeling of graph. Among them, labelings such as

those of graceful labeling, harmonious labeling and mean labeling are some of the interesting

vertex labelings found in the dynamic survey of graph labeling by Gallian [2]. Harmonious

labeling is one of the fundamental labelings introduced by Graham and Sloane [3] in 1980 in

connection with their study on error correcting code. Harmonious labeling f is an injection

from the vertex set of a graph G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is

assigned f(u) + f(v)(mod q) then the resulting edge labels are distinct. However, when G is

a tree one of the vertex labels may be assigned to exactly two vertices. Subsequently a few

variations of harmonious labeling, namely, strongly c-harmonious labeling [1], sequential labeling

[5], elegant labeling [1] and felicitous labeling [4] were introduced. The later three labelings

were introduced to avoid such exceptions for the trees given in harmonious labeling. A strongly

1Received November 08, 2010. Accepted May 22, 2011.
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1-harmonious graph is also known as strongly harmonious graph.

It is interesting to note that if a graph G with q edges is harmonious then the resulting

edge labels can be arranged as a0, a1, a2, · · · , aq−1 where ai = i or q + i, 0 ≤ i ≤ q − 1 . That

is for each i, 0 ≤ i ≤ q − 1 there is a distinct edge with label either i or q + i. An another

interesting and natural variation of edge label could be q− i or q+ i. This prompts to define a

new variation of harmonious labeling called absolutely harmonious labeling.

Definition 1.1 An absolutely harmonious labeling f is an injection from the vertex set of a

graph G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is assigned f(u)+f(v) then the

resulting edge labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q−i or q+i, 0 ≤ i ≤ q−1 .

However, when G is a tree one of the vertex labels may be assigned to exactly two vertices. A

graph which admits absolutely harmonious labeling is called absolutely harmonious graph.

The result of Graham and Sloane [3] states that Cn, n ∼= 1(mod 4) is harmonious, but we

show that Cn, n ∼= 1(mod 4) is not an absolutely harmonious graph. On the other hand, we

show that C4 is an absolutely harmonious graph, but it is not harmonious. We observe that a

strongly harmonious graph is an absolutely harmonious graph.

To initiate the investigation on absolutely harmonious graphs, we obtain necessary condi-

tions for a graph to be an absolutely harmonious graph and prove the following results:

1. Path Pn, n ≥ 3, a class of banana trees, and Pn ⊙Kc
m are absolutely harmonious graphs.

2. Ladders, Cn ⊙ Kc
m, Triangular snakes, Quadrilateral snakes, and mK4 are absolutely

harmonious graphs.

3. Complete graph Kn is absolutely harmonious if and only if n = 3 or 4.

4. Cycle Cn, n ∼= 1 or 2 (mod 4), Cm × Cn where m and n are odd, mK3,m ≥ 2 are not

absolutely harmonious graphs.

§2. Necessary Conditions

Theorem 2.1 If G is an absolutely harmonious graph, then there exists a partition (V1, V2) of

the vertex set V (G), such that the number of edges connecting the vertices of V1 to the vertices

of V2 is exactly
⌈ q
2

⌉
.

Proof If G is an absolutely harmonious graph,then the vertices can be partitioned into

two sets V1 and V2 having respectively even and odd vertex labels. Observe that among the q

edges
q

2
edges or

⌈q
2

⌉
edges are labeled with odd numbers, according as q is even or q is odd.

For an edge to have odd label, one end vertex must be odd labeled and the other end vertex

must be even labeled. Thus, the number of edges connecting the vertices of V1 to the vertices

of V2 is exactly
⌈ q
2

⌉
. �

Remark 2.2 A simple and straight forward application of Theorem 2.1 identifies the non

absolutely harmonious graphs. For example, complete graph Kn has n(n−1)
2 edges. If we assign
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m vertices to the part V1, there will be m(n −m) edges connecting the vertices of V1 to the

vertices of V2. If Kn has an absolutely harmonious labeling, then there is a choice of m for

which m(n−m) =

⌈
n2 − n

4

⌉
. Such a choice of m does not exist for n = 5, 7, 8.10, ....

A graph is called even graph if degree of each vertex is even.

Theorem 2.3 If an even graph G is absolutely harmonious then q ∼= 0 or 3 (mod 4).

Proof Let G be an even graph with q ∼= 1 or 2 (mod 4) and d(v) denotes the degree of the

vertex v in G. Suppose f be an absolutely harmonious labeling of G. Then the resulting edge

labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q − i or q + i, 0 ≤ i ≤ q − 1 . In other

words, for each i, the edge label ai is (q − i) + 2ibi, 0 ≤ i ≤ q − 1 where bi ∈ {0, 1}. Evidently

∑

v∈V (G)

d(v)f(v) − 2

q−1∑

k=0

kbk =



q + 1

2



 .

As d(v) is even for each v and q ∼= 1 or 2 (mod 4),

∑

v∈V (G)

d(v)f(v) − 2

q−1∑

k=0

kbk ∼= 0 (mod 2)

but


q + 1

2


 ∼= 1 (mod 2). This contradiction proves the theorem. �

Corollary 2.4 A cycle Cn is not an absolutely harmonious graph if n ∼= 1 or 2 (mod 4).

Corollary 2.5 A grid Cm × Cn is not an absolutely harmonious graph if m and n are odd.

Theorem 2.6 If f is an absolutely harmonious labeling of the cycle Cn , then edges of Cn can

be partitioned into two sub sets E1, E2 such that

∑

uv∈E1

|f(u) + f(v) − n| =
n(n+ 1)

4
and

∑

uv∈E2

|f(u) + f(v) − n| =
n(n− 3)

4
.

Proof Let v1v2v3...vnv1 be the cycle Cn, where ei = vi−1vi, 2 ≤ i ≤ n and e1 = vnv1 .

Define E1 = {uv ∈ E/ f(u) + f(v) − n is non negative} and E2 = {uv ∈ E/ f(u) + f(v) −

n is negative}. Since f is an absolutely harmonious labeling of the cycle Cn,

∑

uv∈E

|f(u) + f(v) − n| =
n(n− 1)

2
.

In other words,

∑

uv∈E1

|f(u) + f(v) − n| +
∑

uv∈E2

|f(u) + f(v) − n| =
n(n− 1)

2
. (1)

Since
∑

uv∈E(f(u) + f(v) − n) = −n, we have
∑

uv∈E1

|f(u) + f(v) − n| −
∑

uv∈E2

|f(u) + f(v) − n| = −n. (2)
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Solving equations (1) and (2), we get the desired result. �

Remark 2.7 If n ∼= 1 or 2 (mod 4) then both
n(n+ 1)

4
and

n(n− 3)

4
cannot be integers. Thus

the cycle Cn is not an absolutely harmonious graph if n ∼= 1 or 2 (mod 4).

Remark 2.8 Observe that the conditions stated in Theorem 2.1, Theorem 2.3, and Theorem

2.6 are necessary but not sufficient. Note that C8 satisfies all the conditions stated in Theorems

2.1, 2.3, and 2.6 but it is not an absolutely harmonious graph. For, checking each of the
8!

2
possibilities reveals the desired result about C8.

§3. Absolutely Harmonious Graphs

Theorem 3.1 The path Pn+1,where n ≥ 2 is an absolutely harmonious graph.

Proof Let Pn+1 : v1v2...vn+1 be a path, r =
⌈n

2

⌉
, s =






⌈
r
2

⌉
+ 1 if n ∼= 0 (mod 4)

⌈
r
2

⌉
otherwise

,

t =





s− 1 if n ∼= 0 or 1 (mod 4)

s if n ∼= 2 or 3 (mod 4)
, T1 = n, T2 =





2t+ 2 if n ∼= 0 or 1 (mod 4)

2t+ 1 if n ∼= 2 or 3 (mod 4)
and T3 =





−1 if n ∼= 0 or 1 (mod 4)

−2 if n ∼= 2 or 3 (mod 4)
.

Then r + s+ t = n+ 1. Define f : V (Pn+1) → {0, 1, 2, 3, · · · , n− 1} by:

f(vi) = T1 − i if 1 ≤ i ≤ r, f(vr+i) = T2 − 2i if 1 ≤ i ≤ s and f(vr+s+i) = T3 + 2i if

1 ≤ i ≤ t.

Evidently f is an absolutely harmonious labeling of Pn+1. For example, an absolutely

harmonious labeling of P12 is shown in Fig.3.1. �

10

9

8

7

6

5

5

3

1

0 4

2

a8
a6

a4
a2

a0

a1

a3

a7

a10

a9

a5

Fig.3.1

The tree obtained by joining a new vertex v to one pendant vertex of each of the k disjoint

stars K1,n1 ,K1,n2 ,K1,n3 , ...,K1,nk
is called a banana tree. The class of all such trees is denoted

by BT (n1, n2, n3, ..., nk).

Theorem 3.2 The banana tree BT (n, n, n, ..., n) is absolutely harmonious.
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1

4 9 14 19

0 5 10 15

1 2 3 6 7 8 11 12 13 16 17 18

a15 a10 a5 a0

a16 a6 a4 a14

a19
a18

a17 a9
a8

a7 a1
a2

a3 a11
a12
a13

Fig.3.2

Proof Let V (BT (n, n, n, · · · , n) = {v}∪{vj , vjr : 1 ≤ j ≤ k and 1 ≤ r ≤ n} where d(vj) =

n andE(BT (n, n, n, ..., n) = {vvjn : 1 ≤ j ≤ k}∪{vjvjr : 1 ≤ j ≤ k, 1 ≤ r ≤ n}. ClearlyBT (n, n,

· · · , n) has order (n+ 1)k + 1 and size (n+ 1)k. Define

f : V (BT (n, n, · · · , n) → {1, 2, 3, ..., (n+ 1)k − 1}

as follows:

f(v) = 1, f(vj) = (n+ 1)(j − 1) : 1 ≤ j ≤ k, f(vjr) = (n+ 1)(j − 1) + r : 1 ≤ r ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of BT (n, n, n, ..., n). For

example an absolutely harmonious labeling of BT (4, 4, 4, 4)is shown in Fig.3.2. �

The corona G1⊙G2 of two graphsG1(p1, q1) and G2(p2, q2) is defined as the graph obtained

by taking one copy of G1 and p1 copies of G2 and then joining the ith vertex of G1 to all the

vertices in the ith copy of G2.

Theorem 3.3 The corona Pn ⊙KC
m is absolutely harmonious.

Proof Let V (Pn⊙KC
m) = {ui : 1 ≤ i ≤ n}∪{uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Pn⊙KC

m) =

{uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uiuij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We observe that Pn ⊙KC
m has order

(m+ 1)n and size (m+ 1)n− 1. Define f : V (Pn ⊙KC
m) −→ {0, 1, 2, ...,mn+ n− 2} as follows:

f(ui) =





0 if i = 1,

(m+ 1)(i− 1) if i =
⌈

n
2

⌉

(m+ 1)(i− 1) − 1 otherwise,

f(uim) =





(m+ 1)i if 1 ≤ i ≤
⌈

n
2

⌉
− 2,

(m+ 1)i− 1 if i =
⌈

n
2

⌉
− 1,

(m+ 1)i− 2
⌈

n
2

⌉
≤ i ≤ n,

and for 1 ≤ j ≤ m− 1,

f(uij) =





(m+ 1)(i− 1) + j if 1 ≤ i ≤

⌈
n
2

⌉
− 1,

(m+ 1)(i− 1) + j − 1 if
⌈

n
2

⌉
≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of Pn ⊙KC
m. For example

an absolutely harmonious labeling of P5 ⊙KC
3 is shown in Fig. 3.3. �
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0 3 8 11 15

1 2 4 5 6 7 8 9 10 12 13 14 16 17 18

a16 a8 a0 a7

a18 a15a17
a11

a10 a9
a3 a2 a1 a4 a5 a6

a12 a13
a14

Fig.3.3

Theorem 3.4 The corona Cn ⊙KC
m is absolutely harmonious.

Proof Let V (Cn⊙KC
m) = {ui : 1 ≤ i ≤ n}∪{uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Cn⊙KC

m) =

{uiui+1 : 1 ≤ i ≤ n− 1} ∪ {unu1} ∪ {uiuij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We observe that Cn ⊙KC
m

has order (m+ 1)n and size (m+ 1)n. Define f : V (Cn ⊙KC
m) −→ {0, 1, 2, ...,mn+ n− 1} as

follows:

f(ui) =





0 if i = 1,

(m+ 1)(i− 1) − 1 if 2 ≤ i ≤ n−1
2 ,

(m+ 1)(i− 1) otherwise,

, f(uim) =





(m+ 1)i if 1 ≤ i ≤ n−3
2 ,

(m+ 1)i− 1 otherwise

and for 1 ≤ j ≤ m− 1

f(uij) =





(m+ 1)(i− 1) + j if 1 ≤ i ≤
⌈

n
2

⌉
− 1,

(m+ 1)(i− 1) + j − 1 if
⌈

n
2

⌉
≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of Cn ⊙KC
m. For example

an absolutely harmonious labeling of C5 ⊙KC
3 is shown in Figure 3.4. �
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Fig.3.4

Theorem 3.5 The ladder Pn × P2, where n ≥ 2 is an absolutely harmonious graph.

Proof Let V (Pn×P2) = {u1, u2, u3, ..., un}∪{v1, v2, v3, ..., vn} and E(Pn×P2) = {uiui+1 :

1 ≤ i ≤ n− 1} ∪ {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n}. We note that Pn × P2 has order
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2n and size 3n− 2.

Case 1. n ≡ 0(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd,

3i− 2 if i is even and 2 ≤ i ≤ n−4
2 ,

3i− 1 if i is even and i = n
2 ,

3i− 3 if i is even and n+4
2 ≤ i ≤ n,

f(v1) = 0, f(vn+2
2

) =
3n− 6

2
, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1 and i 6=

n

2
.

Case 2. n ≡ 1(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =





3i− 2 if i is odd and 1 ≤ i ≤ n−3
2 ,

3i− 1 if i = n+1
2 ,

3i− 3 if i is odd and n+5
2 ≤ i ≤ n,

3i− 2 if i is even,

f(v1) = 0, f(vn+3
2

) = 3n−3
2 , f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1 and i 6= n+1

2 .

Case 3. n ≡ 2(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd,

3i− 2 if i is even and 2 ≤ i ≤ n−2
2 ,

3i− 3 if i is even and n+2
2 ≤ i ≤ n,

f(v1) = 0, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1.

Case 4. n ≡ 3(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd and 1 ≤ i ≤ n−1
2 ,

3i− 3 if i is odd and n+3
2 ≤ i ≤ n,

3i− 2 if i is even.

f(v1) = 0, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1.
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In all four cases, it can be easily verified that f is an absolutely harmonious labeling of Pn×P2.

For example, an absolutely harmonious labeling of P9 × P2 is shown in Fig.3.5. �

1 4 7 10 14 16 18 22 24

0 2 5 8 11 12 17 19 23

a24 a19 a13 a7 a0 a3 a10 a16 a22

a20 a14 a8 a1 a5 a9 a15 a21

a23 a18 a12 a6 a2 a4 a11 a17

Fig.3.5

A Kn-snake has been defined as a connected graph in which all blocks are isomorphic to

Kn and the block-cut point graph is a path. A K3-snake is called triangular snake.

Theorem 3.6 A triangular snake with n blocks is absolutely harmonious if and only if n ∼=

0 or 1 (mod 4).

Proof The necessity follows from Theorem 2.3.Let Gn be a triangular snake with n blocks

on p vertices and q edges. Then p = 2n− 1 and q = 3n. Let V (Gn) = {ui : 1 ≤ i ≤ n+ 1 } ∪

{vi : 1 ≤ i ≤ n} and E(Gn) = {uiui+1, uivi, ui+1vi : 1 ≤ i ≤ n}.

Case 1. n ≡ 0 (mod 4).

Let m =
n

4
. Define f : V (Gn) −→ {0, 1, 2, ..., 3n− 1} as follows:

f(ui) =





0 if i = 1,

2i− 2 if 2 ≤ i ≤ 3m and i ≡ 0 or 2 (mod 3),

2i− 1 if 2 ≤ i ≤ 3m and i ≡ 1 (mod 3),

6i− 3n− 7 otherwise,

f(vi) =





1 if i = 1,

2i− 1 if 2 ≤ i ≤ 3m− 1 and i ≡ or 2 (mod 3),

2i− 2 if 2 ≤ i ≤ 3m− 1 and i ≡ 1 (mod 3),

6m+ 1 if i = 3m,

6i− 3n− 3 otherwise.

Case 2. n ≡ 1 (mod 4).

Let m =
n− 1

4
. Define f : V (Gn) −→ {0, 1, 2, ..., 3n− 1} as follows:
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f(ui) =






0 if i = 1,

2i− 2 if 2 ≤ i ≤ 3m+ 2 and i ≡ 0 or 2 (mod 3),

2i− 1 if 2 ≤ i ≤ 3m+ 2 and i ≡ 1 (mod 3),

6i− 3n− 7 otherwise,

f(vi) =





1 if i = 1,

2i− 1 if 2 ≤ i ≤ 3m+ 1 and i ≡ 0 or 2 (mod 3)

2i− 2 if 2 ≤ i ≤ 3m+ 1 and i ≡ 1 (mod 3)

6i− 3n− 3 otherwise.

In both cases, it can be easily verified that f is an absolutely harmonious labeling of the

triangular snake Gn. For example, an absolutely harmonious labeling of a triangular snake

with five blocks is shown in Fig.3.6. �

1 3 5 6 12

0 2 4 7 8 14

a14

a12

a10

a8

a6

a3

a2

a1

a5

a11

a13 a9 a4 a0 a7

Fig.3.6

Theorem 3.7 K4-snakes are absolutely harmonious.

Proof Let Gn be a K4-snake with n blocks on p vertices and q edges. Then p = 3n+1 and

q = 6n. Let V (Gn) = {ui, vi, wi : 1 ≤ i ≤ n}∪{vn+1} andE(Gn) = {uivi, uiwi, viwi : 1 ≤ i ≤ n}∪

{uivi+1, vivi+1, wivi+1 : 1 ≤ i ≤ n} Define f : V (Gn) −→ {0, 1, 2, ..., 6n− 1} as follows:

f(ui) = 3i− 3, f(vi) = 3i− 2, f(wi) = 3i− 1

where 1 ≤ i ≤ n, and f(vn+1) = 3n + 1. It can be easily verified that f is an absolutely

harmonious labeling of Gn and hence K4-snakes are absolutely harmonious. For example, an

absolutely harmonious labeling of a K4-snake with five blocks is shown in Fig.3.7. �
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Fig.3.7

A quadrilateral snake is obtained from a path u1u2...un+1 by joining ui, ui+1 to new vertices

vi, wi respectively and joining vi and wi.

Theorem 3.8 All quadrilateral snakes are absolutely harmonious.

Proof LetGn be a quadrilateral snake with V (Gn) = {ui : 1 ≤ i ≤ n+ 1 }∪{vi, wi : 1 ≤ i ≤ n}

and E(Gn) = {uiui+1, uivi, ui+1wi, viwi : 1 ≤ i ≤ n}. Then p = 3n + 1 and q = 4n. Let

m =






n
2 if n ≡ 0 (mod 2)

n−1
2 if n ≡ 1 (mod 2)

.

Define f : V (Gn) −→ {0, 1, 2, ...4n− 1} as follows:

f(ui) =






0 if i = 1,

4i− 6 if 2 ≤ i ≤ m+ 1,

4i− 7 if m+ 2 ≤ i ≤ n+ 1

, f(vi) =





4i− 3 if 1 ≤ i ≤ m,

4i− 2 if m+ 1 ≤ i ≤ n,

f(wi) =





4i if 1 ≤ i ≤ m,

4i− 1 if m+ 1 ≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of the quadrilateral snake

Gn and hence quadrilateral snakes are absolutely harmonious. For example, an absolutely

harmonious labeling of a quadrilateral snake with six blocks is shown in Fig.3.8. �

1 4 9 12 18 19
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5 8 14 15 22 23
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a7

a13

a12

a6

a15

a14

a20

a21

Fig.3.8
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Theorem 3.9 The disjoint union of m copies of the complete graph on four vertices, mK4 is

absolutely harmonious.

Proof Let uj
i where 1 ≤ i ≤ 4 and 1 ≤ j ≤ m denotes the ith vertex of the jth copy of mK4.

We note that that mK4 has order 4m and size 6m. Define f : V (mK4) −→ {0, 1, 2, ...6m− 1}

as follows:f(u1
1) = 0, f(u1

2) = 1, f(u1
3) = 2, f(u1

4) = 4, f(u2
1) = q − 3, f(u2

2) = q − 4, f(u2
3) =

q − 5, f(u2
4) = q − 7, f(uj+2

i ) = f(uj
i ) + 6 if j is odd, and f(uj+2

i ) = f(uj
i ) − 6 if j is even,

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ m − 2. Clearly f is an absolutely harmonious labeling. For

example, an absolutely harmonious labeling of 5K4 is shown in Figure 11. Box

Observation 3.10 If f is an absolutely harmonious labeling of a graph G,which is not a tree,

then

1. Each x in the set {0, 1, 2} has inverse image.

2. Inverse images of 0 and 1 are adjacent in G.

3. Inverse images of 0 and 2 are adjacent in G.

Theorem 3.11 The disjoint union of m copies of the complete graph on three vertices, mK3

is absolutely harmonious if and only if m = 1.

Proof Let uj
i ,where1 ≤ i ≤ 3 and 1 ≤ j ≤ m denote the ith vertex of the jth copy

of mK3. Assignments of the values 0, 1, 2 to the vertices of K3 gives the desired absolutely

harmonious labeling of K3. For m ≥ 2, mK3 has 3m vertices and 3m edges. If mK3 is

an absolutely harmonious graph, we can assign the numbers {0, 1, 2, 3m− 1} to the vertices

of mK3 in such a way that its edges receive each of the numbers a0,a1,...,aq−1 where ai =

q− i or q+ i, 0 ≤ i ≤ q−1. By Observation 3.10, we can assume, without loss of generality that

f(u1
1) = 0, f(u1

2) = 1, f(u1
3) = 2. Thus we get the edge labels aq−1, aq−2 and aq−3. In order to

have an edge labeled aq−4, we must have two adjacent vertices labeled q − 1 and q − 3. we can

assume without loss of generality that f(u2
1) = q − 1 and f(u2

2) = q − 3. In order to have an

edge labeled aq−5, we must have f(u3
2) = q− 4. There is now no way to obtain an edge labeled

aq−6. This contradiction proves the theorem. �

Theorem 3.12 A complete graph Kn is absolutely harmonious graph if and only if n = 3 or 4.

Proof From the definition of absolutely harmonious labeling, it can be easily verified that

K1 and K2 are not absolutely harmonious graphs. Assignments of the values 0, 1, 2 and 0, 1, 2, 4

respectively to the vertices of K3 and K4 give the desired absolutely harmonious labeling of

them. For n > 4, the graph Kn has q ≥ 10 edges. If Kn is an absolutely harmonious graph, we

can assign a subset of the numbers {0, 1, 2, q − 1} to the vertices of Kn in such a way that the

edges receive each of the numbers a0,a1,...,aq−1 where ai = q − i or q + i, 0 ≤ i ≤ q − 1. By

Observation 3.10, 0, 1, and 2 must be vertex labels. With vertices labeled 0, 1, and 2, we have

edges labeled aq−1, aq−2 and aq−3. To have an edge labeled aq−4 we must adjoin the vertex

label 4. Had we adjoined the vertex label 3 to induce aq−4, we would have two edges labeled

aq−3, namely, between 0 and 3, and between 1 and 2. Had we adjoined the vertex labels q − 1
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and q − 3 to induce aq−4, we would have three edges labeled a1, namely, between q − 1 and

0, between q − 1 and 2, and between q − 3 and 2. With vertices labeled 0, 1, 2,and 4, we have

edges labeled aq−1, aq−2, aq−3, aq−4, aq−5, and aq−6. Note that for K4 with q = 6, this gives

the absolutely harmonious labeling. To have an edge labeled aq−7, we must adjoin the vertex

label 7; all the other choices are ruled out. With vertices labeled 0, 1, 2, 4 and 7, we have edges

labeled aq−1, aq−2, aq−3, aq−4, aq−5, aq−6, aq−7, aq−8, aq−9, and aq−11. There is now no way

to obtain an edge labeled aq−10, because each of the ways to induce aq−10 using two numbers

contains at least one number that can not be assigned as vertex label. We may easily verify

that the following boxed numbers are not possible choices as vertex labels:

0 10

1 9

2 8

3 7

4 6

q − 1 q − 9

q − 2 q − 8

q − 3 q − 7

q − 4 q − 6

This contradiction proves the theorem. �
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Abstract: In this paper, we study the crossing number of the complete bipartite graph

K4,n in torus and obtain

crT (K4,n) = ⌊
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§1. Introduction

A complete bipartite graph Km,n is a graph with vertex set V1∪V2, where V1∩V2 = ∅, |V1| = m

and |V2| = n; and with edge set of all pairs of vertices with one element in V1 and the other in

V2. The vertices in V1 will be denoted by bi, bj , bk, · · · and the vertices in V2 will be denoted by

ai, aj, ak, · · · .

A drawing is a mapping of a graph G into a surface. A Smarandache P-drawing of a

graph G for a graphical property P is such a good drawing of G on the plane with minimal

intersections for its each subgraph H ∈ P. A Smarandache P-drawing is said to be optimal if

P = G and it minimizes the number of crossings. Particularly, a drawing is good if it satisfies:

(1) no two arcs which are incident with a common node have a common point; (2) no arc has a

self-intersection; (3) no two arcs have more than one point in common; (4) no three arcs have

a point in common. A common point of two arcs is called as a crossing. An optimal drawing

in a given surface is a good drawing which has the smallest possible number of crossings. This

number is the crossing number of the graph in the surface. We denote the crossing number

of G in T, the torus, by crT (G), a drawing of G in T by D. In this paper, we often speak of

the nodes as vertices and the arcs as edges. For more graph terminologies and notations not

mentioned here, you can refer to [1,3].

Garey and Johnson [2] stated that determining the crossing number of an arbitrary graph

1Supported by National Natural Science Foundation of China (No.10771062) and New Century Excellent

Talents in University (No. NCET-07-0276).
2Received January 8, 2011. Accepted May 25, 2011.
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is NP-complete. In 1969, Guy and Jenkyns [4] proved that the crossing number of the complete

bipartite graph K3,n in torus is ⌊ (n−3)2

12 ⌋, and obtained the bounds on the crossing number of

the complete bipartite graph Km,n in torus. In 1971, Kleitman [6] proved that the crossing

number of the complete bipartite graph K5,n in plane is 4⌊n
2 ⌋⌊

n−1
2 ⌋ and the crossing number of

the complete bipartite graph K6,n in plane is 6⌊n
2 ⌋⌊

n−1
2 ⌋. Later, Richter and S̆irán̆ [7] obtained

the crossing number of the complete bipartite graph K3,n in an arbitrary surface. Recently,

Ho [5] proved that the crossing number of the complete bipartite graph K4,n in real projective

plane is ⌊n
3 ⌋(2n − 3(1 + ⌊n

3 ⌋)). In this paper, we obtain the crossing number of the complete

bipartite graph K4,n in torus following.

Theorem 1 The crossing number of the complete bipartite graph K4,n in torus is

crT (K4,n) = ⌊
n

4
⌋(2n− 4(1 + ⌊

n

4
⌋)).

For convenience, let f(n) = ⌊
n

4
⌋(2n− 4(1 + ⌊

n

4
⌋)).

§2. Some Lemmas

In a drawing D of the complete bipartite Km,n in T , we denote by crD(ai, aj) the number of

crossings on edges one of which is incident with a vertex ai and the other incident with aj , and

by crD(ai) the number of crossings on edges incident with ai. Obviously,

crD(ai) =

n∑

k=1

crD(ai, ak).

In every good drawing D, the crossing number in D, crT (D), is

crT (D) =

n∑

i=1

n∑

k=i+1

crD(ai, ak).

As crD(ai, ai) = 0 for all i, hence

crT (D) =
1

2

n∑

i=1

n∑

k=1

crD(ai, ak) =
1

2

n∑

i=1

crD(ai). (1)

Fig.1. An optimal drawing of K4,4 in T
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Note that, in a crossing-free drawing of a connected subgraph of the complete bipartite

graph Km,n, every circuit has an even number of vertices, and in particular, every region into

which the edges divide the surface is bounded by an even circuit. So, if F is the number of

regions, E the number of edges and V the number of vertices, by the Eular’s formula for T ,

V − E + F ≥ 0

F ≥ E − V, (2)

4F ≤ 2E. (3)

Suppose we have an optimal drawing of the complete bipartite graph Km,n in T , i.e., one with

exactly crT (Km,n) crossings. Then by deleting crT (Km,n) edges, a crossing-free drawing will

be obtained. From equations (2) and (3),

E − V = (mn− crT (Km,n)) − (m+ n) ≤ F ≤
1

2
E =

1

2
((mn− crT (Km,n)),

this implies

crT (Km,n) ≥ mn− 2(m+ n). (4)

In particular,

crT (K4,n) ≥ 2n− 8. (5)

In Fig.1, it is a crossing-free drawing of the complete bipartite graph K4,4 in T , hence

crT (K4,4) = 0. (6)

In paper [4], the following two lemmas can be find.

Lemma 1 Let m,n, h be positive integers such that the complete bipartite graph Km,h embeds

in T , then

crT (Km,n) ≤
1

2
⌊
n

h
⌋[2n− h(1 + ⌊

n

h
⌋)]⌊

m

2
⌋⌊
m− 1

2
⌋.

Lemma 2 If D is a good drawing of the complete bipartite graph Km,n in a surface Σ such

that, for some k < n, some Km,k is optimally drawn in Σ, then

crΣ(D) ≥ crΣ(Km,k) + (n− k)(crΣ(Km,k+1) − crΣ(Km,k)) + crΣ(Km,n−k).
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Lemma 3 For n ≥ 4, crT (K4,n) ≤ f(n); especially, when 4 ≤ n ≤ 8, crT (K4,n) = f(n).

Proof As crT (K4,4) = 0, by applying Lemma 1 with m = h = 4, then crT (K4,n) ≤

f(n), n ≥ 4. Especially, as f(n) = 2n − 8 for 4 ≤ n ≤ 8, combining with equation (5), then

crT (K4,n) = f(n) for 4 ≤ n ≤ 8. �

Lemma 4 There is no good drawing D of K4,5 in T such that

(1) crD(a1, a2) = crD(a1, ai) = crD(a2, ai) = 0 for 3 ≤ i ≤ 5;

(2) crD(a3, a4) = crD(a3, a5) = crD(a4, a5) = 1.

Proof Note that T can be viewed as a rectangle with its opposite sides identified. As D is

a good drawing, by deformation of the edges without changing the crossings and renaming the

vertices if necessary, we can assume that the edges incident with a1 are drawn as in Fig.2. Since

crD(a1, a2) = 0, by deformation of edges without changing the crossings, we also assume that

the edge a2b1 is drawn as in Fig.3. If the other three edges incident with a2 are drawn without

passing the sides of the rectangle (see Fig.3), then no matter which region a3 is located, we

have crD(a1, a3) ≥ 1 or crD(a2, a3) ≥ 1.
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So, there is at least one edge incident with a2 which passes the sides of the rectangle. By

deformation without changing the crossings and renaming the vertices if necessary, we assume

that edge a2b2 passes the top and bottom sides of the rectangle only one time and is drawn as in

Fig.4. Then we cut T along the circuit a1b1a2b2a1 and obtain a surface which is homeomorphic

to a ring in plane, denote by P, see Fig.5. Now, we put the vertices b3, b4 in P and use two

rectangles to represent the outer and inner boundary which are both the circuit a1b1a2b2a1.

As the vertices b3 and b4 are connected to a1 and a2 either in the outer or in the inner

rectangle, which together presents 16 possibilities. In some cases, the four edges can either

separate the two rectangles or not, implying up to 32 cases. Using symmetry, several cases are

eliminated: without loss of generality, the vertex b3 is connected to a2 in the outer rectangle.

First, assume that b3 is also connected to a1 in the outer rectangle. If b4 is connected to

both a1 and a2 in the outer rectangle, we obtain Fig.6(1) if the four edges separate the two

rectangles, and Fig.6(2) if they do not. If b4 is connected to a1 in the inner rectangle and a2 in

the outer rectangle, we obtain Fig.6(3). If it is connected to a1 in the outer rectangle and a2

in the inner rectangle, then by relabeling a1 and a2, we obtain Fig.6(3). If b4 is connected to

both a1 and a2 in the inner rectangle, we obtain Fig.6(4).
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Second, assume that b3 is connected to a1 in the inner rectangle. If b4 is connected to both

a1 and a2 in the outer rectangle, then by relabeling of b3 and b4, we obtain Fig.6(3). If b4 is

connected to a1 in the inner rectangle and a2 in the outer rectangle, we obtain Fig.6(5) if the

four edges separate the two rectangles, and Fig.6(6) if they do not. If b4 is connected to a2 in

the inner rectangle and a1 in the outer rectangle, we obtain Fig.6(7). Finally, if b4 is connected

to both a1 and a2 in the inner rectangle, we obtain Fig.6(8).

Now, by drawing Fig.6(1) back into T and cut T along the circuit a1b2a2b4a1, we obtain

Fig.7(1); by drawing Fig.6(6) back into T and cut T along the circuit a1b4a2b2a1, we obtain

Fig.7(2). It is easy to find out that Fig.7(1) and Fig.6(4), Fig.7(2) and Fig.6(3) have the same

structure if ignoring the labels of b. In Fig.6(8), by exchanging the inner and outer rectangles

and the labels of b3, b4, we obtain Fig.6(3). In Fig.6(2), as each region has at most 3 vertices

of {b1, b2, b3, b4} on its boundary, we will have crD(a1, ai) ≥ 1 or crD(a2, ai) ≥ 1 for i = 3, 4, 5.

So, we only need to consider the cases in Fig.6(3-5,7).

In Fig.6(3), since crD(a1, a3) = crD(a2, a3) = 0, we can draw the edges incident with

a3 in four different ways, see Fig.8(1-4). Furthermore, as crD(a1, a4) = crD(a2, a4) = 0 and

crD(a3, a4) = 1, a4 can only be putted in region I or II. In Fig.8(3-4), we can draw the edges

incident with a4 in four different ways, see Fig.9(1-4). In Fig.8(1-2), there are also four different

ways to draw the edges incident with a4, but they can be obtained by relabeling a3 and a4 in

Fig.9((1-4). Then, we can see that no matter which region a5 lies, we cannot have crD(a3, a5) =

crD(a4, a5) = 1.

In Fig.6(4), we have only one way to draw the edges incident with a3, see Fig.10(1).

Furthermore, we have two drawings of a4 in Fig.10(1), see Fig.10(2-3). But, by observation, we
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cannot have crD(a3, a5) = crD(a4, a5) = 1.

In Fig.6(5,7), no matter which regions a3, a4 locate, we will have crD(a3, a4) ≥ 2 or

crD(a3, a4) = 0. Now, the proof completes. �

§3. The proof of the Main Theorem

The proof of Theorem 1 is by induction on n. The base of the induction is n ≤ 8 and has been

obtained from Lemma 3. For n ≥ 9, by Lemma 3, we only need to prove that crT (K4,n) ≥ f(n).

Let n = 4q + r where 0 ≤ r ≤ 3, and D be an optimal drawing of K4,n in T .

First, we assume that there exists a K4,4 in D which is drawn without crossings. From

Lemma 3, crT (K4,5) = 2, and by the inductive assumption, crT (K4,n−4) = f(n− 4). Hence, by

applying Lemma 2 with m = k = 4,

crT (D) ≥ 2(n− 4) + f(n− 4) = 2(n− 4) + ⌊
n− 4

4
⌋(2(n− 4) − 4(1 + ⌊

n− 4

4
⌋))

= 8q + 2r − 8 + (q − 1)(4q + 2r − 8) = 4q2 + 2qr − 4q,

which is f(n), since

f(n) = ⌊
n

4
⌋(2n− 4(1 + ⌊

n

4
⌋)) = q(8q + 2r − 4(1 + q)) = 4q2 + 2qr − 4q. (7)

Second, we assume that every K4,4 in D is drawn with at least one crossings. Clearly,

K4,n contains n subgraphs K4,n−1, each contains at least f(n − 1) crossings by the inductive

hypothesis. As each crossing will be counted n− 2 times, hence

crT (D) ≥
n

n− 2
crT (K4,n−1) =

n

n− 2
f(n− 1). (8)

From equation (7),

f(n) =






q(4q − 4), for n = 4q,

q(4q − 2), for n = 4q + 1,

4q2, for n = 4q + 2,

q(4q + 2), for n = 4q + 3.

Combining this with equation (8),

crT (D) ≥





q(4q − 4), for n = 4q,

q(4q − 2) − 1 − 2q+1
4q−1 , for n = 4q + 1,

4q2 − 1, for n = 4q + 2,

q(4q + 2) − 2q
4q+1 , for n = 4q + 3.

As n ≥ 9, namely q ≥ 2, and the crossing number is an integer, thus, when n = 4q or 4q + 3,

crT (K4,n) = crT (D) ≥ f(n);

when n = 4q + 1 or 4q + 2,

crT (K4,n) = crT (D) ≥ f(n) − 1.
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Therefore, only the two cases n = 4q+1 and n = 4q+2 are needed considering. In the following,

we assume that crT (K4,n) = crT (D) = f(n)−1 for n = 4q+1 or 4q+2, and denote the drawing

of K4,n−1 obtained by deleting the vertex ai of K4,n in D by D − {ai}.

Case 1. n = 4q + 1.

By the inductive assumption,

crT (D − {ai}) ≥ f(4q), 1 ≤ i ≤ 4q + 1.

As crT (D) = f(4q + 1) − 1 = 4q2 − 2q − 1, then

crD(ai) = crT (D) − crT (D − {ai}) ≤ f(4q + 1) − 1 − f(4q) = 2q − 1, 1 ≤ i ≤ 4q + 1.

Let x be the number of ai such that crD(ai) = 2q − 1, y be the number of ai such that

crD(ai) = 2q − 2, thus, the number of ai such that crD(ai) ≤ 2q − 3 is 4q + 1 − (x + y). By

equation(1), it holds

(2q − 1)x + (2q − 2)y + (4q + 1 − x− y)(2q − 3) ≥ 2crT (D) = 8q2 − 4q − 2

2x+ y ≥ 6q + 1.

As x + y ≤ 4q + 1, then x ≥ 2q. Without loss of generality, by renaming the vertices, suppose

that crD(ai) = 2q − 1 for i ≤ x.

Case 1.1 There exists a pair of (i, j), 1 ≤ i < j ≤ x, such that crD(ai, aj) = 0. Denote the

drawing of the graph K4,4q−1 obtained by deleting the vertices ai, aj of the graph K4,4q+1 in

D by D − {ai, aj}. Then,

crT (D − {ai, aj}) = f(4q + 1) − 1 − 2(2q − 1) = 4q2 − 6q + 1.

But this contradicts the inductive assumption that crT (K4,4q−1) = f(4q − 1) = 4q2 − 6q + 2.

Case 1.2 For every (i, j), 1 ≤ i < j ≤ x, crD(ai, aj) ≥ 1. As crD(ai) = 2q − 1, obviously,

x = 2q and

crD(ai, aj) = 1, 1 ≤ i < j ≤ 2q, crD(ai, ah) = 0, 1 ≤ i ≤ 2q < h ≤ 4q + 1.

Furthermore, as x + y ≤ 4q + 1 and 2x + y ≥ 6q + 1, then y = 2q + 1. By the definition of y,

there exist ah, ak, where 2q + 1 ≤ h < k ≤ 4q + 1, such that crD(ah, ak) = 0. Now, we obtain

a drawing of K4,5 in T with vertices ah, ak, a1, a2, a3 such that crD(ah, ak) = crD(ah, ai) =

crD(ak, ai) = 0 (1 ≤ i ≤ 3) and crD(a1, a2) = crD(a1, a3) = crD(a2, a3) = 1. Contradicts to

Lemma 4.

Combining the above two subcases, we have crT (K4,4q+1) = f(4q + 1) = q(4q − 2).

Case 2. n = 4q + 2.

By the inductive assumption,

crT (D − {ai}) ≥ f(4q + 1) = q(4q − 2), 1 ≤ i ≤ 4q + 2.
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As crT (D) = f(4q + 2) − 1 = 4q2 − 1, thus

crD(ai) = crT (D) − crT (D − {ai}) ≤ (f(4q + 2) − 1) − f(4q + 1) = 2q − 1.

Let t be the number of ai such that crD(ai) = 2q − 1, then there are (4q + 2 − t) vertices ai

such that crD(ai) ≤ 2q − 2. From equation (1),

(2q − 1)t + (2q − 2)(4q + 2 − t) ≥ 2crT (D) = 8q2 − 2

t ≥ 4q + 2.

As t ≤ n = 4q + 2, hence, t = 4q + 2, this implies that crD(ai) = 2q − 1 (1 ≤ i ≤ 4q + 2).

If there exists a pair of (i, j), 1 ≤ i < j ≤ 4q + 2, such that crD(ai, aj) ≥ 3, then,

crT (D − {ai}) = crT (D) − crD(ai) = 4q2 − 1 − (2q − 1) = 4q2 − 2q,

and

cr(D−{ai})(aj) = crD(aj) − crD(ai, aj) ≤ 2q − 1 − 3 = 2q − 4.

Now, by putting a new vertex a
′

i near the vertex aj in D−{ai} and drawing the edges a
′

ibk(1 ≤

k ≤ 4) nearly to ajbk, a new drawing of K4,4q+2 in T is obtained, denoted by D
′

. Clearly,

crD′ (a
′

i, aj) = 2 and crD′ (a
′

i, ah) = crD−{ai}(aj , ah), h 6= j.

Thus,

crT (D
′

) = crT (D − {ai}) + 2 + cr(D−{ai})(aj) ≤ 4q2 − 2.

But, this contradicts to the hypothesis that crT (K4,4q+2) ≥ 4q2 − 1.

Therefore, for 1 ≤ i < j ≤ 4q + 2, crD(ai, aj) ≤ 2. For each ai, 1 ≤ i ≤ 4q + 2, let

S
(i)
0 = {aj | crD(ai, aj) = 0, j 6= i}, S

(i)
≥1 = {aj | crD(ai, aj) ≥ 1},

S
(i)
1 = {aj | crD(ai, aj) = 1}, S

(i)
2 = {aj | crD(ai, aj) = 2}.

As crD(ai, aj) ≤ 2, crD(ai) = 2q − 1 is odd, then, for 1 ≤ i ≤ 4q + 2,

∅ 6= S
(i)
1 ⊆ S

(i)
≥1, |S

(i)
1 | + |S

(i)
2 | = |S

(i)
≥1|, |S

(i)
≥1| = 2q − 1 − |S

(i)
2 |. (9)

Furthermore, since q ≥ 2,

|S
(i)
0 | = 4q + 2 − 1 − |S

(i)
≥1| = 2q + 2 + |S

(i)
2 | ≥ 6.

For 1 ≤ i < j ≤ 4q + 2, clearly,

S
(i)
0 ∪ S

(i)
≥1 ∪ {ai} = S

(j)
0 ∪ S

(j)
≥1 ∪ {aj}.

If crD(ai, aj) = 0 and S
(i)
≥1 ∩ S

(j)
≥1 = ∅, then, the above equation implies that

S
(i)
≥1 ⊆ S

(j)
0 and S

(j)
≥1 ⊆ S

(i)
0 . (10)
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Without loss of generality, let

|S
(1)
2 | = max{|S

(i)
2 | | 1 ≤ i ≤ 4q + 2}, |S

(2)
2 | = max{|S

(j)
2 | | aj ∈ S

(1)
0 }.

For 3 ≤ i ≤ 4q + 2, if ai /∈ S
(1)
≥1 ∪ S

(2)
≥1 , then ai ∈ S

(1)
0 ∩ S

(2)
0 . This means that

|S
(1)
0 ∩ S

(2)
0 | = 4q − |S

(1)
≥1 ∪ S

(2)
≥1 | = 4q − |S

(1)
≥1 | − |S

(2)
≥1 | + |S

(1)
≥1 ∩ S

(2)
≥1 |.

From equation (9), then

|S
(1)
0 ∩ S

(2)
0 | = 2 + |S

(1)
2 | + |S

(2)
2 | + |S

(1)
≥1 ∩ S

(2)
≥1 |. (11)

With these notations, it is obvious that |S
(1)
2 | ≥ |S

(2)
2 | and crD(a1, a2) = 0. In the following,

the discussions are divided into two subcases according to S
(1)
≥1 ∩ S

(2)
≥1 = ∅ or not.

Case 2.1 S
(1)
≥1 ∩ S

(2)
≥1 6= ∅. Let |S

(1)
≥1 ∩ S

(2)
≥1 | = α ≥ 1, from equation (11),

|S
(1)
0 ∩ S

(2)
0 | = 2 + |S

(1)
2 | + |S

(2)
2 | + α.

First, we choose a vertex from S
(1)
0 ∩ S

(2)
0 , without loss of generality, denoted by a3. By

the assumption that every K4,4 in D is drawn with at least one crossings, hence crD(a3, ai) ≥ 1

for all ai ∈ S
(1)
0 ∩ S

(2)
0 , ai 6= a3. Let U = {ai | crD(a3, ai) = 1, ai ∈ S

(1)
0 ∩ S

(2)
0 }. Since a3 ∈ S

(1)
0

and |S
(2)
2 | = max{|S

(j)
2 | | aj ∈ S

(1)
0 }, then |S

(3)
2 | ≤ |S

(2)
2 | and

|U | ≥ |S
(1)
0 ∩ S

(2)
0 | − 1 − |S

(3)
2 | ≥ 1 + |S

(1)
2 | + α.

Second, we choose a vertex from U, denoted by a4. By the assumption that every K4,4 in D

is drawn with at least one crossings, crD(a4, ai) ≥ 1 for all ai ∈ U, ai 6= a4. As |S
(4)
2 | ≤ |S

(1)
2 |(for

|S
(1)
2 | = max{|S

(i)
2 | | 1 ≤ i ≤ 4q + 2}), thus |U \ S

(4)
2 | ≥ α ≥ 1 and there exists one vertex in U ,

denoted by a5, such that crD(a4, a5) = 1. Now, we have a drawing of K4,5 in T with vertices

a1, a2, a3, a4, a5 such that crD(a1, a2) = crD(a1, ak) = crD(a2, ak) = 0 for 3 ≤ k ≤ 5 and

crD(a3, a4) = crD(a3, a5) = crD(a4, a5) = 1. But, this contradicts to Lemma 4.

Case 2.2 S
(1)
≥1 ∩ S

(2)
≥1 = ∅. From equation (11),

|S
(1)
0 ∩ S

(2)
0 | = 2 + |S

(1)
2 | + |S

(2)
2 |.

We choose a vertex from S
(1)
0 ∩S

(2)
0 , also denoted by a3. By the same discussion as in case

2.1, we have crD(a3, ai) ≥ 1 for all ai ∈ S
(1)
0 ∩ S

(2)
0 , ai 6= a3. Let Λ = {ai | crD(a3, ai) = 2, ai ∈

S
(1)
0 ∩S

(2)
0 }, Φ = {ai | crD(a3, ai) = 1, ai ∈ S

(1)
0 ∩S

(2)
0 }. As a3 ∈ S

(1)
0 , |S

(2)
2 | = max{|S

(j)
2 | | aj ∈

S
(1)
0 } and |S

(1)
2 | = max{|S

(i)
2 | | 1 ≤ i ≤ 4q + 2}, then

Λ ⊆ S
(3)
2 , |Λ| ≤ |S

(3)
2 | ≤ |S

(2)
2 | ≤ |S

(1)
2 |, (12)

and

|Φ| = |S
(1)
0 ∩ S

(2)
0 | − 1 − |Λ| = 1 + |S

(1)
2 | + |S

(2)
2 | − |Λ| (13)

If there are two vertices in Φ, denoted by a4, a5, such that crD(a4, a5) = 1. Then we also

have a drawing of K4,5 with vertices a1, a2, a3, a4, a5 which will contradict to Lemma 4. Hence,
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for all ai, aj ∈ Φ(ai 6= aj), crD(ai, aj) 6= 1, this implies that crD(ai, aj) = 2 since crD(ai, aj)

cannot be zero (otherwise there exists K4,4 in D drawn with no crossings), and

|S
(i)
2 | ≥ |Φ| − 1.

Furthermore, if |Λ| < |S
(2)
2 |, by equation(13), |Φ| > 1 + |S

(1)
2 |, and for each ai ∈ Φ,

|S
(i)
2 | ≥ |Φ| − 1 > |S

(1)
2 |.

This contradicts the maximum of |S
(1)
2 |. Thus,

|Λ| = |S
(2)
2 |, |Φ| = 1 + |S

(1)
2 |,

and for each ai ∈ Φ,

|S
(i)
2 | ≥ |Φ| − 1 = |S

(1)
2 |.

As |S
(i)
2 | ≤ |S

(2)
2 | ≤ |S

(1)
2 |, combining equation (12),

|S
(1)
2 | = |S

(2)
2 | = |S

(3)
2 | = |S

(i)
2 |, (14)

and

S
(3)
2 = Λ ⊆ S

(1)
0 ∩ S

(2)
0 .

Combining equations (14) and (9), for each ai ∈ Φ,

|S
(1)
≥1 | = |S

(2)
≥1 | = |S

(3)
≥1 | = |S

(i)
≥1|,

and

|S
(1)
1 | = |S

(2)
1 | = |S

(3)
1 | = |S

(i)
1 |.

As |Φ| = 1 + |S
(1)
2 | + |S

(2)
2 | − |Λ| ≥ 1, we choose a vertex from Φ and denote it by a4.

If there exists a pair of (i, j), i ∈ {1, 2} and j ∈ {3, 4}, such that S
(i)
≥1 ∩ S

(j)
≥1 6= ∅, by

replacing S
(1)
≥1 ∩ S

(2)
≥1 6= ∅ with S

(i)
≥1 ∩ S

(j)
≥1 6= ∅ in case 2.1, as aj ∈ S

(1)
0 ∩ S

(2)
0 (j = 3, 4) and

|S
(i)
2 | = |S

(j)
2 | = max{|S

(k)
2 | | 1 ≤ k ≤ 4q + 2}, we also can obtain a contradiction to Lemma 4.

So, for every (i, j), i ∈ {1, 2} and j ∈ {3, 4}, S
(i)
≥1 ∩ S

(j)
≥1 = ∅. As S

(1)
≥1 ∩ S

(2)
≥1 = ∅ and

crD(ai, aj) = crD(a1, a2) = 0, combining equations (9) and (10), then

∅ 6= S
(1)
1 ⊆ S

(1)
≥1 ⊆ S

(2)
0 ∩ S

(3)
0 ∩ S

(4)
0 and ∅ 6= S

(2)
1 ⊆ S

(2)
≥1 ⊆ S

(1)
0 ∩ S

(3)
0 ∩ S

(4)
0 .

Since S
(1)
1 6= ∅, there exists a vertex, denoted by a5, such that a5 ∈ S

(1)
1 ⊆ S

(2)
0 ∩ S

(3)
0 ∩ S

(4)
0 .

This implies that

crD(a1, a5) = 1 and crD(a2, a5) = crD(a3, a5) = crD(a4, a5) = 0.

As S
(2)
≥1∩S

(3)
≥1 = ∅, |S

(1)
2 | = |S

(2)
2 | = |S

(3)
2 |, crD(a2, a3) = 0 and a5 ⊆ S

(2)
0 ∩S

(3)
0 , by replacing

S
(1)
≥1 ∩ S

(2)
≥1 = ∅ with S

(2)
≥1 ∩ S

(3)
≥1 = ∅ and replacing a3 with a5 in the beginning part of Case 2.2,

we also can obtain that |S
(5)
1 | = |S

(2)
1 | = |S

(3)
1 | and S

(5)
2 ⊆ S

(2)
0 ∩S

(3)
0 . This means that, for any

vertex ak ∈ S
(2)
1 ,

crD(a5, ak) ≤ 1. (15)
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As S
(2)
1 6= ∅, there exists one vertex in S

(2)
1 , denoted by a6, such that crD(a5, a6) = 0.

Otherwise, from equation (15) and crD(a1, a5) = 1, S
(2)
1 ∪ {a1} ⊆ S

(5)
1 . As a1 /∈ S

(2)
1 , then

|S
(5)
1 | ≥ |S

(2)
1 | + 1, which contradicts to |S

(5)
1 | = |S

(2)
1 | = |S

(3)
1 |. Furthermore, as a6 ∈ S

(2)
1 ⊆

S
(1)
0 ∩ S

(3)
0 ∩ S

(4)
0 , we also have

crD(a2, a6) = 1 and crD(a1, a6) = crD(a3, a6) = crD(a4, a6) = 0.

Hence, we obtain a good drawing of K4,6 in T , denoted by D′, with

crD′(ai) =
6∑

j=1

crD(ai, aj) = 1, 1 ≤ i ≤ 6,

and

crT (K4,6) ≤ crT (D′) =
1

2

6∑

i=1

crD′(ai) = 3.

This contradicts to Lemma 3. Thus, crT (K4,4q+2) = crT (D) = f(4q + 2) = 4q2. �
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Abstract: In this communications, the concept of pathos semitotal and total block graph

of a graph is introduced. Its study is concentrated only on trees. We present a characteriza-

tion of those graphs whose pathos semitotal block graphs are planar, maximal outer planar,

non-minimally non-outer planar, non-Eulerian and hamiltonian. Also, we present a char-

acterization of graphs whose pathos total block graphs are planar, maximal outer planar,

minimally non-outer planar, non-Eulerian, hamiltonian and graphs with crossing number

one.

Key Words: Pathos, path number, Smarandachely block graph, semitotal block graph,

Total block graph, pathos semitotal graph, pathos total block graph, pathos length, pathos

point, inner point number.
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§1. Introduction

The concept of pathos of a graph G was introduced by Harary [2], as a collection of minimum

number of line disjoint open paths whose union is G. The path number of a graph G is the

number of paths in pathos. A new concept of a graph valued functions called the semitotal

and total block graph of a graph was introduced by Kulli [6]. For a graph G(p, q) if B =

{u1, u2, u3, . . . , ur; r ≥ 2} is a block of G, then we say that point u1 and block B are incident

with each other, as are u2 and B and so on. If two distinct blocks B1 and B2 are incident with

a common cut point, then they are adjacent blocks. The points and blocks of a graph are called

its members. A Smarandachely block graph T V
S (G) for a subset V ⊂ V (G) is such a graph with

vertices V ∪ B in which two points are adjacent if and only if the corresponding members of G

are adjacent in 〈V 〉G or incident in G, where B is the set of blocks of G. The semitotal block

graph of a graph G denoted by Tb(G) is defined as the graph whose point set is the union of

set of points, set of blocks of G in which two points are adjacent if and only if members of G

are incident, thus a Smarandachely block graph with V = ∅. The total block graph of a graph

1Received November 23, 2010. Accepted May 26, 2011.
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G denoted by TB(G) is defined as the graph whose point set is the union of set of points, set

of blocks of G in which two points are adjacent if and only if the corresponding members of G

are adjacent or incident, i.e., a Smarandachely block graph with V = V (G). Stanton [11] and

Harary [3] have calculated the path number for certain classes of graphs like trees and complete

graphs.

All undefined terminology will conform with that in Harary [1]. All graphs considered here

are finite, undirected and without loops or multiple lines.

The pathos semitotal block graph of a tree T denoted by PTB
(T ) is defined as the graph

whose point set is the union of set of points, set of blocks and the set of path of pathos of T in

which two points are adjacent if and only if the corresponding members of G are incident and

the lines lie on the corresponding path Pi of pathos. Since the system of pathos for a tree is

not unique, the corresponding pathos semitotal and pathos total block graph of a tree T is also

not unique.

In Fig.1, a tree T , its semitotal block graph Tb(T ) and their pathos semi total block PTb
(T )

graph are shown. In Fig. 2, a tree T , its semitotal block graph Tb(T ) and their pathos total

block PTB
(T ) graph are shown.

The line degree of a line uv in a tree T , pathos length, pathos point in T was defined by

Muddebihal [10]. If G is planar, the inner point number i(G) of a graph G is the minimum

number of points not belonging to the boundary of the exterior region in any embedding of G

in the plane. A graph G is said to be minimally nonouterplanar if i(G) = 1, as was given by

Kulli [4].

We need the following results to prove further results.

Theorem [A][Ref.6] If G is connected graph with p points and q lines and if bi is the number

of blocks to which vi belongs in G, then the semitotal block graph Tb(G) has

(
p∑

i=1

bi

)
+1, points

and q +

(
p∑

i=1

bi

)
lines.

Theorem [B][Ref.6] If G is connected graph with p points and q lines and if bi is the number

of blocks to which vi belongs in G, then the total block graph TB(G) has

(
p∑

i=1

bi

)
+ 1, points

and q +
p∑

i=1



bi + 1

2



 lines.

Theorem [C][Ref.8] The total block graph TB(G) of a graph G is planar if and only if G is

outerplanar and every cutpoint of G lies on atmost three blocks.

Theorem [D] [Ref.7] The total block graph TB(G) of a connected graph G is minimally

nonouter planar if and only if,

(1) G is a cycle, or

(2) G is a path P of length n ≥ 2, together with a point which is adjacent to any two adjacent

points of P .
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Figure 1:

Theorem [E][Ref.9] The total block graph TB(G) of a graph G crossing number 1 if and only

if

(1) G is outer planar and every cut point in G lies on at most 4 blocks and G has a unique

cut point which lies on 4 blocks, or

(2) G is minimally non-outer planar, every cut point of G lies on at most 3 blocks and exactly

one block of G is theta-minimally non-outer planar.

Corollary [A][Ref.1] Every nontrivial tree contains at least two end points.

Theorem [F][Ref.1] Every maximal outerplanar graph G with p points has (2p− 3) lines.

Theorem [G][Ref.5] A graph G is a non empty path if and only if it is connected graph with

p ≥ 2 points and
p∑

i=1

di
2 − 4p+ 6 = 0.

§2. Pathos Semitotal Block Graph of a Tree

We start with a few preliminary results.
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Remark 1 The number of blocks in pathos semitotal block graph of PTb
(T ) of a tree T is equal

to the number of pathos in T .

Remark 2 If the degree of a pathos point in pathos semi total block graph PTb
(T ) of a tree T

is n, then the pathos length of the corresponding path Pi of pathos in T is n− 1.

Kulli [6] developed the new concept in graph valued functions i.e., semi total and total

block graph of a graph. In this article the number of points and lines of a semi total block

graph of a graph has been expressed in terms of blocks of G. Now using this we have a modified

theorem as shown below in which we have expressed the number of points and lines in terms

of lines and degrees of the points of G which is a tree.

Theorem 1 For any (p, q) tree T , the semitotal block graph Tb(T ) has (2q + 1) points and 3q

lines.

Proof By Theorem [A], the number of points in Tb(G) is

(
p∑

i=1

bi

)
+ 1, where bi are the

number of blocks in T to which the points vi belongs in G. Since
∑
bi = 2q, for G is a tree.

Thus the number of points in Tb(G) = 2q + 1. Also, by Theorem [A] the number of lines in

Tb(G) are q +

(
b∑

i=1

bi

)
, since

∑
bi = 2q for G is a tree. Thus the number of lines in Tb(G) is

q + 2q = 3q. �

In the following theorem we obtain the number of points and lines in PTb
(T ).

Theorem 2 For any non trivial tree T , the pathos semitotal block graph of a tree T , whose

points have degree di, then the number of points in PTb
(T ) are (2q + k + 1) and the number of

lines are

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
, where k is the path number.

Proof By Theorem 1, the number of points in Tb(T ) are 2q+1, and by definition of PTb
(T ),

the number of points in (2q+k+1), where k is the path number. Also by Theorem 1, the number

of lines in Tb(T ) are 3q. The number of lines in PTb
(T ) is the sum of lines in Tb(T ) and the

number of lines which lie on the points of pathos of T which are to

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
. Thus

the number of lines in is equal to

(
3q + (−q + 2 +

1

2

p∑
i=1

d2
i )

)
=

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
.

§2. Planar Pathos Semitotal Block Graphs

A criterion for pathos semi total block graph to be planar is presented in our next theorem.

Theorem 3 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

planar.

Proof Let T be a non trivial tree, then in Tb(T ) each block is a triangle. We have the

following cases.

Case 1 Suppose G is a path, G = Pn : u1, u2, u3, . . . , un, n > 1. Further, V [Tb (T )] =
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{u1, u2, u3, . . . , un, b1, b2, b3, . . . , bn−1}, where b1, b2, b3, . . . , bn−1 are the corresponding block

points. In pathos semi total block graph PTb
(T ) of a tree T , {u1b1u2w, u2b2u3w, u3b3u4w, . . . ,

un−1bn−1unw} ∈ V [PTb
(T )], each set {un−1bn−1unw} forms an induced subgraph as K4 − x.

Hence one can easily verify that PTb
(T ) is planar.

Case 2 Suppose G is not a path. Then V [Tb (G)] = {u1, u2, u3, . . . , un, b1, b2, b3, . . . , bn−1} and

w1, w2, w3, . . . , wk be the pathos points. Since un−1un is a line and un−1un = bn−1 ∈ V [Tb (G)].

Then in PTb
(G) the set {un−1bn−1unw} ∀ n > 1, forms K4−x as an induced subgraphs. Hence

PTb
(G) is planar. �

Further we develop the maximal outer planarity of PTb
(G) in the following theorem.

Theorem 4 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

maximal outer planar if and only if T is a path.

Proof Suppose PTb
(T ) is maximal outer planar. Then PTb

(T ) is connected. Hence T is

connected. If PTb
(T ), is K4 − x, then obviously T is k2.

Let T be any connected tree with p ≥ 2, q lines bi blocks and path number k, then clearly

PTb
(T ) has (2q + k + 1) points and

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
lines. Since PTb

(T ) is maximal outer

planar, by Theorem [F], it has [2(2q + k + 1) − 3] lines. Hence,

2 + 2q +
1

2

p∑

i=1

d2
i = 2 (2q + k + 1) − 3 = 4q + 2k + 2 − 3 = 4q + 2q− 1

1

2

p∑

i=1

d2
i = 2q + 2k − 3

p∑

i=1

d2
i = 4q + 4k − 6

p∑

i=1

d2
i = 4 (p − 1) + 4k− 6

p∑

i=1

d2
i = 4p + 4k − 10.

But for a path, k = 1.
p∑

i=1

d2
i = 4p + 4 (1) − 10 = 4p − 6

p∑

i=1

d2
i − 4p + 6 = 0.

By Theorem [G], it follows that T is a non empty path. Thus necessity is proved.

For sufficiency, suppose T is a non empty path. We prove that PTb
(T ) is maximal outer

planar. By induction on the number of points pi ≥ 2 of T . It is easy to observe that PTb
(T ) of a

path P with 2 points is K4−x, which is maximal outer planar. As the inductive hypothesis, let

the pathos semitotal block graph of a non empty path P with n points be maximal outer planar.

We now show that the pathos semitotal block graph of a path P ′ with (n+1) points is maximal

outer planar. First we prove that it is outer planar. Let the point and line sequence of the path
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P ′ be v1, e1, v2, e2, v3, . . . , vn, en, vn+1, Where v1v2 = e1 = b1, v2v3 = e2 = b2, . . . , vn−1vn =

en−1 = bn1, vnvn+1 = en = bn.

The graphs P, P ′, Tb(P ), Tb(P
′), PTb

(P ) and PTb
(P ′) are shown in the figure 2. Without

loss of generality P ′ − vn+1 = P .

By inductive hypothesis, PTb
(P ) is maximal outer planar. Now the point vn+1 is one more

point more in PTb
(P ′) than PTb

(P ). Also there are only four lines (vn+1, vn)(vn, bn)(bn, vn+1)

and (vn+1,K1) more in PTb
(P ′). Clearly the induced subgraph on the points vn+1, vn, bn,K1

is not K4. Hence PTb
(P ′) is outer planar.

We now prove that PTb
(P ′) is maximal outer planar. Since PTb

(P ) is maximal outer planar,

it has 2(2q + k + 1) − 3 lines. The outer planar graph PTb
(P ′) has 2(2q + k + 1) − 3 + 4 =

2(2q + k + 1 + 2) − 3

= 2 [(2q + 1) + (k + 1) + 1] − 3 lines.

By Theorem [F], PTb
(P ′) is maximal outer planar. �

The next theorem gives a non-minimally non-outer planar PTb
(T ).

Theorem 5 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

non-minimally non-outer planar.

Proof We have the following cases.

Case 1 Suppose T is a path, then ∆(T ) ≤ 2, then by Theorem 4, PTB
(T ) is maximal outer

planar.

Case 2 Suppose T is not a path, then ∆(T ) ≥ 3, then by theorem 3, PTb
(T ) is planar. On

embedding PTb
(T ) in any plane, the points with degree greater than two of T forms the cut

points. In PTb
(T ) which lie on at least two blocks. Since each block of PTb

(T ) is a maximal

outer planar than one can easily verify that PTb
(T ) is outer planar. Hence for any non trivial

tree with ∆(T ) ≥ 3, PTb
(T ) is non minimally non-outer planar. �

In the next theorem, we characterize the non-Eulerian PTb
(T ).

Theorem 6 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

non-Eulerian.

Proof We have the following cases.

Case 1 Suppose T is a path with 2 points, then PTb
(T ) = K4−x, which is non-Eulerian. If T is

a path with p > 2 points. Then in Tb(T ) each block is a triangle such that they are in sequence

with the vertices of Tb(T ) as {v1, b1, v2, v1} an induced subgraph as a triangle Tb(T ). Further

{v2, b2, v3, v2}, {v3, b3, v4, v3}, . . . , {vn−1, bn, vn, vn−1}, in which each set form a triangle as an

induced subgraph of Tb(T ). Clearly one can easily verify that Tb(T ) is Eulerian. Now this path

has exactly one pathos point say k1, which is adjacent to v1, v2, v3, . . . , vn in PTb
(T ) in which

all the points v1, v2, v3, . . . , vn ∈ PTb
(T ) are of odd degree. Hence PTb

(T ) is non-Eulerian.

Case 2 Suppose ∆(T ) ≥ 3. Assume T has a unique point of degree ≥ 3 and also assume that

T = K1.n. Then in Tb(T ) each block is a triangle, such that the number of blocks which are K3
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are n with a common cut point k. Since the degree of a vertex k = 2n. One can easily verify

that Tb (K1,3) is Eulerian. To form PTb
(T ), T = K1,n, the points of degree 2 and the point k

are joined by the corresponding pathos point which give (n+1) points of odd degree in PTb
(T ).

Hence PTb
(T ) is non-Eulerian. �

In the next theorem we characterize the hamiltonian PTb
(T ).

Theorem 7 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

hamiltonian if and only if T is a path.

Proof For the necessity, suppose T is a path and has exactly one path of pathos. Let

V [Tb (T )] = {u1, u2, u3, . . . , un}∪{b1, b2, b3, . . . , bn−1}, where b1, b2, b3, . . . , bn−1 are block points

of T . Since each block is a triangle and each block consists of points as B1 = {u1, b1, u2}, B2 =

{u2, b2, u3}, . . . , Bm = {um, bm, um+1}. In PTb
(T ) the pathos point w is adjacent to {u1, u2, u3, . . . , un}.

Hence V [PTb
(T )] = {u1, u2, u3, . . . , un}∪{b1, b2, b3, . . . , bn−1}∪w form a cycle asw, u1, b1, u2, b2, u2, . . .

un−1, bn−1, un, w. Containing all the points of PTb
(T ). Clearly PTb

(T ) is hamiltonian. Thus

necessity is proved.

For the sufficiency, suppose PTb
(T ) is hamiltonian, now we consider the following cases.

Case 1 Assume T is a path. Then T has at least one point with deg v ≥ 3, ∀v ∈ V (T ),

assume that T has exactly one point u such that degree u > 2, then G = T = K1.n. Now we

consider the following subcases of Case 1.

Subcase 1.1 For K1.n, n > 2 and n is even, then in Tb(T ) each block is k3. The number

of path of pathos are n
2 . Since n is even we get n

2 blocks. Each block contains two lines of

〈K4 − x〉 , which is a non line disjoint subgraph of PTb
(T ). Since PTb

(T ) has a cut point, one

can easily verify that there does not exist any hamiltonian cycle, a contradiction.

Subcase 1.2 For K1.n, n > 2 and n is odd, then the number of path of pathos are
n+ 1

2
, since

n is odd we get
n− 1

2
+ 1 blocks in which

n− 1

2
blocks contains two times of 〈K4 − x〉 which

is nonline disjoint subgraph of PTb
(T ) and remaining block is 〈K4 − x〉. Since PTb

(T ) contain

a cut point, clearly PTb
(T ) does not contain a hamiltonian cycle, a contradiction. Hence the

sufficient condition.

§3. Pathos Total Block Graph of a Tree

A tree T , its total block graph TB (T ), and their pathos total block graphs PTB
(T ) are shown

in the Fig.3. We start with a few preliminary results.

Remark 3 For any non trivial path, the inner point number of the pathos total block graph

PTB
(T ) of a tree T is equal to the number of cut points in T .

Remark 4 The degree of a pathos point in PTB
(T ) is n, then the pathos length of the

corresponding path Pi of pathos in T is n− 1.

Remark 5 For any non trivial tree T , PTB
(T ) is a block.
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has been expressed in terms of blocks of G. Now using this we have a modified theorem as

shown below in which we have expressed the number of points and lines in terms of lines and

degrees of the points of G which is a tree.

Theorem 8 For any non trivial (p, q) tree whose points have degree di, the number of points

and lines in total block graph of a tree T are (2q + 1) and

(
2q +

1

2

p∑
i=1

d2
i

)
.

Proof By Theorem [B], the number of points in Tb(T ) is

(
b∑

i=1

bi

)
+ 1, where bi are the

number of blocks in T to which the points vi belongs in G. Since
∑
bi = 2q, for G is a tree.

Thus the number of points in TB(G) = 2q + 1. Also, by Theorem [B], the number of lines in

TB(G) are q +
b∑

i=1



bi + 1

2



 =

(
b∑

i=1

bi

)
+

(
1

2

p∑
i=1

d2
i

)
=

(
2q +

1

2

p∑
i=1

d2
i

)
, for G is a tree. �

In the following theorem we obtain the number of points and lines in PTB
(T ).

Theorem 9 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T , whose

points have degree di, then the number of points in PTB
(T ) are (2q + k+ 1) and the number of

lines are

(
q + 2 +

p∑
i=1

d2
i

)
, where k is the path number.

Proof By Theorem 7, the number of points in TB(T ) are 2q + 1, and by definition of

PTB
(T ), the number of points in PTB

(T ) are (2q + k + 1), where k is the path number in T .

Also by Theorem 7, the number of lines in TB(T ) are

(
2q +

1

2

p∑
i=1

d2
i

)
. The number of lines

in PTB
(T ) is the sum of lines in TB(T ) and the number of lines which lie on the points of

pathos of T which are to

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
. Thus the number of lines in PTB

(T ) is equal to
(

2q +
1

2

p∑
i=1

d2
i

)
+

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
=

(
q + 2 +

p∑
i=1

d2
i

)
. �

§4. Planar Pathos Total Block Graphs

A criterion for pathos total block graph to be planar is presented in our next theorem.

Theorem 10 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

planar if and only if ∆(T ) ≤ 3.

Proof Suppose PTB
(T ) is planar. Then by Theorem [C], each cut point of T lie on at

most 3 blocks. Since each block is a line in a tree, now we can consider the degree of cutpoints

instead of number of blocks incident with the cut points. Now suppose if ∆(T ) ≤ 3, then

by Theorem [C], TB(T ) is planar. Let {b1, b2, b3, . . . , bp−1} be the blocks of T with p points

such that b1 = e1, b2 = e2, . . . , bp−1 = ep−1 and Pi be the number of pathos of T . Now

V [PTB
(T )] = V (G)∪ {b1, b2, . . . bp−1}∪ {Pi}. By Theorem [C], and by the definition of pathos,

the embedding of PTB
(T ) in any plane gives a planar PTB

(T ).

Suppose ∆(T ) ≥ 4 and assume that PTB
(T ) is planar. Then there exists at least one point
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of degree 4, assume that there exists a vertex v such that deg v = 4. Then in TB(T ), this point

together with the block points form k5 as an induced subgraph. Further the corresponding

pathos point are adjacent to the V(T) in TB(T ) which gives PTB
(T ) in which again k5 as an

induced subgraph, a contradiction to the planarity of PTB
(T ). This completes the proof. �

The following theorem results the maximal outer planar PTB
(T ).

Theorem 11 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

maximal outer planar if and only if T = k2.

Proof Suppose T = k3 and PTB
(T ) is maximal outer planar. Then TB(T ) = k4 and one

can easily verify that, i[PTB
(T )] > 1, a contradiction. Further we assume that T = K1,2 and

PTB
(T ) is maximal outer planar, then TB (T ) is Wp−x, where x is outer line of Wp. Since K1,2

has exactly one pathos, this point together with Wp − x gives Wp+1. Clearly, PTB
(T ) is non

maximal outer planar, a contradiction. For the converse, if T = k2, TB (T ) = k3 and PTB
(T )

= K4 − x which is a maximal outer planar. This completes the proof of the theorem. �

Now we have a pathos total block graph of a path p ≥ 2 point as shown in the below

remarks, and also a cycle with p ≥ 3 points.

Remark 6 For any non trivial path with p points, i[PTB
(T )] = p − 2.

Remark 7 For any cycle Cp, p ≥ 3, i[PTB
(Cp)] = p − 1.

The next theorem gives a minimally non-outer planar PTB
(T ).

Theorem 12 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

minimally non-outer planar if and only if T is a path with 3 points.

Proof Suppose PTB
(T ) is minimally non-outer planar. Assume T is not a path. We

consider the following cases.

Case 1 Suppose T is a tree with ∆(T ) ≥ 3. Then there exists at least one point of degree

at least 3. Assume v be a point of degree 3. Clearly, T = K1,3. Then by the Theorem [D],

i [TB (T )] > 1 since TB(T ) is a subgraph of PTB
(T ). Clearly i[PTB

(T )] > 2 a contradiction.

Case 2 Suppose T is a closed path with p points, then it is a cycle with p points. By Theorem

[D], PTB
(T ) is minimally non-outer planar. By Remark 7, i[PTB

(T )] > 1, a contradiction.

Case 3 Suppose T is a closed path with p ≥ 4 points, clearly by Remark 6, i[PTB
(T )] > 2, a

contradiction.

Conversely, suppose T is a path with 3 points, clearly by Remark 6, i[PTB
(T )] = 1. This

gives the required result. �

In the following theorem we characterize the non-Eulerian PTB
(T ).

Theorem 13 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

non-Eulerian.
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Proof We consider the following cases.

Case 1 Suppose T is a path. For p = 2 points, then PTB
(T ) = K4 − x, which is non-Eulerian.

For p = 3 points, then PTB
(T ) is a wheel, which is non-Eulerian.

For p ≥ 4 we have a path P : v1, v2, v3, . . . , vp. Now in path each line is a block. Then

v1v2 = e1 = b1, v2v3 = e2 = b2, . . . , vp−1vp = ep−1 = bp−1, ∀ep−1 ∈ E (G), and ∀bp−1 ∈

V [TB (P )]. In TB(P ), the degree of each point is even except b1 and bp−1. Since the path P

has exactly one pathos which is a point of PTB
(P ) and is adjacent to the points v1, v2, v3, . . . , vp,

of TB (P ) which are of even degree, gives as an odd degree points in PTB
(P ) including odd

degree points b1 and b2. Clearly PTB
(P ) is non-Eulerian.

Case 2 Suppose T is not a path. We consider the following subcases,

Subcase 2.1 Assume T has a unique point degree ≥ 3 and T = K1.n, where n is odd. Then

in TB (T ) each block is a triangle such that there are n number of triangles with a common cut

point k which has a degree 2n. Since the degree of each point in TB (K1,n) is Eulerian. To form

PTB
(T ) where T = K1,n, the points of degree 2 and the point k are joined by the corresponding

pathos point which gives (n + 1) points of odd degree in PTB
(K1.n). PTB

(K1.n) has n points

of odd degree. Hence PTB
(T ) non-Eulerian.

Assume that T = K1.n, where n is even, then in TB (T ) each block is a triangle, which

are 2n in number with a common cut point k. Since the degree of each point other than k is

either 2 or (n + 1) and the degree of the point k is 2n. One can easily verify that TB (K1,n)

is non-Eulerian. To form PTB
(T ) where T = K1,n, the points of degree 2 and the point k are

joined by the corresponding pathos point which gives (n + 2) points of odd degree in PTB
(T ).

Hence PTB
(T ) non-Eulerian.

Subcase 2.2 Assume T has at least two points of degree ≥ 3. Then V [TB (T )] = V (G) ∪

{b1, b2, b3, . . . , bp}, ∀ep ∈ E (G). In TB (T ), each endpoint has degree 2 and these points are

adjacent to the corresponding pathos points in PTB
(T ) gives degree 3, From Case 1, Tree T

has at least 4 points and by Corollary [A], PTB
(T ) has at least two points of degree 3. Hence

PTB
(T ) is non-Eulerian. �

In the next theorem we characterize the hamiltonian PTB
(T ).

Theorem 14 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

hamiltonian.

Proof We consider the following cases.

Case 1 Suppose T is a path with {u1, u2, u3, . . . , un} ∈ V (T ) and b1, b2, b3, . . . , bm be the num-

ber of blocks of T such that m = n− 1. Then it has exactly one path of pathos. Now point set

of TB (T ) is V [TB (T )] = {u1, u2, . . . , un} ∪ {b1, b2, . . . , bm}. Since given graph is a path then in

TB (T ), b1 = e1, b2 = e2, . . . , bm = em, such that b1, b2, b3, . . . , bm ⊂ V [TB (T )]. Then by the def-

inition of total block graph {u1, u2, . . . , um}∪ {b1, b2, . . . , bm−1, bm} ∪ {b1, u1, b2u2, . . . , bmun−1,

bmun} form line set of TB (T )[see Fig. 4].

Now this path has exactly one pathos say w. In forming pathos total block graph of a path,

the pathos w becomes a point, then V [PTB
(T )] = {u1, u2, . . . , un}∪ {b1, b2, . . . , bm}∪ {w} and
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w is adjacent to all the points {u1, u2, . . . , um} shown in the Fig.5.
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In PTB
(T ), the hamiltonian cycle w, u1, b1, u2, b2, u2, u3, b3, . . . , un−1, bm, un, w exist. Clearly

the pathos total block graph of a path is hamiltonian graph.

Case 2 Suppose T is not a path. Then T has at least one point with degree at least 3. Assume

that T has exactly one point u such that degree> 2. Now we consider the following subcases

of case 2.

Subcase 2.1 Assume T = K1.n, n > 2 and is odd. Then the number of paths of pathos

are n+1
2 . Let V [TB (T )] = {u1, u2, . . . , un, b1, b2, . . . , bm−1}. By the definition of PTB

(T ),

V [PTB
(T )] = {u1, u2, . . . , un, b1b2, . . . , bn−1}∪ {p1, p2, . . . , pn+1/2}. Then there exists a cycle

containing the points of PTB
(T ) as p1, u1, b1, b2, u3, p2, u2, b3, u4, . . . p1 and is a hamiltonian

cycle. Hence PTB
(T ) is a hamiltonian.

Subcase 2.2 Assume T = K1.n, n > 2 and is even. Then the number of path of pathos are n
2 ,

then V [TB (T )] = {u1, u2, . . . , un, b1, b2, . . . bn−1}. By the definition of PTB
(T ). V [PTB

(T )] =

{u1, u2, . . . , un, b1, b2, . . . , bn−1}∪ {p1, p2, . . . , pn/2}. Then there exist a cycle containing the

points of PTB
(T ) as p1, u1, b1, b2, u3, p2, u4, b3, b4, . . . , p1 and is a hamiltonian cycle. Hence

PTB
(T ) is a hamiltonian.



On Pathos Semitotal and Total Block Graph of a Tree 77

Suppose T is neither a path or a star. Then T contains at least two points of degree> 2. Let

u1, u2, u3, . . . , un be the points of degree ≥ 2 and v1, v2, v3, . . . , vm be the end points of T . Since

end block is a line in T , and denoted as b1, b2, . . . , bk, then tree T has pi pathos points, i > 1 and

each pathos point is adjacent to the point of T where the corresponding pathos lie on the points

of T . Let {p1, p2, ....., pi} be the pathos points of T . Then there exists a cycle C containing

all the points of PTB
(T ) as p1, v1, b1, b2, v2, p2, u1, b3, u2, p3, v3, b4, . . . , vn−1, bn−1, bn, vn, . . . , p1.

Hence PTB
(T ) is a hamiltonian cycle. Hence PTB

(T ) is a hamiltonian graph. �

In the next theorem we characterize PTB
(T ) in terms of crossing number one.

Theorem 15 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T has

crossing number one if and only if ∆(T ) ≤ 4, and there exist a unique point in T of degree 4.

Proof Suppose PTB
(T ) has crossing number one. Then it is non-planar. Then by Theorem

10, we have ∆(T ) ≥ 4. We now consider the following cases.

Case 1 Assume ∆(T ) = 5. Then by Theorem [E], TB (T ) is non-planar with crossing number

more than one. Since TB (T ) is a subgraph of PTB
(T ). Clearly cr(PTB

(T )) > 1, a contradiction.

Case 2 Assume ∆(T ) = 4. Suppose T has two points of degree 4. Then by Theorem [E], TB (T )

has crossing number at least two. But TB (T ) is a subgraph of PTB
(T ). Hence cr(PTB

(T )) > 1,

a contradiction.

Conversely, suppose T satisfies the given condition and assume T has a unique point v of

degree 4. The lines which are blocks in T such that they are the points in TB (T ). In TB (T ),

these block points and a point v together forms an induced subgraph as k5. In forming PTB
(T ),

the pathos points are adjacent to at most two points of this induced subgraph. Hence in all

these cases the cr(PTB
(T )) = 1. This completes the proof. �
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Abstract: Some varieties of groupoids and quasigroups generated by linear-bivariate poly-

nomials P (x, y) = a+bx+cy over the ring Zn are studied. Necessary and sufficient conditions

for such groupoids and quasigroups to obey identities which involve one, two, three (e.g. Bol-

Moufang type) and four variables w.r.t. a, b and c are established. Necessary and sufficient

conditions for such groupoids and quasigroups to obey some inverse properties w.r.t. a, b and

c are also established. This class of groupoids and quasigroups are found to belong to some

varieties of groupoids and quasigroups such as medial groupoid(quasigroup), F-quasigroup,

semi automorphic inverse property groupoid(quasigroup) and automorphic inverse property

groupoid(quasigroup).
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§1. Introduction

1.1 Groupoids, Quasigroups and Identities

Let G be a non-empty set. Define a binary operation (·) on G. (G, ·) is called a groupoid if G is

closed under the binary operation (·). A groupoid (G, ·) is called a quasigroup if the equations

a · x = b and y · c = d have unique solutions for x and y for all a, b, c, d ∈ G. A quasigroup

(G, ·) is called a loop if there exists a unique element e ∈ G called the identity element such

that x · e = e · x = x for all x ∈ G.

A function f : S × S → S on a finite set S of size n > 0 is said to be a Latin square

(of order n) if for any value a ∈ S both functions f(a, ·) and f(·, a) are permutations of S.

That is, a Latin square is a square matrix with n2 entries of n different elements, none of them

occurring more than once within any row or column of the matrix.

Definition 1.1 A pair of Latin squares f1(·, ·) and f2(·, ·) is said to be orthogonal if the pairs(
f1(x, y), f2(x, y)

)
are all distinct, as x and y vary.

For associative binary systems, the concept of an inverse element is only meaningful if the

1Received February 17, 2011. Accepted May 28, 2011.
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system has an identity element. For example, in a group (G, ·) with identity element e ∈ G, if

x ∈ G then the inverse element for x is the element x−1 ∈ G such that

x · x−1 = x−1 · x = e.

In a loop (G, ·) with identity element e, the left inverse element of x ∈ G is the element xλ ∈ G

such that

xλ · x = e

while the right inverse element of x ∈ G is the element xρ ∈ G such that

x · xρ = e

In case (G, ·) is a quasigroup, then for each x ∈ G, the elements xρ ∈ G and xλ ∈ G such that

xxρ = eρ and xλx = eλ are called the right and left inverse elements of x respectively. Here,

eρ ∈ G and eλ ∈ G satisfy the relations xeρ = x and eλx = x for all x ∈ G and are respectively

called the right and left identity elements. Whenever eρ = eλ, then (G, ·) becomes a loop.

In case (G, ·) is a groupoid, then for each x ∈ G, the elements xρ ∈ G and xλ ∈ G such that

xxρ = eρ(x) and xλx = eλ(x) are called the right and left inverse elements of x respectively.

Here, eρ(x) ∈ G and eλ(x) ∈ G satisfy the relations xeρ(x) = x and eλ(x)x = x for each

x ∈ G and are respectively called the local right and local left identity elements of x. Whenever

eρ(x) = eλ(x), then we simply write e(x) = eρ(x) = eλ(x) and call it the local identity of x.

The basic text books on quasigroups, loops are Pflugfelder [19], Bruck [1], Chein, Pflugfelder

and Smith [2], Dene and Keedwell [3], Goodaire, Jespers and Milies [4], Sabinin [25], Smith

[26], Jáıyéo.lá [5] and Vasantha Kandasamy [28].

Groupoids, quasigroups and loops are usually studied relative to properties or identities.

If a groupoid, quasigroup or loop obeys a particular identity, then such types of groupoids,

quasigroups or loops are said to form a variety. In this work, our focus will be on groupoids

and quasigroups. Some identities that describe groupoids and quasigroups which would be of

interest to us here are categorized as follows:

(A) Those identities which involve one element only on each side of the equality sign:

aa = a idempotent law (1)

aa = bb unipotent law (2)

(B) Those identities which involve two elements on one or both sides of the equality sign:

ab = ba commutative law (3)

(ab)b = a Sade right Keys law (4)

b(ba) = a Sade left keys law (5)

(ab)b = a(bb) right alternative law (6)

b(ba) = (bb)a left alternative law (7)
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a(ba) = (ab)a medial alternative law (8)

a(ba) = b law of right semisymmetry (9)

(ab)a = b law of left semisymmetry (10)

a(ab) = ba Stein first law (11)

a(ba) = (ba)a Stein second law (12)

a(ab) = (ab)b Schroder first law (13)

(ab)(ba) = a Schroder second law (14)

(ab)(ba) = b Stein third law (15)

ab = a Sade right translation law (16)

ab = b Sade left translation law (17)

(C) Those identities which involve three distinct elements on one or both sides of the equality

sign:

(ab)c = a(bc) associative law (18)

a(bc) = c(ab) law of cyclic associativity (19)

(ab)c = (ac)b law of right permutability (20)

a(bc) = b(ac) law of left permutability (21)

a(bc) = c(ba) Abel-Grassman law (22)

(ab)c = a(cb) commuting product law (23)

c(ba) = (bc)a dual of commuting product (24)

(ab)(bc) = ac Stein fourth law (25)

(ba)(ca) = bc law of right transitivity (26)

(ab)(ac) = bc law of left transitivity (27)

(ab)(ac) = cb Schweitzer law (28)

(ba)(ca) = cb dual of Schweitzer law (29)

(ab)c = (ac)(bc) law of right self-distributivity law (30)

c(ba) = (cb)(ca) law of left self-distributivity law (31)

(ab)c = (ca)(bc) law of right abelian distributivity (32)

c(ba) = (cb)(ac) law of left abelian distributivity (33)

(ab)(ca) = [a(bc)]a Bruck-Moufang identity (34)

(ab)(ca) = a[bc)a] dual of Bruck-Moufang identity (35)

[(ab)c]b = a[b(cb)] Moufang identity (36)
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[(bc)b]a = b[c(ba)] Moufang identity (37)

[(ab)c]b = a[(bc)b] right Bol identity (38)

[b(cb)]a = b[c(ba)] left Bol identity (39)

[(ab)c]a = a[b(ca)] extra law (40)

[(ba)a]c = b[(aa)c] RC4 law (41)

[b(aa)]c = b[a(ac)] LC4 law (42)

(aa)(bc) = [a(ab)]c LC2 law (43)

[(bc)a]a = b[(ca)a] RC1 law (44)

[a(ab)]c = a[a(bc)] LC1 law (45)

(bc)(aa) = b[(ca)a] RC2 law (46)

[(aa)b]c = a[a(bc)] LC3 law (47)

[(bc)a]a = b[c(aa)] RC3 law (48)

[(ba)a]c = b[a(ac)] C-law (49)

a[b(ca)] = cb Tarski law (50)

a[(bc)(ba)] = c Neumann law (51)

(ab)(ca) = (ac)(ba) specialized medial law (52)

(D) Those involving four elements:

(ab)(cd) = (ad)(cb) first rectangle rule (53)

(ab)(ac) = (db)(dc) second rectangle rule (54)

(ab)(cd) = (ac)(bd) internal mediality or medial law (55)

(E) Those involving left or right inverse elements:

xλ · xy = y left inverse property (56)

yx · xρ = y right inverse property (57)

x(yx)ρ = yρ or (xy)λx = yλ weak inverse property(WIP) (58)

xy ·xρ = y or x ·yxρ = y or xλ · (yx) = y or xλy ·x = y cross inverse property(CIP) (59)

(xy)ρ = xρyρ or (xy)λ = xλyλ automorphic inverse property (AIP) (60)

(xy)ρ = yρxρ or (xy)λ = yλxλ anti-automorphic inverse property (AAIP) (61)

(xy · x)ρ = xρyρ · xρ or (xy · x)λ = xλyλ · xλ semi-automorphic inverse property (SAIP)

(62)
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Definition 1.2(Trimedial Quasigroup) A quasigroup is trimedial if every subquasigroup gen-

erated by three elements is medial.

Medial quasigroups have also been called abelian, entropic, and other names, while trime-

dial quasigroups have also been called triabelian, terentropic, etc.

There are two distinct, but related, generalizations of trimedial quasigroups. The variety

of semimedial quasigroups(also known as weakly abelian, weakly medial, etc.) is defined by the

equations

xx · yz = xy · xz (63)

zy · xx = zx · yz (64)

Definition 1.3(Semimedial Quasigroup) A quasigroup satisfying (63) (resp. (64) is said to be

left (resp. right) semimedial.

Definition 1.4(Medial-Like Identities) A groupoid or quasigroup is called an external medial

groupoid or quasigroup if it obeys the identity

ab · cd = db · ca external medial or paramediality law (65)

A groupoid or quasigroup is called a palindromic groupoid or quasigroup if it obeys the identity

ab · cd = dc · ba palidromity law (66)

Other medial like identities of the form (ab)(cd) = (π(a)π(b))(π(c)π(d)), where π is a certain

permutation on {a, b, c, d} are given as follows:

ab · cd = ab · dc C1 (67)

ab · cd = ba · cd C2 (68)

ab · cd = ba · dc C3 (69)

ab · cd = cd · ab C4 (70)

ab · cd = cd · ba C5 (71)

ab · cd = dc · ab C6 (72)

ab · cd = ac · db CM1 (73)

ab · cd = ad · bc CM2 (74)

ab · cd = ad · cb CM3 (75)

ab · cd = bc · ad CM4 (76)

ab · cd = bc · da CM5 (77)

ab · cd = bd · ac CM6 (78)

ab · cd = bd · ca CM7 (79)
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ab · cd = ca · bd CM8 (80)

ab · cd = ca · db CM9 (81)

ab · cd = cb · ad CM10 (82)

ab · cd = cb · da CM11 (83)

ab · cd = da · bc CM12 (84)

ab · cd = da · cb CM13 (85)

ab · cd = db · ac CM14 (86)

The variety of F-quasigroups was introduced by Murdoch [18].

Definition 1.5(F-quasigroup) An F-quasigroup is a quasigroup that obeys the identities

x · yz = xy · (x\x)z left F-law (87)

zy · x = z(x/x) · yx right F-law (88)

A quasigroup satisfying (87) (resp. (77)) is called a left (resp. right) F-quasigroup.

Definition 1.6(E-quasigroup) An E-quasigroup is a quasigroup that obeys the identities

x · yz = eλ(x)y · xz El law (89)

zy · x = zx · yeρ(x) Er Law (90)

A quasigroup satisfying (89) (resp. (90)) is called a left (resp. right) E-quasigroup.

Some identities will make a quasigroup to be a loop, such are discussed in Keedwell [6]-[7].

Definition 1.7(Linear Quasigroup and T-quasigroup) A quasigroup (Q, ·) of the form x · y =

xα + yβ + c where (Q,+) is a group, α is its automorphism and β is a permutation of the set

Q, is called a left linear quasigroup.

A quasigroup (Q, ·) of the form x · y = xα + yβ + c where (Q,+) is a group, β is its

automorphism and α is a permutation of the set Q, is called a right linear quasigroup.

A T-quasigroup is a quasigroup (Q, ·) defined over an abelian group (Q,+) by x · y =

c+ xα+ yβ, where c is a fixed element of Q and α and β are both automorphisms of the group

(Q,+).

Whenever one considers mathematical objects defined in some abstract manner, it is usually

desirable to determine that such objects exist. Although occasionally this is accomplished

by means of an abstract existential argument, most frequently, it is carried out through the

presentation of a suitable example, often one which has been specifically constructed for the

purpose. An example is the solution to the open problem of the axiomization of rectangular

quasigroups and loops by Kinyon and Phillips [12] and the axiomization of trimedial quasigroups

by Kinyon and Phillips [10], [11].
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Chein et. al. [2] presents a survey of various methods of construction which has been

used in the literature to generate examples of groupoids and quasigroups. Many of these

constructions are ad hoc-designed specifically to produce a particular example; while others

are of more general applicability. More can be found on the construction of (r, s, t)-inverse

quasigroups in Keedwell and Shcherbacov [8]-[9], idempotent medial quasigroups in Krc̆adinac

and Volenec [14] and quasigroups of Bol-Moufang type in Kunen [15]-[16].

Remark 1.1 In the survey of methods of construction of varieties and types of quasigroups high-

lighted in Chein et. al. [2], it will be observed that some other important types of quasigroups

that obey identities (1) to (90) are not mentioned. Also, examples of methods of construction

of such varieties that are groupoids are also scarce or probably not in existence by our search.

In Theorem 1.4 of Kirnasovsky [13], the author characterized T-quasigroups with a score and

two identities from among identities (1) to (90). The present work thus proves some results

with which such groupoids and quasigroups can be constructed.

1.2 Univariate and Bivariate Polynomials

Consider the following definitions.

Definition 1.8 A polynomial P (x) = a0 + a1x+ · · ·+ anx
n, n ∈ N is said to be a permutation

polynomial over a finite ring R if the mapping defined by P is a bijection on R.

Definition 1.9 A bivariate polynomial is a polynomial in two variables, x and y of the form

P (x, y) = Σi,jaijx
iyj.

Definition 1.10(Bivariate Polynomial Representing a Latin Square) A bivariate polynomial

P (x, y) over Zn is said to represent (or generate) a Latin square if (Zn, ∗) is a quasigroup where

∗ : Zn × Zn → Zn is defined by x ∗ y = P (x, y) for all x, y ∈ Zn.

Mollin and Small [17] considered the problem of characterizing permutation polynomials.

They established conditions on the coefficients of a polynomial which are necessary and sufficient

for it to represent a permutation.

Shortly after, Rudolf and Mullen [23] provided a brief survey of the main known classes of

permutation polynomials over a finite field and discussed some problems concerning permuta-

tion polynomials (PPs). They described several applications of permutations which indicated

why the study of permutations is of interest. Permutations of finite fields have become of

considerable interest in the construction of cryptographic systems for the secure transmission

of data. Thereafter, the same authors in their paper [24], described some results that had

appeared after their earlier work including two major breakthroughs.

Rivest [22] studied permutation polynomials over the ring (Zn,+, ·) where n is a power of

2: n = 2w. This is based on the fact that modern computers perform computations modulo

2w efficiently (where w = 2, 8, 16, 32 or 64 is the word size of the machine), and so it was of

interest to study PPs modulo a power of 2. Below is an important result from his work which

is relevant to the present study.
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Theorem 1.1(Rivest [22]) A bivariate polynomial P (x, y) = Σi,jaijx
iyj represents a Latin

square modulo n = 2w, where w ≥ 2, if and only if the four univariate polynomials P (x, 0),

P (x, 1), P (0, y), and P (1, y) are all permutation polynomial modulo n.

Vadiraja and Shankar [27] motivated by the work of Rivest continued the study of permu-

tation polynomials over the ring (Zn,+, ·) by studying Latin squares represented by linear and

quadratic bivariate polynomials over Zn when n 6= 2w with the characterization of some PPs.

Some of the main results they got are stated below.

Theorem 1.2(Vadiraja and Shankar [27]) A bivariate linear polynomial a+ bx+ cy represents

a Latin square over Zn, n 6= 2w if and only if one of the following equivalent conditions is

satisfied:

(i) both b and c are coprime with n;

(ii) a+ bx, a+ cy, (a+ c) + bx and (a+ b) + cy are all permutation polynomials modulo n.

Remark 1.2 It must be noted that P (x, y) = a+bx+cy represents a groupoid over Zn. P (x, y)

represents a quasigroup over Zn if and only if (Zn, P ) is a T-quasigroup. Hence whenever

(Zn, P ) is a groupoid and not a quasigroup, (Zn, P ) is neither a T-quasigroup nor left linear

quasigroup nor right linear quasigroup. Thus, the present study considers both T-quasigroup

and non-T-quasigroup.

Theorem 1.3(Vadiraja and Shankar [27]) If P (x, y) is a bivariate polynomial having no cross

term, then P (x, y) gives a Latin square if and only if P (x, 0) and P (0, y) are permutation

polynomials.

The authors were able to establish the fact that Rivest’s result for a bivariate polynomial

over Zn when n = 2w is true for a linear-bivariate polynomial over Zn when n 6= 2w. Although

the result of Rivest was found not to be true for quadratic-bivariate polynomials over Zn when

n 6= 2w with the help of counter examples, nevertheless some of such squares can be forced to

be Latin squares by deleting some equal numbers of rows and columns.

Furthermore, Vadiraja and Shankar [27] were able to find examples of pairs of orthogonal

Latin squares generated by bivariate polynomials over Zn when n 6= 2w which was found

impossible by Rivest for bivariate polynomials over Zn when n = 2w.

1.4 Some Important Results on Medial-Like Identities

Some important results which we would find useful in our study are stated below.

Theorem 1.4(Polonijo [21]) For any groupoid (Q, ·), any two of the three identities (55), (65)

and (66) imply the third one.

Theorem 1.5(Polonijo [21]) Let (Q, ·) be a commutative groupoid. Then (Q, ·) is palindromic.

Furthermore, the constraints (55) and (65) are equivalent, i.e a commutative groupoid (Q, ·) is

internally medial if and only if it is externally medial.
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Theorem 1.6(Polonijo [21]) For any quasigroup (Q, ·) and i ∈ {1, 2, ..., 6}, Ci is valid if and

only if the quasigroup is commutative.

Theorem 1.7(Polonijo [21]) For any quasigroup (Q, ·) and i ∈ {1, 2, ..., 14}, CMi holds if and

only if the quasigroup is both commutative and internally medial.

Theorem 1.8(Polonijo [21]) For any quasigroup (Q, ·) and i ∈ {1, 2, ..., 14}, CMi is valid if

and only if the quasigroup is both commutative and externally medial.

Theorem 1.9(Polonijo [21]) A quasigroup (Q, ·) is palindromic if and only if there exists an

automorphism α such that

α(x · y) = y · x ∀ x, y ∈ Q

holds.

It is important to study the characterization of varieties of groupoids and quasigroups

represented by linear-bivariate polynomials over the ring Zn even though very few of such have

been sighted as examples in the past.

§2 Main Results

Theorem 2.1 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over {Zn,Zp} such

that ”HYPO” is true. P (x, y) represents a ”NAME” {groupoid, quasigroup} {(Zn, P ), (Zp, P )}

over {Zn,Zp} if and only if ”N and S” is true. (Table 1)

Proof There are 66 identities for which the theorem above is true for in a groupoid or

quasigroup. For the sake of space, we shall only demonstrate the proof for one identity for each

category.

(A) Those identities which involve one element only on each side of the equality sign:

Lemma 2.1 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a unipotent groupoid (Zn, P ) over Zn if and only if (b+c)(x−y) = 0 for all x, y ∈ Zn.

Proof P (x, y) satisfies the unipotent law ⇔ P (x, x) = P (y, y) ⇔ a+ bx+ cx = a+ by+ cy

⇔ a+ bx− cx− a− by − cy = 0 ⇔ (b+ c)(x − y) = 0 as required. �

Lemma 2.2 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a unipotent quasigroup (Zn, P ) over Zn if and only if (b+ c)(x− y) = 0 and (b, n) =

(c, n) = 1 for all x, y ∈ Zn.

Proof This is proved by using Lemma 2.1 and Theorem 1.2. �

Theorem 2.2 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a unipotent groupoid (Zn, P ) over Zn if and only if b+ c ≡ 0(modn).

Proof This is proved by using Lemma 2.1. �
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Theorem 2.3 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a unipotent quasigroupp (Zn, P ) over Zn if and only if b+ c ≡ 0(modn) and (b, n) =

(c, n) = 1.

Proof This is proved by using Lemma 2.2. �

Example 2.1 P (x, y) = 5x+ y is a linear bivariate polynomial over Z6. (Z6, P ) is a unipotent

groupoid over Z6.

Example 2.2 P (x, y) = 1 + 5x + y is a linear bivariate polynomial over Z6. (Z6, P ) is a

unipotent quasigroup over Z6.

(B) Those identities which involve two elements on one or both sides of the equality sign:

Lemma 2.3 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a Stein third groupoid (Zn, P ) over Zn if and only if a(1 + b + c) + x(b2 + c2) +

y(2bc− 1) = 0 for all x, y ∈ Zn.

Proof P (x, y) satisfies the Stein third law ⇔ P [P (x, y), P (y, x)] = y ⇔ a(1+b+c)+x(b2+

c2) + y(2bc− 1) = 0 as required. �

Lemma 2.4 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a Stein third quasigroup (Zn, P ) over Zn if and only if a(1 + b + c) + x(b2 + c2) +

y(2bc− 1) = 0 and (b, n) = (c, n) = 1 for all x, y ∈ Zn.

Proof This is proved by using Lemma 2.3 and Theorem 1.2. �

Theorem 2.4 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a Stein third groupoid (Zn, P ) over Zn if and only if b2 + c2 ≡ 0(modn), 2bc ≡

1(modn) and a = 0.

Proof This is proved by using Lemma 2.3. �

Theorem 2.5 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a Stein third quasigroup (Zn, P ) over Zn if and only if b2 + c2 ≡ 0(modn), 2bc ≡

1(modn) and a = 0.

Proof This is proved by using Lemma 2.4. �

Theorem 2.6 Let P (x, y) = a+bx+cy be a linear bivariate polynomial over Zp such that a 6= 0.

P (x, y) represents a Stein third groupoid (Zp, P ) over Zp if and only if b2 + c2 ≡ 0(modp) and

2bc ≡ 1(modp).

Proof This is proved by using Lemma 2.3. �

Theorem 2.7 Let P (x, y) = a+bx+cy be a linear bivariate polynomial over Zp such that a 6= 0.

P (x, y) represents a Stein third quasigroup (Zp, P ) over Zp if and only if b2 + c2 ≡ 0(modp)

and 2bc ≡ 1(modp).
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Proof This is proved by using Lemma 2.4. �

Example 2.3 P (x, y) = 2x + 3y is a linear bivariate polynomial over Z5. (Z5, P ) is a Stein

third groupoid over Z5.

Example 2.4 P (x, y) = 2x + 3y is a linear bivariate polynomial over Z5. (Z5, P ) is a Stein

third quasigroup over Z5.

(C) Those identities which involve three distinct elements on one or both sides of the

equality sign:

Lemma 2.5 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an Abel-Grassman groupoid (Zn, P ) over Zn if and only if (x− z)(b− c2) = 0 for all

x, z ∈ Zn.

Proof P (x, y) satisfies the Abel-Grassman law ⇔ P [x, P (y, z)] = P [z, P (y, x)] ⇔ P (x, a+

by+cz) = P (z, a+by+cx) ⇔ a+bx+c(a+by+cz) = a+bz+c(a+by+cx)⇔ (x−z)(b−c2) = 0

as required. �

Lemma 2.6 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an Abel-Grassman quasigroup (Zn, P ) over Zn if and only if (x− z)(b− c2) = 0 and

(b, n) = (c, n) = 1. for all x, y, z ∈ Zn.

Proof This is proved by using Lemma 2.5 and Theorem 1.2. �

Theorem 2.8 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an Abel-Grassman groupoid (Zn, P ) over Zn if and only if c2 ≡ b(modn).

Proof This is proved by using Lemma 2.5. �

Theorem 2.9 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an Abel-Grassman quasigroup (Zn, P ) over Zn if and only if c2 ≡ b(modn) and

(b, n) = (c, n) = 1.

Proof This is proved by using Lemma 2.6. �

Example 2.5 P (x, y) = 2 + 4x + 2y is a linear bivariate polynomial over Z6. (Z6, P ) is an

Abel-Grassman groupoid over Z6.

Example 2.6 P (x, y) = 2 + 4x + 2y is a linear bivariate polynomial over Z5. (Z5, P ) is an

Abel-Grassman quasigroup over Z5.

(D) Those involving four elements:

Lemma 2.7 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an external medial groupoid (Zn, P ) over Zn if and only if w(b2−c2)+z(c2−b2) = 0

for all w, z ∈ Zn.

Proof P (x, y) satisfies the external medial law ⇔ P [P (w, x), P (y, z)] = P [P (z, x), P (y, w)]
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⇔ a+b(a+bw+cx)+c(a+by+cz) = a+b(a+bz+cx)+c(a+by+cw) ⇔ w(b2−c2)+z(c2−b2) = 0

as required. �

Lemma 2.8 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents an external medial quasigroup (Zn, P ) over Zn if and only if w(b2−c2)+z(c2−b2) = 0

and (b, n) = (c, n) = 1 for all w, z ∈ Zn.

Proof This is proved by using Lemma 2.7 and Theorem 1.2. �

Theorem 2.10 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. (Zn, P )

represents an external medial groupoid over Zn if and only if b2 ≡ c2(modn).

Proof This is proved by using Lemma 2.7. �

Theorem 2.11 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. (Zn, P )

represents an external medial quasigroup over Zn if and only if b2 ≡ c2(modn) and (b, n) =

(c, n) = 1.

Proof This is proved by using Lemma 2.8 and Theorem 1.2. �

Example 2.7 P (x, y) = 4 + 2x + 2y is a linear bivariate polynomial over Z6. (Z6, P ) is an

external medial groupoid over Z6.

Example 2.8 P (x, y) = 2 + 8x + y is a linear bivariate polynomial over Z9. (Z9, P ) is an

external medial quasigroup over Z9.

(E) Those involving left or right inverse elements:

Lemma 2.9 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a cross inverse property groupoid (Zn, P ) over Zn if and only if a(bc− 1) + x(b2c+

1 − b− bc) + cy(bc− 1) = 0 for all x, y ∈ Zn.

Proof P (x, y) satisfies the cross inverse property ⇔ P [P (x, y), xρ)] = y ⇔ P (a + bx +

cy, xρ) = y ⇔ a+ b(a+ bx+ cy) + cxρ = y ⇔ a(bc− 1) + x(b2c+ 1 − b− bc) + cy(bc− 1) = 0

as required. �

Lemma 2.10 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a cross inverse property quasigroup (Zn, P ) over Zn if and only if a(bc−1)+x(b2c+

1 − b− bc) + cy(bc− 1) = 0 and (b, n) = (c, n) = 1 for all x, y, z ∈ Zn.

Proof This is proved by using Lemma 2.9 and Theorem 1.2. �

Theorem 2.12 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zp such that

a 6= 0. P (x, y) represents a CIP quasigroup (Zp, P ) over Zp if and only if bc ≡ 1(modp).

Proof This is proved by using Lemma 2.10. �

Theorem 2.13 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn such that
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a 6= 0 and c is invertible in Zn. P (x, y) represents a CIP groupoid (Zn, P ) over Zn if and only

if bc ≡ 1(modn).

Proof This is proved by using Lemma 2.9. �

Theorem 2.14 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn such that

a 6= 0, c is invertible in Zn and (b, n) = (c, n) = 1. P (x, y) represents a CIP quasigroup (Zn, P )

over Zn if and only if bc ≡ 1(modn).

Proof This is proved by using Lemma 2.10. �

Theorem 2.15 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn. P (x, y)

represents a CIP groupoid (Zn, P ) over Zn if bc ≡ 1(modn).

Proof This is proved by using Lemma 2.9. �

Theorem 2.16 Let P (x, y) = a + bx + cy be a linear bivariate polynomial over Zn such that

(b, n) = (c, n) = 1. P (x, y) represents a CIP quasigroup (Zn, P ) over Zn if bc ≡ 1(modn).

Proof This is proved by using Lemma 2.10. �

Example 2.9 P (x, y) = 2+ 4x+ 4y is a linear bivariate polynomial over Z5. (Z5, P ) is a cross

inverse property groupoid over Z5.

Example 2.10 P (x, y) = 3 + 4x + 4y is a linear bivariate polynomial over Z5. (Z5, P ) is a

cross inverse property quasigroup over Z5.

Table 1. Varieties of groupoids and quasigroups generated by P (x, y) over Zn

S/N NAME G Q Zn Zp HYPO N AND S EXAMPLE

1 Idempotent X X b + c = 1, a = 0 5x + 2y, Z6

2 Unipotent X X b + c = 0 2 + 4x + 2y, Z6

X X b + c = 0,(b, n) = (c, n) = 1 2 + 5x + y, Z6

3 Commut X X b = c 1 + 4x + 4y, Z6

X X b = c,(b, n) = (c, n) = 1 1 + 5x + 5y, Z6

4 Sade Right X X a 6= 0 b = −1 2 + 6x + 4y, Z7

X X a 6= 0 b = −1 1 + 5x + 4y, Z7

5 Sade Left X X a 6= 0 c = −1 2 + 4x + 5y, Z7

X X a 6= 0 c = −1 2 + 5x + 5y, Z7

6 Right X X a 6= 0 b = c = 1 3 + x + y, Z7

Alternative X X a 6= 0 b = c = 1 3 + x + y, Z7

7 Left X X a 6= 0 b = c = 1 2 + x + y, Z7

Alternative X X a 6= 0 b = c = 1 2 + x + y, Z7
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S/N NAME G Q Zn Zp HYPO N AND S EXAMPLE

8 Medial X X a 6= 0 b = c 2 + 4x + 4y, Z7

Alternative X X b 6= c b + c = 1 2 + 4x + 2y, Z5

X X a 6= 0 b = c 2 + 4x + 4y, Z7

X X b 6= c b + c = 1 2 + 4x + 2y, Z7

9 Right X X a 6= 0 b = c = −1 2 + 4x + 4y, Z5

Semi X X a = 0 bc = 1, c2 = −b 5x + 2y, Z9

Symmetry X X a 6= 0 b = c = −1 2 + 4x + 4y, Z5

X X a = 0 bc = 1, c2 = −b 5x + 2y, Z9

10 Left X X a 6= 0 b = c = −1 3 + 4x + 4y, Z5

Semi X X a = 0 b = 1, b2 = −c x + 9y, Z10

Symmetry X X a 6= 0 b = c = −1 3 + 4x + 4y, Z5

X X a = 0 b = 1, b2 = −c x + 9y, Z10

11 Stein First X X a 6= 0 b = c 3 + 4x + 4y, Z5

X X a 6= 0 b = c 2 + 4x + 4y, Z5

12 Stein X X a 6= 0 b = c 3 + 4x + 4y, Z5

Second X X a 6= 0 b = c 2 + 4x + 4y, Z5

13 Schroder X X b2 + c2 = 1, 2bc = a = 0 2x + 3y, Z6

Second X X b2 + c2 = (b, n) = (c, n) = 1, 2bc = a = 0 ?

X X a 6= 0 b + c = −1, b2 + c2 = 1, 2bc = 0 ?

X X a 6= 0 b + c = −1, b2 + c2 = 1, 2bc = 0 ?

14 Stein Third X X b2 + c2 = 0, 2bc = 1, a = 0 ?

X X (b, n) = (c, n) = 2bc = 1, b2 + c2 = a = 0 ?

X X a 6= 0 b2 + c2 = 0, 2bc = 1, 3 + 2x + 4y, Z5

X X a 6= 0 b2 + c2 = 0, 2bc = 1, 2 + 2x + 4y, Z5

15 Associative X X a 6= 0 b = c = 1 2 + x + y, Z6

X X a 6= 0 b = c = 1 2 + x + y, Z6

16 Slim X X a = 0, c invert bc = 0, c = 1 !

X X a = 0, c invert bc = 0, c = 1, (b, n) = (c, n) = 1 ?

17 Cyclic X X b = c = 1 3 + x + y, Z6

Associativity X X b = c = 1, (b, n) = (c, n) = 1 3 + x + y, Z6

18 Right X X b = 1 1 + x + 5y, Z6

Permutability X X b = 1, (b, n) = (c, n) = 1 1 + x + 5y, Z6

19 Left X X c = 1 1 + 5x + y, Z6

Permutability X X c = 1, (b, n) = (c, n) = 1 3 + 5x + y, Z6

20 Abel X X c2 = b 2 + 4x + 2y, Z6

Grassman X X c2 = b, (b, n) = (c, n) = 1 2 + 4x + 2y, Z9

21 Commuting X X a 6= 0 b = c = 1 1 + x + y, Z7

Product X X a 6= 0 b = c = 1 1 + x + y, Z7

22 Dual Comm X X a 6= 0 b = c = 1 1 + x + y, Z7

Product X X a 6= 0 b = c = 1 1 + x + y, Z7

23 Right X X a 6= 0 b = 1, c = −1 2 + x + 6y, Z7

Transitivity X X a 6= 0 b = 1, c = −1 2 + x + 6y, Z7

24 Left X X a 6= 0 b = −1, c = 1 2 + 6x + y, Z7

Transitivity X X a 6= 0 b = −1, c = 1 2 + 6x + y, Z7

25 Schweitzer X X b, c invert b = 1, c = −1 2 + x + 5y, Z6

X X b, c invert b = 1, c = −1, (b, n) = (c, n) = 1 2 + x + 5y, Z6

X X a 6= 0 b = 1, c = −1 3 + x + 6y, Z7

X X a 6= 0 b = 1, c = −1 3 + x + 6y, Z7

26 Dual of X X b, c invert b = 1, c = −1 2 + x + 5y, Z6

Schweitzer X X b, c invert b = 1, c = −1, (b, n) = (c, n) = 1 2 + x + 5y, Z6

X X a 6= 0 b = 1, c = −1 3 + x + 6y, Z7

X X a 6= 0 b = 1, c = −1 3 + x + 6y, Z7
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27 Right Self X X c = 1 − b, a = 0 3x + 5y, Z7

Distributive X X c = 1 − b, a = 0 3x + 5y, Z7

28 Left Self X X c = 1 − b, a = 0 3x + 5y, Z7

Distributive X X c = 1 − b, a = 0 3x + 5y, Z7

29 Right X X b, c invert b = c, 2b2 = b ?

Abelian X X b, c invert b = c, 2b2 = b ?

Distributivity X X a 6= 0 b = c, 2b2 = b ?

X X a 6= 0 b = c, 2b2 = b ?

X X a 6= 0 b = c, 2b = 1 2 + 3x + 3y, Z5

X X a 6= 0 b = c, 2b = 1 2 + 3x + 3y, Z5

30 Left X X b, c invert b = c, 2b2 = b

Abelian X X b, c invert b = c, 2b2 = b ?

Distributivity X X a 6= 0 b = c, 2b2 = b ?

X X a 6= 0 b = c, 2b2 = b ?

X X a 6= 0 b = c, 2b = 1 2 + 3x + 3y, Z5

X X a 6= 0 b = c, 2b = 1 2 + 3x + 3y, Z5

31 Bol X X b = c = 1 2 + x + y, Z6

Moufang X X (b, n) = (c, n) = 1 b = c = 1 2 + x + y, Z6

32 Dual Bol X X b = c = 1 2 + x + y, Z6

Moufang X X (b, n) = (c, n) = 1 b = c = 1 2 + x + y, Z6

33 Moufang X X b = c = 1, a = 0 x + y, Z5

X X b = c = 1, a = 0 x + y, Z5

34 R Bol X X a 6= 0 b2 = 1, b = c = 1 2 + x + y, Z7

X X a 6= 0 b2 = 1, b = c = 1 2 + x + y, Z7

X X −1 6= b 6= c b2 = 1, c = 1, a = 0 8x + y, Z63

X X −1 6= b 6= c b2 = 1, c = 1, a = 0 8x + y, Z63

35 L Bol X X a 6= 0 c2 = 1, b = c = 1 2 + x + y, Z7

X X a 6= 0 c2 = 1, b = c = 1 2 + x + y, Z7

X X −1 6= b 6= c c2 = 1, b = 1, a = 0 x + 8y, Z63

X X −1 6= b 6= c c2 = 1, b = 1, a = 0 x + 8y, Z63

36 RC4 X X a = 0 c = b2 = 1 8x + y, Z63

X X a = 0 c = b2 = 1 8x + y, Z63

X X a = 0, b, c invert c = b2 = 1 8x + y, Z63

X X a = 0, b, c invert c = b2 = (b, n) = (c, n) = 1 8x + y, Z63

X X b = −1, c = 1 2 + 5x + y, Z6

X X b = −1, c = (b, n) = (c, n) = 1 2 + 5x + y, Z6

37 LC4 X X a = 0 b = c2 = 1 x + 8y, Z63

X X a = 0 b = c2 = 1 x + 8y, Z63

X X a = 0, b, c invert b = c2 = 1 x + 3y, Z8

X X a = 0, b, c invert b = c2 = (b, n) = (c, n) = 1 x + 4y, Z15

X X b = −1, c = 1 2 + 5x + y, Z6

X X b = −1, c = (b, n) = (c, n) = 1 2 + 5x + y, Z6

38 RC1 X X a = 0 c = b2 = 1 8x + y, Z63

X X a = 0 c = b2 = 1 8x + y, Z63

X X a = 0, b, c invert c = b2 = 1 8x + y, Z63

X X a = 0, b, c invert c = b2 = (b, n) = (c, n) = 1 8x + y, Z63

X X b = −1, c = 1 2 + 5x + y, Z6

X X b = −1, c = (b, n) = (c, n) = 1 2 + 5x + y, Z6
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39 LC1 X X a = 0, c 6= 1 c = −1 3x + 6y, Z7

X X a = 0, c 6= 1 c = −1 3x + 6y, Z7

X X a = 0, c 6= 1, c invert c = −1 5x + 5y, Z6

X X a = 0, c 6= 1, c invert c = −1, (b, n) = (c, n) = 1 5x + 5y, Z6

40 LC3 X X c = 1, b = −2 3 + 4x + y, Z6

X X c = 1, b = −2, (b, n) = (c, n) = 1 2 + 5x + y, Z7

41 RC3 X X c = 1, b = −2 3 + 4x + y, Z6

X X c = 1, b = −2, (b, n) = (c, n) = 1 2 + 5x + y, Z7

42 C-Law X X a = 0 b = c = −1 4x + 4y, Z5

X X a = 0 b = c = −1 4x + 4y, Z5

X X a 6= 0, b 6= 1, b, c inv b = c = −1 3 + 5x + 5y, Z6

X X a 6= 0, b 6= 1, b, c inv b = c = −1, (b, n) = (c, n) = 1 3 + 5x + 5y, Z6

43 LIP X X a 6= 0 c2 = b2 = bc = 1 ?

X X a 6= 0 c2 = b2 = bc = 1 ?

44 RIP X X a 6= 0 c2 = b2 = bc = 1 ?

X X a 6= 0 c2 = b2 = bc = 1 ?

45 1st Right X X a 6= 0 bc = 1 2 + 3x + 4y, Z11

CIP X X a 6= 0 bc = 1 2 + 3x + 4y, Z11

X X a 6= 0, c inv bc = 1 3 + 3x + 3y, Z8

X X a 6= 0, c inv bc = 1, (b, n) = (c, n) = 1 3 + 3x + 3y, Z8

46 2nd Right X X bc = 1 3 + 3x + 3y, Z8

CIP X X bc = 1, (b, n) = (c, n) = 1 3 + 3x + 3y, Z8

47 1st Left X X a 6= 0 bc = 1 2 + 3x + 4y, Z11

CIP X X a 6= 0 bc = 1 2 + 3x + 4y, Z11

X X a 6= 0, b inv bc = 1 3 + 3x + 3y, Z8

X X a 6= 0, b inv bc = 1, (b, n) = (c, n) = 1 3 + 3x + 3y, Z8

48 2nd Left X X bc = 1 3 + 3x + 3y, Z8

CIP X X bc = 1, (b, n) = (c, n) = 1 3 + 3x + 3y, Z8

49 R AAIP X X bc + b 6= 1 b = c 2 + 4x + 4y, Z11

X X bc + b 6= 1 b = c 2 + 4x + 4y, Z11

X X c 6= b b + bc = 1 2 + 3x + y, Z5

X X c 6= b b + bc = 1 2 + 3x + y, Z5

50 L AAIP X X bc + b 6= 1 b = c 2 + 4x + 4y, Z11

X X bc + b 6= 1 b = c 2 + 4x + 4y, Z11

X X c 6= b b + bc = 1 2 + 3x + y, Z5

X X c 6= b b + bc = 1 2 + 3x + y, Z5

51 R AIP X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

52 L AIP X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

53 R SAIP X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn
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54 L SAIP X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

55 R WIP X X a = 0, c2 6= 0 bc = 1 3x + 5y, Z7

X X a = 0, c2 6= 0 bc = 1 3x + 5y, Z7

X X a = 0, c inv bc = 1 3x + 4y, Z6

X X a = 0, c inv bc = 1, (b, n) = (c, n) = 1 ?

X X a = 0, bc + b 6= 1 bc = 1 ?

X X a = 0, bc + b 6= 1 bc = 1, (b, n) = (c, n) = 1 ?

56 L WIP X X a = 0, b2 6= 0 bc = 1 3x + 5y, Z7

X X a = 0, b2 6= 0 bc = 1 3x + 5y, Z7

X X a = 0, b inv bc = 1 3x + 4y, Z6

X X a = 0, b inv bc = 1, (b, n) = (c, n) = 1 ?

X X a = 0, bc + c 6= 1 bc = 1 ?

X X a = 0, bc + c 6= 1 bc = 1, (b, n) = (c, n) = 1 ?

57 El X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

58 Er X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

59 Right F X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

60 Left F X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

61 Medial X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

62 Specialized X X a + bx + cy, Zn

Medial X X a + bx + cy, Zn

X X a + bx + cy, Zn

X X a + bx + cy, Zn

63 First X X b = c 2 + 4x + 4y, Z7

Rectangle X X b = c 2 + 4x + 4y, Z7

X X c inv b = c 2 + 4x + 4y, Z6

X X c inv b = c, (b, n) = (c, n) = 1 2 + 4x + 4y, Z6

64 Second X X b = −c 2 + 4x + 4y, Z7

Rectangle X X b = −c 2 + 4x + 4y, Z7

X X b inv b = −c 2 + 4x + 4y, Z6

X X b inv b = −c, (b, n) = (c, n) = 1 2 + 4x + 4y, Z6

65 Ci, i = 1 − 6 X X b = c 3 + 5x + 5y, Z7

66 CMi, i = 1 − 14 X X b 6= −c b = c 3 + 5x + 5y, Z7
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Remark 2.1 A summary of the results on the characterization of groupoids and quasigroups

generated by P (x, y) is exhibited in Table 1. In this table, G stands for groupoid, Q stands

for quasigroup, HYPO stands for hypothesis, N AND S stands for necessary and sufficient

condition(s). Cells with question marks mean examples could not be gotten.
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Abstract: Bertrand curves have been investigated in Lorentzian and Minkowski spaces

and some characterizations have been given in [1,2,6]. In this paper, we have investigated

the relations between Frenet vector fields and curvatures and torsions of Bertrand curves

at the corresponding points in Minkowski 3-space.
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§1. Introduction

In the study of the fundamental theory and the characterizations of space curves, the corre-

sponding relations between the curves are the very interesting and important problem. The

well-known Bertrand curve is characterized as a kind of such corresponding relation between

the two curves. J. Bertrand studied curves in Euclidean 3-space whose principal normals are the

principal normals of another curve. Such a curve is nowadays called a Bertrand curve. Bertrand

curves have a characteristic property that curvature and torsion are in linear relation.In the re-

cent work [2], the authors studied spacelike and timelike Bertrand curves in Minkowski 3-space.

(See also independently obtained results by [6]).

In this paper, we have investigated the relations between Frenet vector fields and curvatures

and torsions of Bertrand curves at the corresponding points in Minkowski 3-space.
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§2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the standard flat metric

given by

〈, 〉 = −dx1 + dx3 + dx3

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since 〈, 〉 is an indefinite metric,

recall that a vector v ∈ E3
1 can have one of three Lorentzian causal characters: it can be

spacelike if 〈v, v〉 > 0 or v = 0 , timelike if 〈v, v〉 < 0 and null (lightlike) if 〈v, v〉 = 0 and v 6= 0 .

Similarly, an arbitrary curve α = α(s) in E3
1 can locally be spacelike, timelike or null (lightlike),

if all of its velocity vectors α′(s) are respectively spacelike, timelike or null (lightlike).

Minkowski space is originally from the relativity in Physics. In fact, a timelike curve

corresponds to the path of an observer moving at less than the speed of light. Denote by

{T,N,B} the moving Frenet frame along the curve α(s) in the space E3
1 . For an arbitrary

curve α(s) in the space E3
1 , the following Frenet formulae are given. If α is timelike curve, then

the Frenet formulae read 


T ′

N ′

B′


 =




0 κ 0

κ 0 τ

0 −τ 0







T

N

B


 (1.1)

where 〈T, T 〉L = −1, 〈N,N〉L = 1, 〈B,B〉L = 1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0. If α is a

spacelike curve with a spacelike principal normal, then the Frenet formulae read




T ′

N ′

B′


 =




0 κ 0

−κ 0 τ

0 τ 0







T

N

B


 (1.2)

where 〈T, T 〉L = 〈N,N〉L = 1, 〈B,B〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.If α is a

spacelike curve with a spacelike binormal, then the Frenet formulae read




T ′

N ′

B′


 =




0 κ 0

κ 0 τ

0 τ 0







T

N

B


 (1.3)

where 〈T, T 〉L = 〈B,B〉L = 1, 〈N,N〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0 [4,7,11].

§3. Bertrand Curves in Minkowski 3-Space

Definition 3.1([1,2,6]) Let β1 and β2 be two unit speed regular curves in E3
1 , and {T1, N1, B1}

and {T2, N2, B2}also be Frenet Frames on these curves, respectively. β1 and β2 are called

Bertrand curves if N1 and N2 are linearly dependent.We say that β2 is a Bertrand mate for β1

and β2 are Bertrand curves. And (β1, β2) is called a Bertrand couple and we can write

β2(s) = β1(s) + rN1(s).
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Theorem 3.1 If there exists a one-to-one correspondence between the points of the spacelike

curves C1 and C2 with timelike principal normal, such that at corresponding points P1 on C1

and P2 on C2,then the following statements hold:

(1) The curvature κ1 of C1 is a constant;

(2) The torsion τ2 of C2 is constant;

(3) The unit tangent vector T1 of C1 is parallel to the unit tangent vector T2 of C2.

Then the curve C generated by P that divides the segment P1P2 in ratio m : 1 is a spacelike

Bertrand curve with timelike principal normal.

Proof We shall use the subscripts 1, 2 to designate the geometric quantites corresponding

to the curves C1, C2 while the same letters without subscripts will refer to the spacelike curve

C with timelike principal normal.

Let α(s), α1(s), α2(s) be the coordinat vectors at the points P , P1, P2 on the curves C,C1,C2

respectively. Then the from convex combination of points P1 and P2 , the equation of point P

is

α(s) = mα1(s) + (1 −m)α2(s), m ∈ R, (2.1)

while by hypothesis,

‖T1‖ = ‖T2‖ = 1, T1 = T2. (2.2)

On differentiating Eq.(2.1) we have

Tds = mT1ds1 + (1 −m)T2ds2 = (mds1 + (1 −m)ds2)T1 (2.3)

which shows that T is parallel to T1 and T2 and always can be chosen so that

T = T1 = T2, (2.4)

and

ds = mds1 + (1 −m)ds2. (2.5)

Differentiating of Eq.(2.4) gives

κNds = κ1N1ds1 = κ2N2ds2, (2.6)

and if we assume that κ, κ1, κ2 are positive, then

N = N1 = N2, (2.7)

and

κds = κ1ds1 = κ2ds2. (2.8)

From Eq.(2.4) and Eq.(2.7)

B = B1 = B2, (2.9)

and differentiating

τNds = τ1N1ds1 = τ2N2ds2. (2.10)
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Elimination of ds, ds1, ds2 gives
(
m

κ1

)
κ+

(
1 −m

τ2

)
τ = 1;κ1 6= 0, τ2 6= 0,

which is the desired result, since m,κ1, τ2 are constant. If instead of T1 = T2 were given the

condition B1 = B2, the same result would follow in the same manner. �

Theorem 3.2 If condition (c) of Theorem 3.1 is modifed so that at corresponding points P1

and P2, the binormals B1 and B2 are parallel, then the curve C is a spacelike Bertrand curve

with timelike principal normal.

Proof Since B1 = B2 then

τ1N1 = τ2N2
ds2
ds1

. (2.11)

where N1 and N2 are the unit normal vectors of α1 and α2 at the points P1and P2 with arc-

length parametrization. Hence N1 = N2 and T1 = N1 ×B1 = N2 ×B2, we know T1 parallel to

T2. By Theorem 2.1, C is a spacelike Bertrand curve with timelike principal normal. �

Theorem 3.3 If condition (c) of Theorem 3.1 is modified so that at corresponding points P1

and P2 the tangent at P1is parallel to the binormal B2 at P2, then the curve C is a spacelike

Bertrand curve with timelike principal normal.

Proof Since T1 = B2, it follow that

κ1N1 = τ2N2
ds2
ds1

. (2.12)

Hence N1 is parallel to N2 and since N1 and N2 are unit vectors,

N1 = N2 (2.13)

and
ds2
ds1

=
κ1

τ2
, (2.14)

since B1 = T1 ×N1 = B2 ×N2 = −T2,we have

B1 = −T2. (2.15)

Let α, α1, α2 be the coordinate vectors at the points P , P1, P2 on the curves C,C1,C2,

respectively. Then

α = mα1 + (1 −m)α2 (2.16)

dα

ds
= m

dα1

ds
+ (1 −m)

dα2

ds
dα

ds
= m

dα1

ds1

ds1
ds

+ (1 −m)
dα2

ds2

ds2
ds

T =

(
mT1 + (1 −m)

ds2
ds1

T2

)
ds1
ds

=

(
mT1 +

κ1

τ2
(1 −m)T2

)
ds1
ds
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T = m1T1 +m2T2 , (2.17)

where

m1 = m
ds1
ds

=
m τ

2√
(m τ

2
)
2

+ [κ
1
(1 −m)]

2
, m1 = const.

m2 = (1 −m)
ds

2

ds
=

(1 −m) κ
1√

(m τ
2
)
2

+ [κ
1
(1 −m)]

2
,m2 = const.

Differentiating Eq.(2.17), one gets

κN = κ1m1N1
ds1

ds
= κ2m2N2

ds2
ds

. (2.18)

Hence

N = N1 = N2 (2.19)

and

κ = κ
1
m1

ds1
ds

+ κ
2
m2

ds2
ds

. (2.20)

Using Eq.(2.7) and Eq.(2.9), one finds that

B = m1B1 +m2B2. (2.21)

Differentiating Eq.(2.11), one gets

τN = τ1m1
ds1
ds

N1 + τ2m2
ds2
ds

N2. (2.22)

Hence

τ = τ1m1
ds1
ds

+ τ2m2
ds2
ds

. (2.23)

Using Eq.(2.14) and Eq.(2.15), one gets

ds2
ds1

= −
τ1
κ2

=
κ1

τ2
. (2.24)

and
τ1
κ1

= −
κ2

τ2
.

Let

M1 = m1
ds1
ds

, M2 = m2
ds2
ds

.

Then using Eq.(2.20) and Eq.(2.23), one gets

κ

M2τ2
+

τ

M1κ1
=

κ1

τ2

M1

M2
+

(
κ2M2

τ2M2
+
τ1M1

κ1M1

)
+
τ2
κ1

M2

M1

=
κ1

τ2

M1

M2
+
τ2
κ1

M2

M1
= constant,

κ1

τ2
,
M1

M2
=constant.

and this is the intrinsic equation of a spacelike Bertrand curve. �
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§1. Introduction

Let A(X) (or simply A, if X is clear from the context) be the adjacency matrix of a graph X .

The set of all polynomials in A with coefficients from the field of complex numbers C forms

an algebra called the adjacency algebra of X , denoted by A(X). Let dim(A(X)) denote the

dimension of A(X) as a vector space over C. It is easy to see that dim(A(X)) is equal to degree

of the minimal polynomial of A. Since dim(A(X)) is also equal |spec(A)| where spec(A) denote

the set of all distinct eigenvalues of A and |B| denote the cardinality of the set B.

Definition 1 Two graphs X and Y are said to be respectable to each other if A(X) = A(Y ).

In this case we say that either X respects Y or Y respects X.

A graph Y is said to be a polynomial in a graph X if A(Y ) ∈ A(X). For example, Kn the

complete graph is a polynomial in every connected regular graph with n vertices. By definition

if X respects Y , then X is a polynomial in Y and Y is a polynomial in X . In this study we

explore some graph theoretic and algebraic properties shared by respectable graphs. In the

remaining part of this section we will give some preliminaries required for this paper.

For two vertices u and v of a connected graph X , let d(u, v) denote the length of the

shortest path from u to v. Then the diameter of a connected graph X = (V,E) is max{d(u, v) :

u, v ∈ V }. It is shown in Biggs [3] that if X is a connected graph with diameter ℓ, then

ℓ+ 1 ≤ dim(A(X)) ≤ n.

A graph X1 = (V (X1), E(X1)) is said to be isomorphic to a graph X2 = (V (X2), E(X2)),

written X1
∼= X2, if there is a one-to-one correspondence ρ : V (X1) → V (X2) such that

{v1, v2} ∈ E(X1) if and only if {ρ(v1), ρ(v2)} ∈ E(X2). In such a case, ρ is called an isomor-

1Received February 23, 2011. Accepted June 2, 2011.
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phism of X1 and X2. An isomorphism of a graph X onto itself is called an automorphism.

The collection of all automorphisms of a graph X is denoted by Aut(X). It is well known that

Aut(X) is a group under composition of two maps. It is easy to see that Aut(X) = Aut(Xc),

where Xc is the complement of the graph X. If X is a graph with n vertices we can think

Aut(X) as a subgroup of Sn. Under this correspondence, if a graph X has n vertices then

Aut(X) consists of n × n permutation matrices and for each g ∈ Aut(X), Pg will denote the

corresponding permutation matrix.

§2. Graph Theoretic Properties

In this section we will see some graph theoretical properties shared by the respectable graphs.

The next result gives a method to check whether a given permutation matrix is an element of

Aut(X) or not.

Lemma 2.1(Biggs [3]) Let A be the adjacency matrix of a graph X. Then g ∈ Aut(X) is an

automorphism of X if and only if PgA = APg.

The following result is immediate from the above lemma, also given by Paul.M.Weichsel

[7].

Corollary 2.2 Let X be a graph and p(x) be a polynomial such that p(X) is a graph. Then

Aut(X) ⊆ Aut(p(X)).

Corollary 2.3 If the graph X respects the graph Y , then Aut(X) = Aut(Y ).

Lemma 2.4(Biggs [3]) A graph X is regular if and only if A(X)J = JA(X), where J is a

matrix with each entry is 1.

The following result shows that any graph which is a polynomial in a regular graph is

regular.

Corollary 2.5 Let X be a regular graph. The any graph which is a polynomial in X is also

regular . In particular if X respects Y , then Y is regular.

Lemma 2.6(Biggs [3]) A graph X is connected regular if and only if J ∈ A(X).

Corollary 2.7 If X is a regular graph then J is polynomial in either A or Ac.

Proof For every graph X , either X or Xc is connected. Hence the result follows from the

above lemma. �

Corollary 2.8 Let X be a connected regular graph, then Xc is connected if and only if X

respects Xc.

Proof It is easy to verify that Xc is also regular. Since X is connected regular graph from

Lemma 2.6 we have J ∈ A(X) ⇒ A(Xc) = J − I − A ∈ A(X) ⇒ A(Xc) ⊆ A(X). Now it is
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sufficient to prove that Xc is connected if and only if A(X) ⊆ A(Xc).

Xc is connected ⇔ J ∈ A(Xc) ⇔ A ∈ A(Xc) ⇔ A(X) ⊆ A(Xc). �

Corollary 2.9 Let X be a connected regular graph. If X respects Y , then Y is connected

regular graph.

We say that a graph X is walk-regular if, for each s, the number of closed walks of length

s starting at a vertex v is independent of the choice of v.

Theorem 2.10([6]) Let A be the adjacency matrix of a graph X. Then X is walk-regular if

and only if the diagonal entries of As ∀s are all equal.

Corollary 2.11 Let X be a walk regular graph and p(x) be a polynomial such that p(X) is a

graph. Then p(X) is walk regular.

Proof Let A be the adjacency matrix of X . From the above theorem the diagonal entries

of As ∀s are all equal, so as for every element in A(X). As one of the basis for A(X) is

{I, A,A2, . . . Al−1} where l is the degree of the minimal polynomial of A. �

From the above result we deduce that if X be a walk regular graph and X respects Y ,

then Y is also walk regular graph.

Now we will see some symmetrical properties shared by the respectable graphs.

Definition 2 A graph X = (V,E) is said to be vertex transitive if its automorphism group acts

transitively on V . That is for any two vertices x, y ∈ V, ∃g ∈ G such that g(x) = y.

Definition 3 A graph X = (V,E) is said to be generously transitive if its automorphism group

acts generously transitively on V (X), i.e., if any x, y ∈ V then ∃g ∈ Aut(X) such that g(x) = y

and g(y) = x.

Every generously transitive graph is transitive. From the Corollary 2.2 we have the follow-

ing result.

Lemma 2.12 If X is a generously transitive (or vertex transitive) graph and Y is a polynomial

in X, then Y is also a generously transitive (or vertex transitive) graph.

§3. Algebraic Properties

Let X be a graph with n vertices and A be the adjacency matrix of X . By graph algebra of

X , we mean a matrix subalgebra of Mn(C) which contains A. For example Mn(C) and A(X)

are graph algebras of X . If the graph X respects Y , then in this section we will show that the

following three graph algebras of X and Y will coincide.

• The commutant algebra of a graph Z is the set all matrices over C which commutes with

adjacency matrix of Z.

• The coherent closure of a graphZ is the smallest coherent algebra containing the adjacency

matrix of Z.
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• The centralizer algebra of a graph Z is the set all matrices which commute with all

automorphisms of Z.

3.1 Coherent Closure of a Graph

Definition 4 Hadamard product of two n× n matrices A and B is denoted by A ⊙ B and is

defined as (A⊙B)xy = AxyBxy.

Definition 5 Two n× n matrices A and B are said to be disjoint if their Hadamard product

is the zero matrix.

Definition 6 A sub algebra of Mn(C) is called coherent if it contains the matrices I and J

and if it is closed under conjugate-transposition and Hadamard multiplication.

The following result is well known.

Theorem 3.1 Every coherent algebra contains unique basis of disjoint 0-1 matrices.

We call the unique basis containing disjoint 0-1 matrices as a standard basis.

Corollary 3.2 Every 0, 1-matrix in a coherent algebra is sum of one or more matrices in its

standard basis.

Proof Let M be a coherent algebra over C with standard basis {M1, . . .Mt}. Let B ∈ M

be a 0, 1-matrix. Then B =
∑t

i=1 aiMi where ai ∈ C. B = B ⊙ B =
∑t

i=1 a
2
iMi ⇒ a2

i = ai.

Hence the result follows. �

Observation 3.3 The intersection of coherent algebras is again a coherent algebra.

Definition 7 Let X = (V,E) be a graph with adjacency matrix A then any coherent algebra

which contains A is called coherent algebra of X.

Definition 8 If X = (V,E) be a graph and A is its adjacency matrix then coherent closure of

X, denoted by 〈〈A〉〉 or CC(X), is the smallest coherent algebra containing A.

Since A(Xc) = J − I −A(X) consequently A(X), A(Xc) ∈ CC(X) ∩ CC(Xc), hence we get

the following lemma.

Lemma 3.4 For every graph X, CC(X) = CC(Xc).

Lemma 3.5 If the graph X respects Y , then CC(X) = CC(Y ).

Proof Since X respects Y , we have A(X) = A(Y ) ⊆ CC(Y ). Consequently CC(Y ) is

a coherent algebra containing A(X) but by definition CC(X) is the smallest coherent algebra

containing A(X). So CC(X) ⊆ CC(Y ). Similarly we can prove CC(Y ) ⊆ CC(X). Hence the

result follows. �
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Clearly, the converse of this result is not true as CC(X) = CC(Xc), but X need not respect

Xc.

3.2 Centralizer Algebra of a Graph

Definition 9 Let G be a subset of n×n permutation matrices forming a group. Then VC(G) =

{A ∈Mn(C) : PA = AP ∀P ∈ G} forms an algebra over C called the centralizer algebra of the

group G.

Definition 10 If G is a group acting on a set V , then G also acts on V × V by g(x, y) =

(g(x), g(y)). The orbits of G on V ×V are called orbitals. In the context of graphs, the orbitals

of graph X are orbitals of its automorphism group Aut(X) acting on the vertex set of X. That

is, the orbitals are the orbits of the arcs/non-arcs of the graph X = (V,E). The number of

orbitals is called the rank of X.

An orbital can be represented by a 0 − 1 matrix M where Mij is 1 if (i, j) belongs to the

orbital. We can associate directed graphs to these matrices. If the matrices are symmetric,

then these can be treated as undirected graphs.

Observation 3.6

• The ‘1’ entries of any orbital matrix are either all on the diagonal or all are off diagonal.

• The orbitals containing 1’s on the diagonal will be called diagonal orbitals.

Definition 11 The centralizer algebra of a graph X denoted by V(X) is the centralizer algebra

of its automorphism group.

Theorem 3.7([4]) VC(G) is a coherent algebra and orbitals of AutX acting on the vertex set

of X form its unique 0-1 matrix basis.

V(X) = V(Xc) follows from the fact that Aut(X) = Aut(Xc) . CC(X) is the smallest

coherent algebra of X and V(X) is a coherent algebra of X so CC(X) ⊆ V(X). So for any graph

X we have A(X) ⊆ CC(X) ⊆ V(X). The following result follows from the Corollary 2.3.

Lemma 3.8 If the graph X respects the graph Y , then V(X) = V(Y ).

Now we will see a consequence of above result. For that we need the following definition.

Definition 12(Robert A.Beezer [1]) A graph X = (V,E) is orbit polynomial graph if each

orbital matrix is member of A(X). That is each orbital matrix is a polynomial in A.

Lemma 3.9 X is an orbit polynomial graph if and only if A(X) = V(X).

If X is an orbit polynomial graph, then we have A(X) = CC(X) = V(X).

Corollary 3.10 Let X be an orbit polynomial graph and suppose X respects the graph Y , then

Y is also an orbit polynomial graph.
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Corollary 3.11 If X is an orbit polynomial graph and Xc is connected then Xc is orbit

polynomial graph.

If X is an orbit polynomial graph and Xc is connected, then we have A(X) = A(Xc) =

CC(X) = CC(Xc) = V(X) = V (Xc).

3.3 Commutant algebra of a graph

The commutant algebra of graph X , denoted by C[X ] is the set of all matrices which commutes

with A. It is shown in (Davis [5]) that dim(C[A])=sum of the squares of the multiplicities of

eigenvalues of A. Hence the following lemma.

Lemma 3.12 A(X) = C[X ] if and only if all eigenvalues of X are distinct.

Lemma 3.13 If the graph X respects the graph Y then C[X ] = C[Y ].

Proof Notice that

B ∈ C[X ] ⇔ BA(X) = A(X)B ⇔ BA(Y ) = A(Y )B ⇔ B ∈ C[Y ].

We get the result. �

§4 Polynomial Equivalence

Let Gn be the set of all graphs with n vertices. We define a relation R on Gn as XRY ⇔

X respects Y . It is easy to see that R is an equivalence relation on Gn. Now for a given graph

X , our objective is to find the equivalence class [X ] under the equivalence relation R. First

we identify a set [X ] with a set in polynomial algebra C[x]. For that we need the following

notations and definitions.

C[A] denote the set of all matrices which are polynomials in the square matrix A. It is

easy to see that C[A] ∼= C[x]/〈p(x)〉 where 〈p(x)〉 is the ideal in C[x] generated by p(x), which is

the minimal polynomial of A. Consequently if B ∈ C[A], then there exists a unique polynomial

fB(x) called representor polynomial of B such that deg(fB(X)) ≤ deg(p(x)) and fB(A) = B.

Definition 13 Let A be a square matrix and f(x) be a polynomial. We say that f(x) respects

spec(A) if f(λi) 6= f(λj) for λi and λj distinct eigenvalues of A.

The following result is given by Paul M.Weichsel [7].

Lemma 4.1 Let A be diagonalizable matrix over a field and f(x) ∈ C[x]. Then f(x) respects

spec(A) if and only if there exists a polynomial g(x) ∈ C[x] such that g(f(A)) = A.

Proof Let B = f(A). Clearly C[B] ⊆ C[A]. Since A is diagonalizable, so is B. Conse-

quently A is a polynomial in B if and only if C[B] = C[A] if and only if |spec(A)| = |spec(B)|

if and only if f(x) respects spec(A). �
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Now let A be the adjacency matrix of a graph X and we denote

FX = {f(x) ∈ C[x]| deg(f(x)) ≤ deg(p(x)) and f(A) is a 0,1-matrix},

HX = {g(x) ∈ FX |g(x) respects spec(A)}.

Now one can easily verify that finding the set [X ] is equivalent to finding the set HX . By

definition, in order to find HX we need to find FX but for a given graph X finding FX seems

difficult. Let X be a graph with the property A(X) = CC(X), then from Corollary 3.2 it is easy

to evaluate FX . Distance regular graphs and orbit polynomial graphs satisfy A(X) = CC(X)

for details one can refer Robert A.Beezer [2] and Paul M.Weichsel [7].

The following theorem shows that if X is a connected vertex transitive graph with a prime

number of vertices then X respects Y if and only if Aut(X) = Aut(Y ).

Theorem 4.2(Robert A.Beezer [2]) Suppose that X is a connected, vertex transitive graph with

a prime number of vertices. Let p(x) be a polynomial such that p(X) is a connected graph, and

Aut(X) = Aut(p(X)). Then p(x) respects spec((A(X)).

Comments In spite of these results, there are many properties which are not shared by the

respectable graphs. We illustrate few of them with examples. Let Cn denote the cycle graph

with n vertices, then Cn respects Cc
n for n ≥ 5. It is known that C2n is bipartite for every

n, but Cc
2n is not bipartite for n ≥ 3. For n ≥ 3, C2n is Eulerain graph but Cc

2n is not. Cn

is planar graph ∀n where as Cc
n is not planar for n ≥ 9 as every finite, simple, planar graph

has a vertex of degree less than 6. Petersen graph is not Hamiltonian graph but from Dirac’s

theorem its compliment (respects Petersen graph) is a Hamiltonian graph.
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§1. Introduction

For an integer n ≥ 1, a Smarandache metric multi-space S̃ is a union
n⋃

i=1

Ai of spaces A1, A2, · · · ,

An, distinct two by two with metrics ρ1, ρ2, · · · , ρn such that (Ai, ρi) is a metric space for

integers 1 ≤ i ≤ n. In 1986, the notion of compatible mappings which generalized commuting

mappings, was introduced by Jungck [3]. This has proven useful for generalization of results

in metric fixed point theory for single-valued as well as multi-valued mappings. Further in

1998, the more general class of mappings called weakly compatible mappings was introduced

by Jungck and Rhoades [4]. Recall that self mappings S and T of a metric space (X, d) are

called weakly compatible if Sx = Tx for some x ∈ X implies that STx = TSx.

Recently Aamri et al. [1] introduced the following notion for a pair of maps as:

Definition 1.1 Let S and T be two self mappings of a metric space (X, d). S and T are said

to satisfy the property (E.A), if there exists a sequence {xn} in X such that limn→∞ Txn =

limn→∞ Sxn = t, for some t ∈ X.

Most recently, Y. Liu et al. [5] defined a common property (E.A) for pairs of mappings as

1Received October 20, 2010. Accepted June 6, 2011.
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follows:

Definition 1.2 Let A,B, S, T : X → X. The pairs (A,S) and (B, T ) satisfy a common property

(E.A) if there exist two sequences {xn} and {yn} such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t ∈ X.

If B = A and S = T in above, we obtain the definition of property (E.A).

Example 1.3 Let A, B, S and T be self maps on X = [0, 1], with the usual metric d(x, y) =

|x− y|, defined by:

Ax =





1 − x

2 when x ∈ [0, 1
2 ),

1 when x ∈ [12 , 1]).

Sx =





1 − 2x when x ∈ [0, 1
2 ),

1 when x ∈ [12 , 1]).

Bx = 1−x and Tx = 1−
x

3
, ∀ x ∈ X . Let {xn} and {yn} be a sequences defined by xn =

1

n+ 1

and yn =
1

n2 + 1
, then limn→∞Axn = limn→∞ Sxn = limn→∞Byn = limn→∞ Tyn = 1 ∈ X.

Thus a common (E.A) property is satisfied.

In this paper we prove some common fixed point theorems for a quadruple of weak compat-

ible self mappings of a metric space satisfying a common (E.A) property, a special Smarandache

metric multi-space
n⋃

i=1

(Ai, ρi) for n = 1 and a generalized Φ-contraction. These theorems extend

and generalize results of Pathak et al. [6] and [7].

§2. Preliminaries

Now onwards, we denote by Φ the collection of all functions ϕ : [0,∞) → [0,∞) which are upper

semi-continuous from the right, non-decreasing and satisfy lims→t+ sup ϕ(s) < t, ϕ(t) < t for

all t > 0.

Let X denote a metric space endowed with metric d and let N denote the set of natural

numbers.

Now, let A, B, S and T be self-mappings of X such that

[dp(Ax,By) + a dp(Sx, T y)]dp(Ax,By)

≤ a max{dp(Ax, Sx)dp(By, Ty), dq(Ax, Ty)dq′

(By, Sx)}

+max{ϕ1(d
2p(Sx, T y)), ϕ2(d

r(Ax, Sx)dr′

(By, Ty)),

ϕ3(d
s(Ax, Ty)ds′

(By, Sx)),

ϕ4(
1

2
[dl(Ax, Ty)dl′(Ax, Sx) + dl(By, Sx))dl′ (By, Ty)} (2.1)
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for all x, y ∈ X,ϕi ∈ Φ(i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q + q′ = r + r′ =

s+ s′ = l + l′. The condition (2.1) is commonly called a generalized Φ-contraction.

§3. Main Results

The following theorems are our main results in this section.

Theorem 3.1 Let A,B, S and T be self mappings of a metric space (X, d) satisfying (2.1).If

the pairs (A,S) and (B, T ) satisfy a common (E.A) property, are weakly compatible and that

T (X) and S(X) are closed subsets of X, then A, B, S and T have a unique common fixed point

in X.

Proof. Since (A,S) and (B, T ) satisfy a common property (E.A). Then there exist two

sequences {xn} and {yn} such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z

for some z ∈ X . Assume that S(X) and T (X) are closed subspaces of X . Then, z = Su = Tv

for some u, v ∈ X . Then by using (2.1) with x = xn and y = v, we have

[dp(Axn, Bv) + a dp(Sxn, T v)]d
p(Axn, Bv) ≤ amax{dp(Axn, Sxn)dp(Bv, T v),

dq(Axn, T v)d
q′

(Bv, Sxn)} +max{ϕ1(d
2p(Sxn, T v)),

ϕ2(d
r(Axn, Sxn)dr′

(Bv, T v)), ϕ3(d
s(Axn, T v)d

s′

(Bv, Sxn)),

ϕ4(
1

2
[dl(Axn, T v)d

l′(Axn, Sxn) + dl(Bv, Sxn))dl′ (Bv, T v)]),

taking lim
n→∞

, we obtain

[dp(z,Bv) + a dp(z, T v)]dp(z,Bv) ≤ amax{dp(z, z)dp(Bv, z), dq(z, T v)dq′

(Bv, z)}

+max{ϕ1(d
2p(z, T v)), ϕ2(d

r(z, z)dr′

(Bv, z)),

ϕ3(d
s(z, T v)ds′

(Bv, z)), ϕ4(
1

2
[dl(z, T v)dl′(z, z)

+ dl(Bv, z))dl′ (Bv, z)])},

or d2p(z,Bv) ≤ max{ϕ1(0), ϕ2(0), ϕ3(0), ϕ4(
1
2d

l+l′(Bv, z))},

or d2p(z,Bv) ≤ max{ϕ1(d
2p(z,Bv)), ϕ2(d

r+r′

(z,Bv),

ϕ3(d
s+s′

(z,Bv)), ϕ4(
1
2d

l+l′(Bv, z))}.

This together with a well known result of Chang [2] which states that if ϕi ∈ Φ where i ∈ I

(some indexing set), then there exists a ϕ ∈ Φ such that max {ϕi, i ∈ I} ≤ ϕ(t) for all t > 0;

imply

d2p(z,Bv) ≤ ϕ(d2p(z,Bv)) < d2p(z,Bv),

a contradiction. This implies that z = Bv. Therefore Tv = z = Bv. Hence it follows by the

weak compatibility of the pair (B, T ) that BTv = TBv, that is Bz = Tz.
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Now, we shall show that z is a common fixed point of B and T . For this put x = xn and

y = z in (2.1), we have

[dp(Axn, Bz) + a dp(Sxn, T z)]d
p(Axn, Bz) ≤ a max{dp(Axn, Sxn)dp(Bz, T z),

dq(Axn, T z)d
q′

(Bz, Sxn)} +max{ϕ1(d
2p(Sxn, T z)),

ϕ2(d
r(Axn, Sxn)dr′

(Bz, T z)), ϕ3(d
s(Axn, T z)d

s′

(Bz, Sxn)),

ϕ4(
1

2
[dl(Axn, T z)d

l′(Axn, Sxn) + dl(Bz, Sxn))dl′ (Bz, T z)}.

Letting n → ∞ with the help of the fact that limn→∞Axn = z = limn→∞Sxn and Bz = Tz,

we get

[dp(z,Bz) + adp(z, T z)]dp(z,Bz) ≤ a max{dp(z, z)dp(Bz, z), dq(z, T z)dq′

(Bz, z)}

+max{ϕ1(d
2p(z, T z)), ϕ2(d

r(z, z)dr′

(Bz, z)), ϕ3(d
s(z, T z)ds′

(Bz, z)),

ϕ4(
1

2
[dl(z, T z)dl′(z, z) + dl(Bz, z))dl′(Bz, z)])},

or d2p(z,Bz) + a d2p(z,Bz) ≤ a dq+q′

(Bz, z) +max{ϕ1(d
2p(z,Bz)),

ϕ2(0), ϕ3(d
s+s′

(z,Bz)), ϕ4(0)},

or (1 + a)d2p(z,Bz) ≤ a dq+q′

(Bz, z)} +max{ϕ1(d
2p(z,Bz)),

ϕ2(0), ϕ3(d
s+s′

(z,Bz)), ϕ4(0)},

or d2p(z,Bz) ≤ a
1+ad

q+q′

(Bz, z) + 1
1+amax{ϕ1(d

2p(z,Bz)),

ϕ2(0), ϕ3(d
s+s′

(z,Bz)), ϕ4(0)}

< d2p(z,Bz),

a contradiction. So z = Bz = Tz. Thus z is a common fixed point of B and T .

Similarly we can prove that z is a common fixed point of A and S. Thus z is the common

fixed point of A, B, S and T . The uniqueness of z as a common fixed point of A, B, S and T

can easily be verified. �

Remark 3.3 Our Theorem 3.1 extends theorem 2.1 of Pathak et al. [6].

In Theorem 3.1, if we put a = 0 and ϕi(t) = ht (i = 1, 2, 3, 4), where 0 < h < 1, we get the

following corollary:

Corollary 3.4 Let A, B, S and T be self mappings of a metric space X. If the pairs (A,S)

and (B, T ) satisfy a common (E.A) property and

d2p(Ax,By) ≤ h max{d2p(Sx, T y), dr(Ax, Sx)dr′

(By, Ty), ds(Ax, Ty)

ds′

(By, Sx)),
1

2
[dl(Ax, Ty)dl′ (Ax, Sx) + dl(By, Sx))dl′ (By, Ty)} (2.2)

for all x, y ∈ X,ϕi ∈ Φ (i=1,2,3,4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q + q′ = r + r′ =

s + s′ = l + l′. If the pairs (A,S) and (B, T ) are weakly compatible and that T (X) and S(X)

are closed, then A, B, S and T have a unique common fixed point in X.
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Especially when

max{d2p(Sx, T y), dr(Ax, Sx)dr′

(By, Ty), ds(Ax, Ty)ds′

(By, Sx)),

1

2
[dl(Ax, Ty)dl′(Ax, Sx) + dl(By, Sx))dl′ (By, Ty)} = d2p(Sx, T y),

it generalizes Corollary 3.9 of Pathak et al. [7].

In Theorem 3.1, if we take S =T = IX (the identity mapping on X), then we have the

following corollary:

Corollary 3.5 Let A and B be self mappings of a complete metric space X satisfying the

following condition:

[dp(Ax,By) + a dp(x, y)]dp(Ax,By) ≤ a max{dp(Ax, x)dp(By, y),

dq(Ax, y)dq′

(By, x)} +max{ϕ1(d
2p(x, y)), ϕ2(d

r(Ax, x)dr′

(By, y)),

ϕ3(d
s(Ax, y)ds′

(By, x)), ϕ4(
1
2 [dl(Ax, y)dl′ (Ax, x) + dl(By, x))dl′ (By, y)}

for all x, y ∈ X,ϕi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q + q′ = r + r′ =

s+ s′ = l + l′, then A and B have a unique common fixed point in X.

As an immediate consequences of Theorem 3.1 with S = T , we have the following:

Corollary 3.6 Let A, B, and S be self-mappings of X such that (A,S) and (B,S) satisfy a

common (E.A) property and

d2p(Ax,By) ≤ a max{dp(Ax, Sx)dp(By, Sy), dq(Ax, Sy)dq′

(By, Sx)}

+max{ϕ2(d
r(Ax, Sx)dr′

(By, Sy)), ϕ3(d
s(Ax, Sy)ds′

(By, Sx)),

ϕ4(
1
2 [dl(Ax, Sy)dl′ (Ax, Sx) + dl(By, Sx))dl′ (By, Sy)} (2.3)

for all x, y ∈ X,ϕi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q + q′ = r + r′ =

s + s′ = l + l′. If the pairs (A,S) and (B,S) are weakly compatible and that S(X) is closed,

then A, B and S have a unique common fixed point in X.

Theorem 3.7 Let S, T and An (n ∈ N) be self mappings of a metric space (X, d). Suppose

further that the pairs (A2n−1, S) and (A2n, T ) are weakly compatible for any n ∈ N and satisfying

a common (E.A) property. If S(X) and T (X) are closed and that for any i ∈ N , the following

condition is satisfied for all x, y ∈ X

[dp(Aix,Ai+1y) + a dp(Sx, T y)]dp(Aix,Ai+1y)

≤ amax{dp(Aix, Sx)d
p(Ai+1y, T y),

dq(Aix, T y)d
q′

(Ai+1y, Sx)} +max{ϕ1(d
2p(Sx, T y)),

ϕ2(d
r(Aix, Sx)d

r′

(Ai+1y, T y)), ϕ3(d
s(Aix, T y)d

s′

(Ai+1y, Sx)),

ϕ4(
1

2
[dl(Aix, T y)d

l′(Aix, Sx) + dl(Ai+1y, Sx))d
l′ (Ai+1y, T y)}

where ϕi ∈ Φ(i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l,≥ 0 and 2p = q+ q′ = r+ r′ = s+s′ = l+ l′,

then S, T and An(n ∈ N) have a common fixed point in X.
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Abstract: The Arakawa-Kaneko zeta function has been introduced ten years ago by T.

Arakawa and M. Kaneko in [22]. In [22], Arakawa and Kaneko have expressed the special

values of this function at negative integers with the help of generalized Bernoulli numbers

B(k) called poly-Bernoulli numbers. Kim-Kim [4] introduced Multi poly- Bernoulli numbers

and proved that special values of certain zeta functions at non-positive integers can be

described in terms of these numbers. The study of Multi poly-Bernoulli and Euler numbers

and their combinatorial relations has received much attention [2,4,6,7,12,13,14,19,22,27]. In

this paper we introduce the generalization of Multi poly-Bernoulli and Euler numbers and

consider some combinatorial relationships of the Generalized Multi poly-Bernoulli and Euler

numbers of higher order. The present paper deals with Generalization of Multi poly-Bernouli

numbers and polynomials of higher order. In 2002, Q. M. Luo and et al (see [11, 23, 24])

defined the generalization of Bernoulli polynomials and Euler numbers. Some earlier results

of Luo in terms of generalized Multi poly-Bernoulli and Euler numbers, can be deduced.

Also we investigate some relationships between Multi poly-Bernoulli and Euler polynomials.

Key Words: Generalized Multi poly-Bernoulli polynomials, generalized Multi poly-Euler

polynomials, stirling numbers, polylogarithm, Multi- polylogarithm.

AMS(2010): 05A10, 05A19

§1. Introduction

Bernoulli numbers are the signs of a very strong bond between elementary number theory,

complex analytic number theory, homotopy theory(the J-homomorphism, and stable homo-

topy groups of spheres), differential topology(differential structures on spheres), the theory of

modular forms(Eisenstein series) and p-adic analytic number theory(the p-adic L-function) of

1Received December 29, 2010. Accepted June 8, 2011.
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Mathematics. For n ∈ Z, n ≥ 0, Bernulli numbers Bn originally arise in the study of finite sums

of a given power of consecutive integers. They are given by B0 = 1, B1 = −1/2, B2 = 1/6, B3 =

0, B4 = −1/30, ..., with B2n+1 = 0 for n > 1, and

Bn = −
1

n+ 1

n−1∑

m=0

(
n+ 1

m

)
Bm, n ≥ 1 (1)

The modern definition of Bernoulli numbers Bn can be defined by the contour integral

Bn =
n!

2πi

∮
z

ez − 1

dz

zn+1
, (2)

where the contour encloses the origin, has radius less than 2π.

Also Bernoulli polynomials Bn(x) are usualy defined(see[1], [4], [5])by the generating func-

tion

G(x, t) =
text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
, |t| < 2π (3)

and consequently, Bernoulli numbers Bn(0) := Bn can be obtained by the generating function

t

et − 1
=

∞∑

n=0

Bn
tn

n!

Bernoulli polynomials, first studied by Euler (see[1]), are employed in the integral representation

of differentiable periodic functions, and play an important role in the approximation of such

functions by means of polynomials (see[14]-[18]).

Euler polynomials En(x) are defined by the generating function

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
, |t| < π (4)

Euler numbers En can be obtained by the generating function

2

et + 1
=

∞∑

n=0

En
tn

n!
(5)

The first four such polynomials, are

B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x+ 1/6

B3(x) = x3 − 3/2x2 + 1/2x, ...

and

E0(x) = 1, E1(x) = x− 1/2, E2(x) = x2 − x,

E3(x) = x3 − 3/2x2 + 1/4, ...

Euler polynomials are strictly connected with Bernoulli ones, and are used in the Taylor ex-

pansion in a neighborhood of the origin of trigonometric and hyperbolic secant functions.
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In the sequel, we list some properties of Bernoulli and Euler numbers and polynomials as

well as recurrence relations and identities.

Bn(x) =

n∑

k=0

(
n

k

)
Bkx

n−k, (6)

En(x) =
1

n+ 1

n+1∑

k=1

(2 − 2k+1)

(
n+ 1

k

)
Bkx

n+1−k. (7)

Bn(x+ 1) −Bn(x) = nxn−1, (8)

En(x + 1) +En(x) = 2xn. (9)

Lemma 1.1(see[20],[21]) For any integer n ≥ 0, we have

Bn(x+ 1) =
n∑

k=0

(
n

k

)
Bk(x) (10)

En(x+ 1) =

n∑

k=0

(
n

k

)
Ek(x) (11)

Consequently, from (8), (9) and lemma 1.1, we obtain,

n∑

k=0

(
n+ 1

k

)
Bk(x) = (n+ 1)xn (12)

n∑

k=0

(
n

k

)
Ek(x) + En(x) = 2xn. (13)

Lemma 1.3 For any positive integer n ≥ 0, we have

Bn(px) = pn−1

p−1∑

r=0

Bn(x+
r

p
) (p is a positive integer) (14)

En(px) = pn

p−1∑

r=0

(−1)rEn(x+
r

p
) (p is an odd integer) (15)

Let us briefly recall k − th polylogarithm. The polylogarithm is a special function Lik(z),

that is defined by the sum

Lik(z) :=
∞∑

s=1

zs

sk
(16)

For formal power series Lik(z) is the k − th polylogarithm if k ≥ 1, and a rational function if

k ≤ 0. The name of the function come from the fact that it may alternatively be defined as the

repeated integral of itself, namely that

Lik+1(z) =

∫ z

0

Lik(t)

t
dt (17)
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for integer values of k, we have the following explicit expressions

Li1(z) = − log(1 − z), Li0(z) =
z

1 − z
Li−1(z) =

z

(1 − z)2

Li−2(z) =
z(1 + z)

(1 − z)3
, Li−3(z) =

z(1 + 4z + z2)

(1 − z)4
, ...

The integral of the Bose-Einstein distribution is expressed in terms of a polylogarithm,

Lik+1(z) =
1

Γ(k + 1)

∫ ∞

0

tk

et

z − 1
dt (18)

Lemma 1.3(see[18]) For n ∈ N ∪ {0}, we have an explicit formula for Li−n(z) as follow

Li−n(z) =

n+1∑

k=1

(−1)n+k+1(k − 1)!S(n+ 1, k)

(1 − z)k
(19)

(n = 1, 2, ...)

where s(n, k) are Stirling numbers of the second kind.

Now, we introduce the generalization of Lik(z). Let r be an integer with a value greater

than one.

Definition 1.1 Let k1, k2, ...kr be integers. The generalization of polylogarithm are defined by

Lik1,k2,...,kr
(z) =

∑

m1,m2,...,mr∈Z
0<m1<m2<...<mr

zmr

mk1
1 ...m

kr
r

(20)

The rational numbers B
(k)
n , (n = 0, 1, 2, ...) are said to be poly-Bernoulli numbers if they satisfy

Lik(1 − e−x)

1 − e−x
=

∞∑

n=0

B(k)
n

xn

n!
(21)

In addition, for any n ≥ 0, B
(1)
n is the classical Bernoulli number, Bn(see[7], [12]). Also , the

rational numbers H
(k)
n (u), (n = 0, 1, 2, ...)are said to be poly-Euler numbers if they satisfy

Lik(1 − e(1−u))

u− et
=

∞∑

n=0

H(k)
n (u)

tn

n!
(22)

where u is an algebraic real number and k ≥ 1.(see[13],[19])

Let us now introduce a generalization of poly-Bernoulli numbers, making use of Lik1,...,kr
(z).

Definition 1.1(see[7]) Multi poly-Bernoulli numbers B
(k0,...,kr)
n , (n = 0, 1, 2, ...) are defined for

each integer k1, k2, ..., kr by the generating series

Li(k1,k2,...,kr)(1 − e−t)

(1 − e−t)r
=

∞∑

n=0

B(k1,...,kr)
n

tn

n!
(23)
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By Definition 1.2, the left hand side of (23) is

1

1k12k2 ...rkr
+

∑

0<m1<...<mr

mr 6=r

(1 − e−t)mr−r

mk1
1 ...m

kr
r

(24)

hence we have

B
(k1,..,kr)
0 =

1

1k12k2 ...rkr
(25)

B
(k1,...kr)
1 =

∑

0<m1<...<mr

1

mk1
1 ...m

kr−1

r−1 (r + 1)kr

(26)

Definition 1.3 Multi poly-Euler numbers H
(k1,...,kr)
n , (n = 0, 1, ...) are defined for each integer

k1, ..., kr by the generating series

Li(k1,...,kr)(1 − e(1−u))

(u− et)r
=

∞∑

n=0

H(k1,...,kr)
n (u)

tn

n!
(27)

Kaneko [6] presented the following recurrence formulae for poly-Bernoulli numbers which

we state hear.

Theorem 1.1(Kaneko)([2,6,14,22]) For any k ∈ Z and n ≥ 0,we have

B(k)
n =

1

n+ 1

{
B(k−1)

n −
n−1∑

m=1

(
n

m− 1

)
B(k)

m

}
(28)

B(k)
n = (−1)n

n+1∑

k=1

(−1)m−1(m− 1)!





n

m− 1





mk
(29)

B(−k)
n =

min(n,k)∑

j=0

(j!)2





n+ 1

j + 1










k + 1

j + 1




 (n, k ≥ 0) (30)

B(−k)
n = B

(−n)
k (n, k ≥ 0) (31)

B(k)
n =

n∑

m=0

(−1)m

(
n

m

)
B

(k−1)
n−m

{
m∑

l=0

(−1)l

n− l + 1

(
m

l

)
B

(1)
l

}
(32)

where



n

m



 =

(−1)m

m!

m∑

l=0

(−1)l

(
m

l

)
ln n,m ≥ 0 (33)

called the second type stirling numbers.

Y.Hamahata and H.Masubuchi in [12], presented the following recurrence formulae for

Multi poly-Bernoulli numbers.
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Theorem 1.2(H.Masubuchi & Y.Hamahata) For n ≥ 0 and (k1, ..., kr ∈ Z) we have

B(k1,...,kr)
n = (34)

(−1)n
n+r∑

mr=r




∑

0<m1<...<mr

(−1)mr−r(mr − r)!





n

mr − r






mk1
1 ...m

kr
r




If kr 6= 1and n ≥ 1, then

B(k1,...,kr)
n =

1

n+ r

{
B(k1,...,kr−1,kr−1)

n −
n−1∑

m=1

(
n

m− 1

)
B(k1,...,kr)

m

}
(35)

If kr = 1 and n ≥ 1,then

B(k1,...,kr−1,1)
n =

1

n+ r
(36)

{
B(k1,...,kr−1)

n −
n−1∑

m=0

(−1)n−m

{
r

(
n

m

)
+

(
n

m− 1

)}
B(k1,...,kr−1,1)

m

}

Also, they proved (see[1]) if

B[r](k)
n = B(

r−1︷ ︸︸ ︷
0, ..., 0,k)

n (37)

then for n, k ≥ 0, we have

B[r](−k)
n = B[r]

(−n)
k (38)

In [23], [24], Q.M.Luo, F.Oi and L.Debnath defined the generalization of Bernoulli and

Euler polynomials Bn(x, a, b, c) and En(x, a, b, c) respectively, which are expressed as follows

t

bt − at
cxt =

∞∑

k=0

Bk(x, a, b, c)
tk

k!
(39)

2cxt

bt + at
=

∞∑

k=0

Ek(x, a, b, c)
tk

k!
(40)

In this paper, by the method of Q.M.Luo and et al [11], we give some properties on generalized

Multi poly-Bernoulli and Euler polynomials

Definition 1.4 Let a, b > 0 and a 6= b. The generalized Multi poly-Bernoulli numbers

B
(k1,··· ,kr)
n (a, b), the generalized Multi poly-Bernoulli polynomials

B(k1,··· ,kr)
n (x, a, b) and B(k1,··· ,kr)

n (x, a, b, c)
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are defined by the following generating functions, respectively;

Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
=

∞∑

n=0

B(k1,...,kr)
n (a, b)

tn

n!
, |t| <

2π

| ln a+ ln b|
(41)

Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
erxt =

∞∑

n=0

B(k1,...,kr)
n (x; a, b)

tn

n!
, |t| <

2π

| ln a+ ln b|
(42)

Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
crxt =

∞∑

n=0

B(k1,...,kr)
n (x; a, b, c)

tn

n!
, |t| <

2π

| ln a+ ln b|
(43)

Definition 1.5 Let a, b > 0, and a 6= b, the generalized Multi poly-Euler numbersH
(k1,...,kr)
n (u; a, b),the

generalized multi poly-Euler polynomial Hk1,...,kr
n (x;u, a, b) and Hk1,...,kr

n (x;u, a, b, c) are defined

by the following generating functions, respectively,

Li(k1,...,kr)(1 − e(1−u))

(ua−t − bt)r
=

∞∑

n=0

H(k1,...,kr)
n (u, a, b)

tn

n!
, |t| <

2π

| ln a+ ln b|
(44)

Li(k1,...,kr)(1 − e(1−u))

(ua−t − bt)r
erxt =

∞∑

n=0

H(k1,...,kr)
n (x;u, a, b)

tn

n!
, |t| <

2π

| ln a+ ln b|
(45)

Li(k1,...,kr)(1 − e(1−u))

(ua−t − bt)r
crxt =

∞∑

n=0

B(k1,...,kr)
n (x;u, a, b, c)

tn

n!
, |t| <

2π

| lna+ ln b|
(46)

§2. Main Theorems

In this section, we introduce our main results. We give some theorems and corollaries which

are related to generalized Multi poly-Bernoulli numbers and generalized Multi poly-Euler poly-

nomials. We present some recurrence formulae for generalized Multi-poly-Bernoulli and Euler

polynomials.

Theorem 2.1 Let a, b > 0 and a 6= b, we have

B(k1,...,kr)
n (a, b) = B(k1,...,kr)

n

(
− ln b

ln a+ ln b

)
(ln a+ ln b)n (47)

proof By applying Definition 1.4, we have

Li(k1,...,kr)(1 − (ab)−x)

(bx − a−x)r
=

∞∑

n=0

B
(k1,...,kr)
n (a, b)

n!
xn

Li(k1,...,kr)(1 − (ab)−x)

(bx − a−x)r
=

1

bxr

(
Li(k1,...,kr)(1 − e−x lnab)

(1 − e−x ln ab)r

)

= e−xr ln b

(
Li(k1,...,kr)(1 − e−x ln ab)

(1 − e−x lnab)r

)
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So, we get

Li(k1,...,kr)(1 − e−x ln ab)

(bx − a−x)r
=

∞∑

n=0

B(k1,...,kr)
n

(
− ln b

ln a+ ln b

)
(ln a+ ln b)nx

n

n!

Therefore, by comparing the coefficients of tn

n! on both sides, proof will be complete

B(k1,...,kr)
n (a, b) = B(k1,...,kr)

n

(
− ln b

ln a+ ln b

)
(ln a+ ln b)n

�

The generalized Multi poly-Bernoulli and Euler numbers process a number of interesting

properties which we state here

Theorem 2.2 Let a, b > 0 and a 6= b. For real algebraic u we have

H(k1,...,kr)
n (u; a, b) = H(k1,...,kr)

n

(
u;

ln a

ln a+ ln b

)
(ln a+ ln b)n. (48)

Next, we investigate a strong relationships between B
(k1,...,kr)
n (a, b) and B

(k1,...,kr)
n .

Theorem 2.3 Let a, b > 0,a 6= band a > b > 0, we have

B(k1,...,kr)
n (a, b) =

j∑

i=0

(−r)j−i(ln a+ ln b)i(ln b)j−i

(
j

i

)
B

(k1,...,kr)
i . (49)

�

By applying Definition 1.4, we have

Li(k1,...,kr)(1 − (ab)−x)

(bx − a−x)r
=

1

bxr

Li(k1,...,kr)(1 − (ab)−x)

(1 − e−x ln ab)r

=

(
∞∑

k=0

(ln b)k

k!
xkrk(−1)k

)(
∞∑

n=0

B(k1,...,kr)
n (ln a+ ln b)nx

n

n!

)

=

∞∑

j=0

(
j∑

i=0

(−r)j−i
B

(k1,...,kr)
j (ln a+ ln b)i(ln b)j−i

i!(j − i)!
xj

)

By comparing the coefficient of tn

n! on both sides, we get.

B
(k1,...,kr)
j (a, b) =

j∑

i=0

(−r)j−i(ln a+ ln b)i(ln b)j−i

(
j

i

)
B

(k1,...,kr)
i

�

By the same method proceeded in the proof of Theorem 2.3, we obtained similar relations

for H
(k1,...,kr)
n (u; a, b) and H

(k1,...,kr)
n .
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Theorem 2.4 Let a, b > 0, and b > a > 0. For algebraic real number u, we have

H(k1,...,kr)
n (u; a, b) =

n∑

i=0

ri(ln a+ ln b)i(ln a)n−i

(
n

i

)
H

(k1,...,kr)
i (50)

Theorem 2.5 Let x ∈ R and conditions of Theorem 2.3 holds true, then we get

B(k1,...,kr)
n (x; a, b, c) =

n∑

l=0

(
n

l

)
rn−l(ln c)n−lB

(k1,...,kr)
l (a, b)xn−l (51)

H(k1,...,kr)
n (u;x, a, b, c) =

n∑

l=0

(
n

l

)
rn−l(ln c)n−lH

(k1,...,kr)
l (u; a, b)xn−l (52)

Proof By applying Definitions 1.4 and 1.5, proof will be complete. �

Theorem 2.6 Let conditions of Theorem 2.5 holds true, we obtain

H(k1,...,kr)
n (u;x, a, b, c) =
n∑

k=0

(
n

k

)
rn−k(ln c)n−kH

(k1,...,kr)
k (u,

ln a

ln a+ ln b
)(ln a+ ln b)kxn−k (53)

B(k1,...,kr)
n (x; a, b, c) =
n∑

k=0

(
n

k

)
rn−k(ln c)n−kB

(k1,...,kr)
k (

− ln b

ln a+ ln b
)(ln a+ ln b)kxn−k. (54)

Proof By applying Theorems 2.1 and 2.5, we get (53), and Obviously, the result of (54) is

similar with (53). �

Theorem 2.7 Let conditions of Theorem 2.5 holds true, then we get

B(k1,...,kr)
n (x; a, b, c) = (55)

=

n∑

k=0

k∑

j=0

(−1)k−j

(
n

k

)(
k

j

)
rn−k(ln c)n−k(ln b)k−j(ln a+ ln b)jB

(k1,...,kr)
j xn−k

H(k1,...,kr)
n (x; a, b, c) = (56)

=

n∑

k=0

k∑

j=0

(
n

k

)(
k

j

)
rn−k(ln c)n−k(ln a)k−j(ln c+ ln b)jH

(k1,...,kr)
j xn−k

B(k1,...,kr)
n (x+ 1; a, b, c) = B(k1,...,kr)

n (x; ac,
b

c
, c) (57)

H(k1,...,kr)
n (u, 1 − x, ac, b, c) = B(k1,...,kr)

n (u,−x, ac,
b

c
, c) (58)

B(k1,...,kr)
n (x+ y; a, b, c) =

n∑

k=0

(
n

k

)
rn−k(ln c)n−kB(k1,...,kr)

n (x; a, b, c)yn−k (59)

H(k1,...,kr)
n (u;x+ y, a, b, c) =

n∑

k=0

(
n

k

)
rn−k(ln c)n−kH(k1,...,kr)

n (x; a, b, c)yn−k (60)
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Proof We only prove (59) and (55)-(60) can be derived by Definitions 1.4 and 1.5.

Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
c(x+y)rt =

∞∑

n=0

B(k1,...,kr)
n (x+ y, a, b, c)

tn

n!

=
Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
cxrt.cyrt

=

(
∞∑

n=0

B(k1,...,kr)
n (x; a, b, c)

tn

n!

)(
n∑

i=0

yi(ln c)iri

i!
ti

)

=

∞∑

n=0

(
n∑

k=0

(
n

k

)
rn−kyn−k(ln c)n−kB

(k1,...,kr)
k (x; a, b, c)

)
tn

n!

So by comparing the coefficients of tn

n! in the two expressions, we obtain the desired result 2.13.

�

Theorem 2.8 By the same method proceeded in the proof of previous Theorems, we find similar

relations for B
(k1,...,kr)
n (t) and H

(k1,...,kr)
n (u, t).

B(k1,...,kr)
n (t) = B(k1,...,kr)

n (e1+t, e−t) (61)

H(k1,...,kr)
n (u, t) = H(k1,...,kr)

n (u; et, e1−t) (62)

Now, we present formulae which show a deeper motivation of generalized poly-Bernoulli

and Euler polynomials.

Theorem 2.9 Let x, y ∈ R and conditions of Theorem 2.5 holds true, we get

B(k1,...,kr)
n (x, a, b, c) = (ln a+ ln b)nB(k1,...,kr)

n

(
− ln b+ x ln c

ln a+ ln b

)
(63)

H(k1,...,kr)
n (u;x, a, b, c) = H(k1,...,kr)

n

(
u;

ln a+ x ln c

ln a+ ln b

)
(64)

Proof We can write

∞∑

n=0

B(k1,...,kr)
n (x; a, b, c)

tn

n!
=
Li(k1,...,kr)(1 − (ab)−t)

(bt − a−t)r
cxrt

=
1

brt

Li(k1,...,kr)(1 − (ab)−t)

(1 − (ab)−t)r
cxrt

= er(− ln b+x ln c)t

(
Li(k1,...,kr)(1 − e−t ln ab)

(1 − e−t lnab)r

)

By comparing the coefficients of tn

n! on both sides, we get

B(k1,...,kr)
n (x; a, b, c) = (ln a+ ln b)nB(k1,...,kr)

n

(
− ln b+ x ln c

ln a+ ln b

)
.
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�

GI-Sang Cheon and H.M.Srivastava in [8],[10] investigated the classical relationship be-

tween Bernoulli and Euler polynomials . Now we present a relationship between generalized

Multi poly-Bernoulli and generalized Euler polynomials. The following relation (65) are given

by Q.M.Luo, So by applying this recurrence formula, we obtain Theorem 2.10,

Ek(x+ 1, 1, b, b) + Ek(x, 1, b, b) = 2xk(ln b)k (65)

Theorem 2.10 Let a, b > 0, we have

B(k1,...,kr)
n (x+ y; a, b) = (66)

1

2

n∑

k=0

(
n

k

)[
B

(k1,...,kr)
k (y, a, b) +B

(k1,...,kr)
k (y + 1, a, b)

]
rn−kEn−k(x, 1, b, b)

Proof We know

B(k1,...,kr)
n (x + y; 1, b, b) =

n∑

k=0

(
n

k

)
rn−k(ln b)n−kB

(k1,...,kr)
k (y; 1, b, b)xn−k,

Ek(x+ y, 1, b, b) + Ek(x, 1, , b, b) = 2xk(ln b)k

So, we obtain

B(k1,...,kr)
n (x+ y, 1, b, b) =

1

2

n∑

k=0

(
n

k

)
rn−k(ln b)n−kB

(k1,...,kr)
k (y; 1, b, b)×

[
1

(ln b)n−k
(En−k(x; 1, b, b) + En−k(x+ 1, 1, b, b))

]

=
1

2

n∑

k=0

(
n

k

)
rn−kB

(k1,...,kr)
k (y; 1, b, b)×



(En−k(x; 1, b, b) +

n−k∑

j=0

(
n− k

j

)
Ej(x, 1, b, b))





=
1

2

n∑

k=0

(
n

k

)
rn−kB

(k1,...,kr)
k (y; 1, b, b)En−k(x; 1, b, b)

+
1

2

n∑

j=0

(
n

j

)
rn−kEj(x; 1, b, b)

n−j∑

k=0

(
n− j

k

)
B

(k1,...,kr)
k (y; 1, b, b)

=
1

2

n∑

k=0

(
n

k

)
rn−kB

(k1,...,kr)
k (y; 1, b, b)En−k(x; 1, b, b)

+
1

2

n∑

j=0

(
n

j

)
rn−kB

(k1,...,kr)
n−j (y + 1; 1, b, b)Ej(x; 1, b, b)
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So we have

B(k1,...,kr)
n (x + y; a, b)

=
1

2

n∑

k=0

(
n

k

)[
B

(k1,...,kr)
k (y, a, b) +B

(k1,...,kr)
k (y + 1, a, b)

]
rn−kEn−k(x, 1, b, b)

Therefore we obtain the desired result (66). �

The following corollary is a straightforward consequence of Theorem 2.10.

Corollary 2.1(see [8],[10]) In Theorem 2.10, if we set r = 1, k = 1 and b = e, we obtain

Bn(x) =

n∑

k=0
k 6=1

(
n

k

)
BkEn−k(x). (67)

Further work: In [25], Jang et al. gave new formulae on Genocchi numbers. They defined

poly-Genocchi numbers to give the relation between Genocchi numbers, Euler numbers, and

poly-Genocchi numbers. After Y. Simsek [26], gave a new generating functions which produce

Genocchi zeta functions. So by applying a similar method of Kim-Kim [4], we can introduce

generalized Genocchi Zeta functions and next define Multi poly-Genocchi numbers and obtain

several properties in this area.

Acknowledgments: The authors wishes to express his sincere gratitude to the referee for
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§1. Introduction

Let G = (V,E) be a simple, connected graph with vertex set V = {v1, v2, . . . , vn} and edge

set E = {e1, e2, . . . , em}. Assume that the vertices are ordered such that d1 ≥ d2 ≥ . . . ≥ dn,

where di is the degree of vi for i = 1, 2, . . . , n. The energy of G was first defined by I.Gutman

[5] in 1978 as the sum of the absolute values of its eigenvalues. The energy of a graph has close

links to Chemistry( see for instance [6]). The n×n matrix m(G) = (dij) is called the minimum

degree matrix of G, where

dij =





min{di, dj} if vi and vj are adjacent,

0 otherwise.

This was introduced and studied in [1]. The characteristic polynomial of the minimum degree

matrix m(G) is defined by

φ(G;λ) = det(λI −m(G))

= λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn−1λ+ cn, (1.1)

where I is the unit matrix of order n. The minimum degree Laplacian matrix of G is L(G) =

D(G)−m(G), where D(G) = diag(d1, d2, . . . , dn). L(G) is a real, symmetric matrix. The mini-

mum degree Laplacian eigenvalues µ1, µ2, . . . , µn of the graph G, assumed in the non increasing

order, are the eigenvalues of L(G). The Laplacian matrix of G is L1(G) = D(G)−A(G), where

A(G) is the adjacency matrix of G. The eigenvalues of the laplacian matrix L1(G) are im-

portant in graph theory, because they have relations to numerous graph invariants including

connectivity, expanding property, isoperimetric number, independence number, genus, diame-

ter, mean distance, and bandwidth-type parameters of a graph(see, for example, [2,3,9,10]). In

1Received November 3, 2010. Accepted June 10, 2011.
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many applications one needs good bounds for the largest Laplacian eigenvalue (see for instance

[2,3,9,10]). In this paper, we give three upper bounds and a lower bound for µ1 the largest of

minimum degree Laplacian eigenvalues of a graph.

§2. Main Results

In this section, we will give three upper bounds for µ1 the largest of minimum degree Laplacian

eigenvalues of a graph. We employ the following theorem to prove one of our main results.

Theorem 2.1([4]) Let G be a simple graph with n vertices and m edges, and let Π = (d1, d2, . . . , dn)

be the degree sequence of G. Then,

d2
1 + d2

2 + . . .+ d2
n ≤ m(

2m

n− 1
+ n− 2).

Theorem 2.2 Let G be a connected graph with n vertices and m edges. Then

µ1 ≤

2m+

√
(n− 1)

[
n(2|c2| +m( 2m

n−1 + n− 2)) − 4m2
]

n
,

where c2 is the coefficient of λn−2 in det(λI −m(G)).

Proof Clearly

µ1+µ2+. . .+µn = Trace[L(G)] =
∑

v∈V (G)

dv, (2.1)

µ2
1 + µ2

2 + ....+ µ2
n = 2|c2| +

n∑

i=1

d2
i . (2.2)

By Cauchy-Schwarz inequality, we have

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2
i

)(
n∑

i=1

b2i

)
. (2.3)

Putting ai = 1 and bi = µi for i = 2, ..., n in (2.3), we get

(
n∑

i=1

µi − µ1

)2

≤ (n− 1)

(
n∑

i=1

µ2
i − µ2

1

)
.

Using (2.1) and (2.2) in above inequality, we obtain



∑

v∈V (G)

dv − µ1




2

≤ (n− 1)

[
2|c2| +

n∑

i=1

d2
i

]
− (n− 1)µ2

1.

After some simplifications, we deduce that


nµ1 −

∑

v∈V (G)

dv




2

+ (n− 1)



∑

v∈V (G)

dv




2

≤ n(n− 1)

[
2|c2| +

n∑

i=1

d2
i

]
.
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i.e., nµ1 −
∑

v∈V (G)

dv ≤

√√√√√(n− 1)


n(2|c2| +

n∑

i=1

d2
i ) −

(
n∑

i=1

di

)2

.

Therefore

µ1 ≤

n∑

i=1

di +

√√√√√(n− 1)



n
(

2|c2| +
n∑

i=1

d2
i

)
−

(
n∑

i=1

di

)2




n
. (2.4)

Employing Theorem 2.1 and

n∑

i=1

di = 2m in (2.4), we see that

µ1 ≤

2m+

√
(n− 1)

[
n(2|c2| +m( 2m

n−1 + n− 2)) − 4m2
]

n
.

This completes the proof. �

The following theorem gives another type of upper bound for µ1.

Theorem 2.3 Let G be connected graph with n vertices and m edges. Then

µ1 ≤
√

2d2
1 + 4m− 2d3

n(n− d1).

Proof Suppose that X = (x1, x2, x3, . . . , xn)T be an eigenvector with unit length corre-

sponding to µ1. Then

L(G)X = µ1X.

Hence, for u ∈ V (G),

µ1xu = duxu −
∑

v ∈ V (G)

v 6= u

duvxv.

Here xu we mean xi if u = vi. Therefore

µ1xu =
∑

vu∈E(G)

(xu −min(du, dv)xv). (2.5)

By Cauchy-Schwarz inequality, we have

µ2
1x

2
u ≤




∑

vu∈E(G)

12






∑

vu∈E(G)

(xu −min(du, dv)xv)2




= du




∑

vu∈E(G)

x2
u +

∑

vu∈E(G)

min(du, dv)2x2
v − 2xumin(du, dv)xv



 .

Observe that

−2xu

∑

vu∈E(G)

min(du, dv)xv ≤ dux
2
u +

∑

vu∈E(G)

min(du, dv)2x2
v. (2.6)
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Hence,

µ2
1x

2
u ≤ du




∑

vu∈E(G)

x2
u +

∑

vu∈E(G)

min(du, dv)2x2
v + dux

2
u +

∑

vu∈E(G)

min(du, dv)2x2
v


 .

i.e., µ2
1x

2
u ≤ 2d2

ux
2
u + 2du

∑

vu∈E(G)

min(du, dv)2x2
v. (2.7)

Consequently,

µ2
1 = µ2

1

∑

u∈V (G)

x2
u

≤
∑

u∈V (G)

[2d2
ux

2
u + 2du

∑

vu∈E(G)

min(du, dv)
2x2

v]

= 2
∑

u∈V (G)

d2
ux

2
u + 2

∑

u∈V (G)

du

∑

vu∈E(G)

min(du, dv)
2x2

v.

Thus

µ2
1 ≤ 2d2

1 + 2
∑

u∈V (G)

du

∑

vu∈E(G)

min(du, dv)
2x2

v. (2.8)

Now let v ≁ u mean that u and v are not adjacent. Then

∑

u∈V (G)

du

∑

vu∈E(G)

min(du, dv)
2x2

v

=
∑

u∈V (G)

du[1 −
∑

v≁u

min(du, dv)2x2
v] = 2m−

∑

u∈V (G)

du

∑

v≁u

min(du, dv)
2x2

v

= 2m−




∑

u∈V (G)

dumin(du, dv)2x2
u +

∑

u∈V (G)

du

∑

v≁u,v 6=u

min(du, dv)2x2
v





≤ 2m−



d2
n

∑

u∈V (G)

dux
2
u +

∑

u∈V (G)

dn

∑

v≁u,v 6=u

d2
nx

2
v





= 2m−



d2
n

∑

u∈V (G)

dux
2
u +

∑

u∈V (G)

d3
n(n− du − 1)x2

u





= 2m−


d2

n

∑

u∈V (G)

dux
2
u + d3

n

∑

u∈V (G)

nx2
u − d3

n

∑

u∈V (G)

dux
2
u − d3

n

∑

u∈V (G)

x2
u




≤ 2m− d3
n

∑

u∈V (G)

(n− d1)x
2
u

= 2m− d3
n(n− d1).

Hence, employing this in (2.8) we have

µ2
1 ≤ 2d2

1 + 4m− 2d3
n(n− d1).
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Therefore

µ1 ≤
√

2d2
1 + 4m− 2d3

n(n− d1).

Theorem 2.4 Let G be a connected graph then

µ1 ≤ max

(√
2 (d2

u + d2
1mudu) : u ∈ V (G)

)
.

Proof From (2.7) we have

µ2
1x

2
u ≤ 2d2

ux
2
u + 2du

∑

vu∈E(G)

min(du, dv)2x2
v.

Thus

µ2
1

∑

u∈V (G)

x2
u ≤ 2

∑

u∈V (G)

d2
ux

2
u + 2

∑

u∈V (G)

du

∑

vu∈E(G)

min(du, dv)2x2
v.

≤ 2
∑

u∈V (G)

d2
ux

2
u + 2d2

1

∑

u∈V (G)

du

∑

vu∈E(G)

x2
v

= 2



∑

u∈V (G)

d2
ux

2
u + d2

1

∑

u∈V (G)

x2
u

∑

vu∈E(G)

dv




= 2



∑

u∈V (G)

d2
ux

2
u + d2

1

∑

u∈V (G)

x2
umudu




where mu = average degree of the vertices adjacent to u.

So,

µ1 ≤

√
2
∑

u∈V (G)

(d2
u + d2

1mudu)x2
u.

Hence

µ1 ≤ max

{√
2 (d2

u + d2
1mudu) : u ∈ V (G)

}
.

§3. Lower Bonud for Spectral Radius of Graphs

In this section we establish a lower bound for the spectral radius µ1 of G.

Lemma 3.1([7][8]) Let M be real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Given

a partition {1, 2, . . . , n} = ∆1 ∪∆2 ∪ . . .∪∆m with |∆i| = ni > 0, consider the corresponding

blocking M = (Mij), so that Mij is an ni × nj block. Let eij be the sum of the entries in Mij

and put B = (
eij

ni
) i.e.,(

eij

ni
is an average row sum in Mij). let γ1 ≥ γ2 ≥ . . . ≥ γm be the

eigenvalues of B. Then the inequalities

λi ≥ γi ≥ λn−m+i (i = 1, 2, . . . ,m)

hold. Moreover, if for some integer k, 1 ≤ k ≤ m,λi = γi for i = 1, 2, . . . , k and λn−m+i = γi

for i = k + 1, k + 2, . . . ,m, then all the blocks Mij have constant row and column sums.
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Let G be a connected graph with n vertices and m edges. Let V1 = {v1, v2, . . . vn1} and

V2 = {vn1+1, vn1+2 . . . vn} be two partitions of vertices of graph G. Let

r1 =
1

n1

n1∑

i, j = 1

i 6= j

min(d(vi), d(vj)), r2 =
1

n− n1

n−n1∑

i, j = 1

i 6= j

min(d(vn1+i), d(vn1+j)),

k1 =
−1

n1

n−n1∑

i, j = 1

i 6= j

min(d(vi), d(vn1+j)), k2 =
−1

n− n1

n−n1∑

i = 1

j = 1, 2, ..., n

i 6= j

min(d(vn1+i), d(vj)),

d1 =
1

n1

∑

v∈V1

d(v), d2 =
1

n− n1

∑

v∈V2

d(v),

where d(v) is the degree of the vertex v of G. Now we prove the following theorem.

Theorem 3.2 Let G be a connected graph with n vertices and m edges, then

µ1 ≥
1

2
{d2 + d1 − r2 − r1 +

√
(d2 − d1 − r2 + r1)2 − 4k1k2}.

Proof Rewrite L(G) as

L(G) =


 L11 L12

L21 L22


 .

For 1 ≤ i, j ≤ 2, let eij be the sum of the entries in Lij and put B = (eij/ni). Then

B =



 d1 − r1 k1

k2 d2 − r2



 ,

and so

|λI −B| =

∣∣∣∣∣∣
λ− (d1 − r1) −k1

−k2 λ− (d2 − r2)

∣∣∣∣∣∣
.

Therefore we have

λ =
1

2
{d2 + d1 − r2 − r1 ±

√
(d2 − d1 − r2 + r1)2 − 4k1k2}.

Thus by Lemma 3.1 we get

µ1 ≥
1

2
{d2 + d1 − r2 − r1 +

√
(d2 − d1 − r2 + r1)2 − 4k1k2}. �
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