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Abstract: Let G be a group having a partially closed subset S such that S contains the

identity element of G and each element in S has an inverse in S. Such subsets of G are

called halfsubgroups of G. If a halfsubgroup S generates the group G, then S is called a

halfsubgroup generating the group or hsgg in short. In this paper we prove some results on

hsggs of a group. Order class of a group are special halfsubgroupoids. Elementary abelian

groups are characterized as groups with maximum special halfsubgroupoids. Order class of

a group with unity forms a typical halfsubgroup.

Key words: halfsubgroup, hsgg, order class of an element.

AMS(2000): 20Kxx, 20L05.

§1. Introduction

According to R.H.Bruck [2] a halfgroupoid is a partially closed set w.r.t. certain operation.

Definition 1.1 Let (G, ∗) be a group and S be a subset of G. Let (S, ∗) be a halfgroupoid

(partially closed subset) of G such that

(i) e ∈ S, e is the identity element of G.

(ii) a−1 ∈ S, ∀ a ∈ S.

Then (S, ∗) is called a half subgroup of the group G.

Illustration 1.1 Every subgroup of a group G is also halfsubgroup of G but not vise-versa.

For example, consider the multiplicative group G = {1,−1, i,−i}. Then S = {1, i,−i} is a

halfsubgroup of G which is not a subgroup.

Definition 1.2 If for a group G there exists a halfsubgroup H without identity such that for

all x, y ∈ H, xy ∈ H whenever y 6= x−1 then H is called a special halfsubgroup of G.

Definition 1.3 A halfsubgroup (S, ∗) of a group (G, ∗) is called a halfsubgroup generating the

group (or hsgg in short) if it generates G.

1Received October 21, 2007. Accepted November 28, 2007
2Supported by the University Grants Commission of India Under the Project No. 23-245/06.



2 Arun S. Muktibodh

It is easy to verify that the union of two hsgg of a group G is again a hsgg of G. In fact,

union of any number of hsgg of G is also hsgg of G.

However, the intersection of two hsgg of a group G may not be a hsgg of G.

Theorem 1.1 If S is a proper hsgg of a group G then O(S) ≥ 3.

Proof Let S be a proper hsgg of a group G. Then S 6= {e}. Let a ∈ S, a 6= e then

S 6= {e, a}, because if S = {e, a} then a = a−1 and S can not generate whole G, so S can not

be a proper hsgg of G. Thus if O(G) ≤ 3 then G can not have a proper hsgg. Now if O(G) ≥ 4

then we can have a proper hsgg S = {e, a, b} of G such that a = a−1 and b = b−1 or a−1 = b.

As a result there exists an hsgg S such that O(S) = 3. Hence we get the result. �

Remark If G is any cyclic group such that G = (a), then S = {e, a, a−1} is a minimal hsgg of

G.

Definition 1.4 Let G be a group and S be an hsgg of G. The element x(6= e) ∈ S is called a

redundant element of S if S \ {x} is also an hsgg of G.

An element of S which is not redundant is called an irredundant element.

Definition 1.5 Let G be a group and S be a hsgg of G such that a2 6= e, ∀a ∈ S and S has no

redundant element. Then S is called pure hsgg of G.

The following results follow trivially.

(1) Every cyclic group of order ≥ 3 has at least one pure hsgg.

(2) A cyclic group of prime order p has p−1
2 number of distinct pure hsgg.

We discuss some Abelian groups in terms of their pure hsgg.

Theorem 1.2 Every group of prime order can be expressed as the union of its distinct pure

hsgg. However, the converse is not true.

Proof Every group of prime order p is cyclic. Hence the group has p−1
2 number of distinct

pure hsgg. Each hsgg has two non-identity elements together with an identity element e common

in all. Thus G has 2 · p−1
2 + 1 = p elements. Hence G is the union of all these distinct pure

hsggs. �

Theorem 1.3 If a group G can be written as the union of its distinct pure hsgg then G is a

group of odd order.

Proof It is easy to verify. �

Theorem 1.4 An elementary Abelian p−group, p > 3 is a direct product of n cyclic groups

each of which is a cyclic p−group which is the union of distinct pure hsggs.

Proof By the definition of elementary Abelian p−group,

G = C1 × C2 × · · · × Cn



Halfsubgroups 3

where C′
is are cyclic p−groups of order p. Now each Ci = ∪(p−1)/2

r=1 Sir
where 1 ≤ i ≤ n

and Sir
are distinct pure hsgg representing each cyclic group Ci of order p given in the above

decomposition. Thus G is n times the direct product of union of distinct pure hsgg. �

Theorem 1.5 Let G be a finite Abelian group of order n. Let G = C1 × C2 × · · · × Ck where

each Ci is a cyclic group of order pαi

i . That is n = pα1
1 · pα2

2 · · · pαk

k where pi are distinct primes

and each αi > 0. Then

G =
∏

i{αi

∏αi

1 ∪(pi−1)/2
r=1 Sir

)}
where i = 1, · · · , k.

Proof The proof follows Theorem 1.4. �

§2. Order Class

Definition 2.1 Let G be a group. A subset Oα of G defined by

Oa = {b ∈ G : o(b) = o(a)}

is called an order class of of a.

Definition 2.2 Let G be a group. Let Oa be an order class of a ∈ G. Then the set of all xy

such that x, y ∈ Oa is called the closure of Oa.It is denoted by Ōa.

Lemma 2.1 If G is a finite group and a ∈ G, a 6= e then

(i) Oa is a halfgroupoid;

(ii) a−1 ∈ Oa, ∀a ∈ Oa.

Proof The proof follows by these definitions of halfgroupoid and order class. �

Notation: We use the notation Θa to denote order class of a with unity.

Definition 2.3 If H is a halfsubgroup of a group G then H \ {e} is called the halfsubgroupoid

of G.

Every group G has a unique maximum halfsubgroupoid G \ {e} associated with it.

Definition 2.4 Let G be a group. Then Oa is a halfsubgroupoid of G. It is called a special

halfsubgroupoid of G.

2.1 Groups with maximum special halfsubgroupoids

There exist groups which have only one order class other than {e}. For such groups closure of

the order class of a(6= e) where a ∈ G, we give below a series of examples of such groups.

Example 2.1 Cyclic groups of prime order without unity such as Z5 \ {e}, Z7 \ {e}, . . . are the

maximum special halfsubgroupoids.
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Example 2.2 All groups with exponent p a prime are such groups.

Example 2.3 All elementary Abelian groups are such groups.

Example 2.4 Extra special groups of order 27 generated by three elements and of order 81

generated by 2 elements are such groups. This has been verified by using GAP ref[3]. The GAP

Small Groups Library no. of these groups are [27,3] and [81,12]. These are polycyclic groups

of order 27 and order 81 respectively.These are the only groups from the groups of order 100

which which have a single order class other than order class of {e}.

Example 2.5 The group GL3(F, p) for odd prime p is such a group.

Example 2.6 George Havas has constructed a biggest 5-group generated by 2 elements. It is

of order 534 with exponent 5.

Example 2.7 Dihedral groups of order D2p are such groups.

2.2 Results

Theorem 2.1 If G has a maximum special halfsubgroupoid then G is a p-group.

Proof Let a group G has a maximum special halfsubgroupoid. Then every non-identity

element of G has same order. If p divides order of G then there exists an element of order p in

G. As a result all non-trivial elements of G are of order p. Thus, G is a p-group. �

Now we prove a theorem which gives the characterization of an elementary Abelian groups.

Theorem 2.2 A group G is elementary Abelian if and only if G has a maximum special

halfsubgroupoid.

Proof Assume G is elementary Abelian, then every element of G is of same order p where

p is a prime. Thus the collection of non-identity elements form an order class which is a

maximum special halfsubgroupoid. Conversely, If G has a maximum special halfsubgroupoid

then by Theorem 2.1 G is a p group and G has a maximum special halfsubgroupoid. Whence

G is elementary Abelian. �

Theorem 2.3 If G be a finite group, a ∈ G then Θa is a halfsubgroup of G.

Proof The Proof follows Lemma 2.1 and the definition of halfsubgroup of G. �

Definition 2.5 A halfsubgroup S of a group G is normal in G if and only if xSx−1 ∈ S, ∀x ∈ G.

Theorem 2.4 If G is a finite group then Θa is a normal halfsubgroup of G.

Proof If G is abelian then obviously Θa is normal in G. If G is non-abelian, then o(a) =

o(xax−1), ∀a ∈ Θa. Therefore xax−1 ∈ Θa. Hence Θa is normal in G. �

Theorem 2.5 If G is a finite abelian group such that O(G) = p1 · p2 · · · pr for the primes

p1, · · · , pr then G is the direct product of order classes with unity (i.e. halfsubgroup).

Proof In the decomposition of G every Sylow pi subgroup is an order class with unity
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which is also a halfsubgroup. Hence we get the result. �

Corollary 2.1 Any finite abelian group is a direct product of some order classes with unity

(halfsubgroup).

Theorem 2.6 Every finite group G is the union of halfsubgroups (namely order class with

unity) Θa, a ∈ G and a 6= e which are normal in G such that ∩a∈GΘa = {e}.

Proof The proof follows from Lemma 2.1 and Theorem 2.4. �
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Abstract: A basic problem in graph embedding theory is to determine distinct embeddings

of planar graphs on higher surfaces. Tutte’s work on graph connectivity shows that wheels or

wheel-like configurations plays a key role in 3-connected graphs. In this paper we investigate

the flexibility of a Halin grap on N1, the projective plane, and show that embeddings of a

Halin graph on N1 is determined by making either a twist or a 3-patchment of a vertex in a

wheel. Further more, as applications, we give a correspondence between a Halin graph and

its embeddings on the projective plane. Based on this, the numbers of some types of such

embeddings are determined.

Key Words: Halin graph, embedding, face-width.

AMS(2000): 05C30, 05C45.

§1. Introduction

Throughout this paper we consider simple connected labeled graphs and their embeddings on

surfaces. Terms and notations not defined may be found in [1,3] and [11].

A surface is a compact closed 2-manifold. An(A) orientable (non-orientable) surface of

genus g is the sphere with g handles (or crosscaps) which is denoted by Sg (or Ng). A map

M or embedding on Sg(orNg) is a graph drawn on the surface so that each vertex is a point

on the surface, each edge {x,y}, x 6= y, is a simple open curve whose endpoints are x and y,

each loop incident to a vertex x is a simple closed curve containing x, no edge contains a vertex

to which it is not incident, and each connected region of the complement of the graph in the

surface is homeomorphic to a disc and is called a face. It is clear that maps(or embeddings)

here are combinatorial. A map or An embedding is called strong if the boundaries of all the

facial walks are simply cycles. A curve (or circuit) C on a surface Σ is called non-contractible

(or essential) if none of the regions of Σ − C is homeomorphic to an open disc; otherwise it

is called contractible (or trivial). Let T be a tree without subdivisions of edges and embedded

in the plane with its one-valent vertices being v1, v2, ..., vm under the rotation of T . A leaf is

an edge incident to a vertex of valence 1. If new edges (vi, vi+1)(i = 1, 2, ...,m) are added to

E(T ), the edge-set of T , then T together with the cycle (v1, v2, ..., vm) forms a planar map

1Received November 4, 2007. Accepted December 12, 2007
1Supported by NNSF of China Under the Granted No.10271048, No.10671073, also by Science and Technology

Commission of Shanghai Municipality (07XD14011)
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called Halin graph. This cycle is defined as leaf-cycle (i.e., the boundary of the outer face) and

is denoted as ∂fr. In convenience, we always let T to denote the tree which orients a Halin

graph. It is clear that Halin graphs are generalized wheels on the plane. Tutte showed in his

book[11] that a 3-connected graph are obtained from the wheels by a series of edge or vertex

splitting operations. Further, Vitray[12] pointed out that wheels play a key role in embeddings

of a 3-connected graph since in that case the local structures (i.e., neighbour of a vertex) may

be viewed as a wheel.

A major subject about planar graphs is to determine all of their distinct embeddings

on a non-planar surface. This theory has been developed and deepened by people such as

R.Vitray[12], N.Robertson and R.Vitray[7], B.Mohar and N.Robertson[4,6], and C.Thomassen[8]

etc. Recently, Mohar et al[5] showed the existence of upper bounds for the distinct embeddings

of a 3-connected graph in general orientable surfaces. In this paper we investigate the em-

beddings of a Halin map on N1 and show that strong embeddings of a Halin graph on N1 is

determined by making 3-patchments on inner vertices of a wheel and present a correspondence

between a Halin graph and its ( strong) embeddings in the projective plane. Based on this, the

number of such embeddings is determined.

Let H,Hp be the set of all the Halin graphs and their embeddings on the projective plane,

respectively. Then we have the following result:

Theorem A. For a map M ∈ H with s(M) edges, there are

∑

v∈V (M)

(
d(v)

2

)
− s(M)

maps in Hp corresponding to M whose face-width are all 1.

Here, the concept of face-width of an embedding is defined in the next section. The readers

may also see[12] for a reference. Based on Theorem 1 one may calculate the number of such

embeddings on N1. For instance, there are exactly 6 such embeddings of W4 in N1 as depicted

in Fig.1.

Fig.1 Six face-width-1 embeddings of W4 in N1
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In the case of strong embeddings or maps (i.e., the boundary of each facial walk is a

cycle), the following result shows that any strong embedding of a Halin graph in N1 is in fact

determined by a corresponding strong embedding of a wheel.

Theorem B. Let M be a Halin graph. Then its strong embeddings are determined by strong

embeddings of wheels.

As applications of Theorem B, we have

Theorem C. For a Halin graph G, there are

∑

v∈V −∂fr

(
2d(v)−1 − d(v)

)
.

elements in Hp corresponding to G whose face-width are all 2.

Based on the formula presented in Theorem C, one may calculate the number of strong

embeddings of a Halin graph on N1. The following Fig.2 shows a Halin graph and its strong

embeddings in N1.

Fig.2 A Halin graph with five distinct strong embeddings in N1

§2. Some Preliminary Works

In this section we shall give some lemmas on graph embeddings before proving of our main

results.

Lemma 1 A planar Halin graph is 3-connected and has at least two facial walks which are

3-gons.

Proof. Let G be a planar Halin graph oriented by a tree, say T (G). One may easily see

that G is 3-connected. In fact, for any two distinct vertices x and y not on the leaf-cycle and

with their valencies not less than 3, there are two paths in T (G) connecting two leaves for each
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of them. Those four paths are pairwise inner disjoint. It is easy for one to see that those paths

together with a pair of segments (which are determined by the four leaves) of the leaf-cycle

form a pair of inner disjoint paths connecting x and y. If we consider the unique path from x

to y in T (G), then there are three inner disjoint paths joining x and y in G. Since the same

property holds for other locations of x and y, G is 3-connected by Menger’s Theorem. As for

the existence of 3-gons, one may find at least two such triangles along the longest paths in

T (G). �

A fundamental result on topological graph theory by H.Whitney[13] states that any 3-

connected graph has at most one planar embedding, i.e.,

Lemma 2 There is only one way to embed a 3-connected planar graph in the plane.

W.Tutte[10] obtained Whitney’s uniqueness result from a combinatorial view of facial

walks-induced non-separating cycle (for a reference, one may see[8]), i.e.,

Lemma 3 Every facial walk of a 3-connected planar graph is an induced non-separating cycle.

Later, C.Thomassen[9] generalized the above two results to LEW-embeddings (a concept

by J.Hutchison[2]) in general surfaces and found that such embeddings share many properties

with planar graphs.

Based on Lemmas 1, 2, and 3, we have the following

Lemma 4 If a Halin graph is embedded in a non-planar surface Σ, then every facial walk

of it (viewed as a planar map) is either a contractible cycle (hence also a facial walk) or a

non-contractible cycle (or essential as some people called it) of Σ.

When a planar graph G is embedded in a non-planar surface Σ, then some very important

properties will appear. For instance, R.Vitray[12] found (late proved by N.Robertson et al[8]

and C.Thomassen[9] independently) that the face-width ρΣ(G) of G on Σ is at most 2, where

ρΣ(G) is defined as

ρΣ(G) = min{| C ∩ V (G) | |C is an noncontractible curve of Σ}

In view of intuition, face-width is a measure of how densely a graph is embedded in a

given surface. The above property says that every embedding, if possible, of a planar graph on

non-planar surfaces is relatively sparse. A basic problem is how to determine the face-width

of an embedding or to find that what operations performed on the graphs may not change its

representativity. It is easy for one to check that the following result ( which is depicted in Fig.3)

presents such operations.

Lemma 5 Let G be a graph embedded in a surface. Then the △ − Y and △ − I operations

defined below do not change the face-width.
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Fig.3 Popping a planar triangle into a vertex or an edge, d(y) = d(z) = 3

§3. Projective Planar Maps

In this section we shall prove Theorems A, B and C.

According to Lemma 3, the leaf-cycles of those in Hp are either facial walks or non-

contractible cycles on N1. Thus, Hp may be partitioned into two parts as

Hp = Hp(1) + Hp(2),

where

Hp(1) ={M | ρN1(G(M)) = 1}; (1)

Hp(2) ={M | ρN1(G(M)) = 2} (2)

and G(M) is the underline graph of M(M).

Proof of Theorem A Let M be a map in Hp(1). Then it is determined by making a twist at

a vertex of a Halin graph. On the other hand, by making a twist at each pair of corners around

every vertex of a Halin graph G will induce an embedding of G on N1. One may see that for

each element in Hp(1) no more than one such twists are permitted since otherwise by reversing

the specific twists (which will change a facial walk into two whose boundaries are simple cycles)

we may see that a 3-connected planar Halin graph will have at least two distinct embeddings

in the plane and hence contradicts Lemma 2 or 3. This completes the proof. �

We now concentrate on the structures of the maps in Hp(2).
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Lemma 6 Let M be a map in Hp(2). Then the leaf-cycle of M is non-contractible.

Proof: It is easy to see its validity for smaller maps. Suppose it holds for those having

fewer than n edges. Let M ∈ Hp(2) be a counter example with n edges. Then its leaf-cycle

is contractible. Under this case we will show that its face-width is 1. By the definition of M ,

there exists a Halin graph G such that M is an embedding of it in N1. Notice that both of

the them share the same leaf-cycle (and consequently the same outer facial walk). By Lemmas

1 and 3, G has a 3-cycle, say (x, y, z), which is either a 3-gon or non-contractible in M . If

(x, y, z) is non-contractible in M and the leaf-cycle is on the only one side of it, then we have

ρN1(G(M)) = 1 since at least two vertices of {x, y, z} are on the leaf-cycle and trivalent and

the two edges not on it are incident to them are on the same side of the 3-cycle. If (x, y, z)

is non-contractible with edges of the leaf-cycle lying on the both sides of it, the leaf-cycle of

M is not a simple cycle (i.e., containing vertices repeated more than twice), a contradiction as

required. Next, we consider the case that the 3-cycle (x, y, z) is a 3-gon of M . In this case the

face-width is 2 by performing operations in Lemma 5 and the Induction hypothesis says that

the leaf-cycle is non-contractible. This contradiction completes the proof. �

Let M be a map in Hp(2). Then by Lemma 6 its leaf-cycle is non-contractible and all the

leaves are distributed alternatively on the both sides of the leaf-cycle since otherwise we will

have its face-width 1. Thus, leaves together with their 1-valent vertices are classified into two

groups lying on the “both sides” of the leaf-cycles. One may see that this is not accurate since

on N1 every non-contractible cycle has only one side. But this description will not ruin our

proofs. By a foot we mean a maximal group of leaves together with the 1-valent vertices which

appear to the same side of the leaf-cycle consecutively. Further, we have

Lemma 7 The feet on ∂fr (the boundary of the leaf-cycle) must appear alternatively ( i.e.,

there exists three feet B1, B2 and B3 such that their appearing order is B1, B2, B3, where B1

and B3 are on the same side of ∂fr and B2 on the other side ( the right hand side of Fig.4

presents a case of this structure).

Fig.4 An embedding of W5 which will induce

a strong embedding of a Halin map

Proof This follows from the fact that maps in Hp(2) have face-width 2. �

We say that a group of leaves will induce a subtree of T if there is a vertex v in T such that
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those leaves consist of all the leaves of a subtree of T rooted at v. By the definition of Halin

graphs one may see the following

Lemma 8 Let M be a map in Hp(2) which has a structure in Lemma 7. Then the foot B2 will

induce a subtree of T

Proof Let the two ends of Bi be xi and yi(1 ≤ i ≤ 3) and f be the face on the opposite of

side of B2. Let f1 and f2 be, respectively, the faces on the other side of the edges (y1, x2) and

(y2, x3). Then one may see the following fact from ρN1(G(M)) = 2 and the definition of Halin

graphs.

Fact 1 f1 6= f2.

Our next proofs are divided into two cases.

Case 1 ∂f1
⋂
∂f2 6= ∅.

One may choose a vertex u on the common boundary of f1 and f2 such that the path from

y2 to u in T is shortest. Then by the 3-connectness of G(M) and the definition of a Halin graph

there is an unique path, say P , connecting u and a vertex v on ∂f . Choose v such that P is as

short as possible. Then we have

Fact 2 | V (P ) |≤ 2.

Since otherwise there will exist an internal vertex w on P . By the definition of a Halin

map there is a path Q (in T ) connecting w and a vertex w1 on ∂fr. It is clear that w1 6∈ V (Bi).

If we view Bi as a vertex vBi
for 1 ≤ i ≤ 3, then the set {v, w,w1, vB1 , vB2 , vB3} will guarantee

the existence of a subgraph of G(M) which is a subdivision of K3,3, a Kuratowski graph.

Fig.5

This is shown in Fig.5, contradicts to that Lemma 8.

Case 2 ∂f1
⋂
∂f2 = ∅.

Then there are two paths, say P and Q, from ∂f1 and ∂f2 to ∂f , respectively. We may
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choose P andQ such that they are from x2 and y2 to ∂f respectively and V (P )
⋂
∂f={v}, V (Q)

⋂
∂f =

{u}. If u 6= v, then there would be a subgraph which

Fig.6

is a subdivision of K3,3 ( in fact it is induced by the set {u, v, x2, y2, vB1 , vB3} as depicted in

the left side of Fig.6). So, u = v. If P
⋂
Q is a path with length≥ 1, then the length of P

⋂
Q

is 1. Since otherwise we may choose an internal vertex w (as we did previously) which may

lead to a path from w to ∂f and hence will imply the existence of a non-planar subgraph of

G(M) (which is determined by the vertex-set {u,w,w1, vB1 , vB2 , vB3} as shown in the right

side of Fig.6). This contradiction shows that P
⋂
Q is a path with no more than two vertices.

Combining all the possible situations in the two cases completes the proof. �.

Lemma 9 Let M be an embedding of a Halin map with representativity 2. Let Bi(1 ≤ i ≤ 5)

be five feet appearing alternatively on the two sides of ∂fr. Then the two trees induced by B2

and B4 are rooted at the same vertex of T .

Proof. Let fi be the face on the opposite side of Bi and Ti be the subtree induced by Bi

for 1 ≤ i ≤ 5. Then by Lemma 8 the tree T4 ( which corresponds to B4) is rooted at some

vertex u in ∂f4. Let P be a path from u to B5 along ∂f4 and Q be a path from B4 to u.

Then the cycle C = QuPx5y5 is non-contractible. Similarly, choose Q1 be a path from B2

to a vertex v on ∂f2 such that T2 is rooted at v. Let P1 be path from v to x3 on ∂f2. The

cycle C′ = Q1vP1x3y2 is also non-contractible. Notice that any pair of non-contractible cycles

(curves) on N1 will intersect at a vertex, we conclude that C and C′ will intersect at a vertex

w on the path P . If u 6= v, then as we have discussed before, there is a non-planar subgraph

of G(M). This contradiction shows that u = v. It follows from Lemma 8 that the vertex w is

also on the boundary of f2. This ends the proof. �

Proof of Theorem B Let M be a Halin Map and M ′ an embedding of it on N1 with

ρN1(G(M)) = 2. Let Bi be the feet of M ′ and induces a subtree Ti for 1 ≤ i ≤ s. Then by

Lemma 6 the leaf-cycle ∂fr is non-contractible and all the feet are lying on the two sides of

∂fr alternatively by Lemma 8. Lemmas 6-9 show that all the subtrees Ti are rooted at some

vertex v of T . Let d(v) = m. For each Ti(1 ≤ i ≤ s), its root-vertex is v and edges incident to

v is el1 , el2 , ..., eli . One may view Ti together Bi as a claw K1,li whose edges are correspondent



14 Han Ren and Yun Bai

to el1 , el2 , ..., eli . Then one may get a bigger claw K1,m which together with ∂fr forms a wheel

Wm+1 whose underlying graph is planar, where m =
∑s

1 li. This procedure is shown in Fig.4

where the case of m = 4 is shown. It is clear that Wm+1 is strongly embedded in N1. Since

this procedure is reversible, the theorem follows. �

Proof of Theorem C Let M be a Halin graph with T and ∂f as its orienting tree and leaf

cycle. Then by Theorem B its strong embeddings are completely determined by performing

3-patchments on its inner vertices ( i.e., those not on ∂f). So, taking an inner vertex, say v ∈
V − ∂f , and considering the number of ways of performing 3-patchments at v. Let d(v) = m.

Then the corresponding 3-patchments is induced by those of Wm+1, the wheel with m spokes.

So, we only need to restrain our procedure on the strong embeddings of Wm+1 on N1 . Notice

that in the case of m ≥ 4, there is only one leaf-cycle for Wm+1 which is non-contractible.

We can determine all the possible strong embeddings of Wm+1 this way: We first draw the

leaf-cycle (1, 2, ...,m) into N1 such that the leaf-cycle is non-contractible and then consider the

ways of choosing alternating feet on (1, 2, ...,m) as described in Lemma 7. It is clear that the

number of alternating feet must be an odd number. Let the number of leaves in feet Bi is xi.

Then the total number of ways of choosing alternating feet is equal to the number of ways of

assigning 2k + 1 groups of consecutive vertices on a m-vertex-cycle. This correspondence is

shown in Fig.7, where a 3-patchment on the center of a wheel will produce 7 alternating feet

on the leaf-cycle.

Fig.7 Generating a strong embedding in N1 by performing

a 3-patchment at the center of Wm+1

Let f(m, k) be the number of ways of grouping k sets of consecutive vertices. Then it is

clear that f(m, k) satisfies the following recursive relation:




f(m, k) = f(m− 1, k − 1) + f(m− 1, k), m ≥ k ≥ 2;

f(m,m) = f(0, 0) = 1.

Since the combinatorial number
(
m
k

)
also satisfies the above relation, we have that f(m, k) =(

m
k

)
. Hence, Theorem C follows from the case of f(m, 2k + 1). �

Final Remark By using the same procedure used in our proof of Theorem B, one may find

that a Halin graph has no strong embeddings in orientable surface other than the sphere. This
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seems resulted from the fact that the face-distance ( i.e., the shortest length of face-chain

connecting two faces) is not greater than 2. With the increase of genera, the possibility of

strong embedding is decrease. Hence, we think that the sphere and the projective plane are the

only two possible surfaces on which a Halin graph may be strongly embedded.
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Abstract Curvature equations are very important in theoretical physics for describing vari-

ous classical fields, particularly for gravitational field by Einstein. For applying Smarandache

multi-spaces to parallel universes, the conception of combinatorial manifolds was introduced

under a combinatorial speculation for mathematical sciences in [9], which are similar to

manifolds in the local but different in the global. Similarly, we introduce curvatures on

combinatorial manifolds and find their structural equations in this paper. These Einstein’s

equations for a gravitational field are established again by the choice of a combinatorial Rie-

mannian manifold as its spacetime and some multi-space solutions for these new equations

are also gotten by applying the projective principle on multi-spaces in this paper.
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tions of gravitational field, multi-space solution.
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§1. Introduction

As an efficiently mathematical tool used by Einstein in his general relativity, tensor analysis

mainly dealt with transformations on manifolds had gotten considerable developments by both

mathematicians and physicists in last century. Among all of these, much concerns were concen-

trated on an important tensor called curvature tensor for understanding the behavior of curved

spaces. For example, the famous Einstein’s gravitational field equations

Rµν − 1

2
gµνR = −8πGTµν

are consisted of curvature tensors and energy-momentum tensors of the curved space.

Notice that all curved spaces considered in classical fields are homogenous. Achievements of

physics had shown that the multiple behavior of the cosmos in last century, enables the model

of parallel universe for the cosmos born([14]). Then can we construct a new mathematical

theory, or generalized manifolds usable for this multiple, non-homogenous physics appeared in

21st century? The answer is YES in logic at least. That is the Smarandache multi-space theory,

see [7] for details.

For applying Smarandache multi-spaces to parallel universes, combinatorial manifolds were

1Received October 25, 2007. Accepted December 12, 2007
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introduced endowed with a topological or differential structure under a combinatorial specu-

lation for mathematical sciences in [9], i.e. mathematics can be reconstructed from or turned

into combinatorization([8]), which are similar to manifolds in the local but different in the

global. Whence, geometries on combinatorial manifolds are nothing but these Smarandache

geometries([12]-[13]).

Now we introduce the conception of combinatorial manifolds in the following. For an

integer s ≥ 1, let n1, n2, · · · , ns be an integer sequence with 0 < n1 < n2 < · · · < ns. Choose s

open unit balls Bn1
1 , Bn2

2 , · · · , Bns
s with

s⋂
i=1

Bni

i 6= ∅ in Rn, where n = n1 + n2 + · · ·ns. A unit

open combinatorial ball of degree s is a union

B̃(n1, n2, · · · , ns) =

s⋃

i=1

Bni

i .

A combinatorial manifold M̃ is defined in the next.

Definition 1.1 For a given integer sequence n1, n2, · · · , nm,m ≥ 1 with 0 < n1 < n2 < · · · <
nm, a combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is

a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism

ϕp : Up → B̃(n1(p), n2(p), · · · , ns(p)(p)) with {n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}
and

⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃

on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension ŝ(p) of
s(p)⋂
i=1

Bni

i

are called the dimension and the intersectional dimensional of M̃(n1, n2, · · · , nm) at the point

p, denoted by d(p) and d̂(p), respectively.

A combinatorial manifold M̃ is called finite if it is just combined by finite manifolds with-

out one manifold contained in the union of others, is called smooth if it is finite endowed

with a C∞ differential structure. For a smoothly combinatorial manifold M̃ and a point

p ∈ M̃ , it has been shown in [9] that dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) and

dimT ∗
p M̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑
i=1

(ni − ŝ(p)) with a basis

{ ∂

∂xhj
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

ni⋃

j=ŝ(p)+1

{ ∂

∂xij
|p | 1 ≤ j ≤ s})

or

{dxhj |p|}1 ≤ j ≤ ŝ(p)}
⋃

(

s(p)⋃

i=1

ni⋃

j=ŝ(p)+1

{dxij |p | 1 ≤ j ≤ s}

for a given integer h, 1 ≤ h ≤ s(p).
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Definition 1.2 A connection D̃ on a smoothly combinatorial manifold M̃ is a mapping D̃ :

X (M̃) × T r
s M̃ → T r

s M̃ on tensors of M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃ ,

τ, π ∈ T r
s (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;

(3) for any contraction C on T r
s (M̃), D̃X(C(τ)) = C(D̃Xτ).

A combinatorially connection space is a 2-tuple (M̃, D̃) consisting of a smoothly combina-

torial manifold M̃ with a connection D̃ and a torsion tensor T̃ : X (M̃)×X (M̃) → X (M̃) on

(M̃, D̃) is defined by T̃ (X,Y ) = D̃XY − D̃Y X − [X,Y ] for ∀X,Y ∈ X (M̃). If T̃ |U (X,Y ) ≡ 0

in a local chart (U, [ϕ]), then D̃ is called torsion-free on (U, [ϕ]).

Similar to that of Riemannian geometry, metrics on a smoothly combinatorial manifold

and the combinatorially Riemannian geometry are defined in next definition.

Definition 1.3 Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =
⋃

p∈M̃

T 0
2 (p, M̃).

If g is symmetrical and positive, then M̃ is called a combinatorially Riemannian manifold,

denoted by (M̃, g). In this case, if there is a connection D̃ on (M̃, g) with equality following

hold

Z(g(X,Y )) = g(D̃Z , Y ) + g(X, D̃ZY )

then M̃ is called a combinatorially Riemannian geometry, denoted by (M̃, g, D̃).

It has been showed that there exists a unique connection D̃ on (M̃, g) such that (M̃, g, D̃)

is a combinatorially Riemannian geometry in [9].

We all known that curvature equations are very important in theoretical physics for describ-

ing various classical fields, particularly for gravitational field by Einstein. The main purpose

of this paper is to establish curvature tensors with equations on combinatorial manifolds and

apply them to describe the gravitational field. For this objective, we introduce the concep-

tion of curvatures on combinatorial manifolds and establish symmetrical relations for curvature

tensors, particularly for combinatorially Riemannian manifolds in the next two sections. Struc-

tural equations of curvature tensors on combinatorial manifolds are also established. These

generalized Einstein’s equations of gravitational field on combinatorially Riemannian manifolds

are constructed in Section 4. By applying the projective principle on multi-spaces, multi-space

solutions for these new equations are gotten in Section 5.

Terminologies and notations used in this paper are standard and can be found in [1], [4] for

those of manifolds [9] − [11] for combinatorial manifolds and [6] − [7] for graphs, respectively.

§2. Curvatures on Combinatorially Connection Spaces

As a first step for introducing curvatures on combinatorial manifolds, we define combinatorially

curvature operators on smoothly combinatorial manifolds in the next.
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Definition 2.1 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y ∈ X (M̃), a

combinatorially curvature operator R̃(X,Y ) : X (M̃) → X (M̃) is defined by

R̃(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

for ∀Z ∈ X (M̃).

For a given combinatorially connection space (M̃, D̃), we know properties following on

combinatorially curvature operators similar to those of the Riemannian geometry.

Theorem 2.1 Let (M̃, D̃) be a combinatorially connection space. Then for ∀X,Y, Z ∈ X (M̃),

∀f ∈ C∞(M̃),

(1) R̃(X,Y ) = −R̃(Y,X);

(2) R̃(fX, Y ) = R̃(X, fY ) = fR̃(X,Y );

(3) R̃(X,Y )(fZ) = fR̃(X,Y )Z.

Proof For ∀X,Y, Z ∈ X (M̃), we know that R̃(X,Y )Z = −R̃(Y,X)Z by definition.

Whence, R̃(X,Y ) = −R̃(Y,X).

Now since

R̃(fX, Y )Z = D̃fXD̃Y Z − D̃Y D̃fXZ − D̃[fX,Y ]Z

= fD̃XD̃Y Z − D̃Y (fD̃XZ) − D̃f [X,Y ]−Y (f)XZ

= fD̃XD̃Y Z − Y (f)D̃XZ − fD̃Y D̃XZ

− fD̃[X,Y ]Z + Y (f)D̃XZ

= fR̃(X,Y )Z,

we get that R̃(fX, Y ) = fR̃(X,Y ). Applying the quality (1), we find that

R̃(X, fY ) = −R̃(fY,X) = −fR̃(Y,X) = fR̃(X,Y ).

This establishes (2). Now calculation shows that

R̃(X,Y )(fZ) = D̃XD̃Y (fZ) − D̃Y D̃X(fZ) − D̃[X,Y ](fZ)

= D̃X(Y (f)Z + fD̃Y Z) − D̃Y (X(f)Z + fD̃XZ)

− ([X,Y ](f))Z − fD̃[X,Y ]Z

= X(Y (f))Z + Y (f)D̃XZ +X(f)D̃YZ

+ fD̃XD̃Y Z − Y (X(f))Z −X(f)D̃YZ − Y (f)D̃XZ

− fD̃Y D̃XZ − ([X,Y ](f))Z − fD̃[X,Y ]Z

= fR̃(X,Y )Z.

Whence, we know that
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R̃(X,Y )(fZ) = fR̃(X,Y )Z.

�

Theorem 2.2 Let (M̃, D̃) be a combinatorially connection space. If the torsion tensor T̃ ≡ 0

on D̃, then the first and second Bianchi equalities following hold.

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0

and

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X,Y )W = 0.

Proof Notice that T̃ ≡ 0 is equal to D̃XY −D̃Y X = [X,Y ] for ∀X,Y ∈ X (M̃). Thereafter,

we know that

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y

= D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z + D̃Y D̃ZX − D̃ZD̃Y X

− D̃[Y,Z]X + D̃ZD̃XY − D̃XD̃ZY − D̃[Z,X]Y

= D̃X(D̃Y Z − D̃ZY ) − D̃[Y,Z]X + D̃Y (D̃ZX − D̃XZ)

− D̃[Z,X]Y + D̃Z(D̃XY − D̃YX) − D̃[X,Y ]Z

= D̃X [Y, Z] − D̃[Y,Z]X + D̃Y [Z,X ]− D̃[Z,X]Y

+ D̃Z [X,Y ] − D̃[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]].

By the Jacobi equality [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0, we get that

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

By definition, we know that

(D̃XR̃)(Y, Z)W =

D̃XR̃(Y, Z)W − R̃(D̃XY, Z)W − R̃(Y, D̃XZ)W − R̃(Y, Z)D̃XW

= D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃XD̃[Y,Z]W − D̃D̃XY D̃ZW

+D̃ZD̃D̃XYW + D̃[D̃XY,Z]W − D̃Y D̃D̃XZW + D̃D̃XZD̃YW

+D̃[Y,D̃XZ]W − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW + D̃[Y,Z]D̃XW.

Let

AW (X,Y, Z) = D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW,

BW (X,Y, Z) = −D̃XD̃D̃Y ZW + D̃XD̃D̃ZY W + D̃ZD̃D̃XYW − D̃Y D̃D̃XZW,
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CW (X,Y, Z) = −D̃D̃XY D̃ZW + D̃D̃XZD̃YW + D̃D̃Y ZD̃XW − D̃D̃ZY D̃XW

and

DW (X,Y, Z) = D̃[D̃XY,Z]W − D̃[D̃XZ,Y ]W.

Applying the equality D̃XY − D̃YX = [X,Y ], we find that

(D̃XR̃)(Y, Z)W = AW (X,Y, Z) +BW (X,Y, Z) + CW (X,Y, Z) +DW (X,Y, Z).

We can check immediately that

AW (X,Y, Z) +AW (Y, Z,X) +AW (Z,X, Y ) = 0,

BW (X,Y, Z) +BW (Y, Z,X) +BW (Z,X, Y ) = 0,

CW (X,Y, Z) + CW (Y, Z,X) + CW (Z,X, Y ) = 0

and

DW (X,Y, Z) +DW (Y, Z,X) +DW (Z,X, Y )

= D̃[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = D̃0W = 0

by the Jacobi equality [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0. Therefore, we get finally that

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X,Y )W

= AW (X,Y, Z) +BW (X,Y, Z) + CW (X,Y, Z) +DW (X,Y, Z)

+AW (Y, Z,X) +BW (Y, Z,X) + CW (Y, Z,X) +DW (Y, Z,X)

+AW (Z,X, Y ) +BW (Z,X, Y ) + CW (Z,X, Y ) +DW (Z,X, Y ) = 0.

This completes the proof. �

According to Theorem 2.1, the curvature operator R̃(X,Y ) : X (M̃) → X (M̃) is a tensor

of type (1, 1). By applying this operator, we can define a curvature tensor in the next definition.

Definition 2.2 Let (M̃, D̃) be a combinatorially connection space. For ∀X,Y, Z ∈ X (M̃), a

linear multi-mapping R̃ : X (M̃) × X (M̃) × X (M̃) → X (M̃) determined by

R̃(Z,X, Y ) = R̃(X,Y )Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Let (M̃, D̃) be a combinatorially connection space and

{eij|1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ei1j = ei2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)}

a local frame with a dual
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{ωij |1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ωi1j = ωi2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)},

abbreviated to {eij} and {ωij} at a point p ∈ M̃ , where M̃ = M̃(n1, n2, · · · , nm). Then there

exist smooth functions Γσς
(µν)(κλ) ∈ C∞(M̃) such that

D̃eκλ
eµν = Γσς

(µν)(κλ)eσς

called connection coefficients in the local frame {eij}. Define

ωσς
µν = Γσς

(µν)(κλ)ω
κλ.

We get that

D̃eκλ = ωσς
µνeσς .

Theorem 2.3 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

d̃ωµν − ωκλ ∧ ωµν
κλ =

1

2
T̃ µν

(κλ)(σς)ω
κλ ∧ ωσς ,

where T̃ µν
(κλ)(σς) is a component of the torsion tensor T̃ in the frame {eij}, i.e., T̃ µν

(κλ)(σς) =

ωµν(T̃ (eκλ, eσς)) and

d̃ωκλ
µν − ωσς

µν ∧ ωκλ
σς =

1

2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ

with R̃κλ
(µν)(σς)(σς)eκλ = R̃(eσς , eηθ)eµν .

Proof By definition, for any given eσς , eηθ we know that (see Theorem 3.6 in [9])

(d̃ωµν − ωκλ ∧ ωµν
κλ)(eσς , eηθ) = eσς(ω

µν(eηθ)) − eηθ(ω
µν(eσς)) − ωµν([eσς , eηθ])

− ωκλ(eσς)ω
µν
κλ(eηθ) + ωκλ(eηθ)ω

µν
κλ(eσς)

= −ωµν
σς (eηθ) + ωµν

ηθ (eσς) − ωµν([eσς , eηθ])

= −Γµν
(σς)(ηθ) + Γµν

(ηθ)(σς) − ωµν([eσς , eηθ])

= ωµν(D̃eσς
eηθ − D̃eηθ

eσς − [eσς , eηθ])

= ωµν(T̃ (eσς , eηθ)) = T̃ µν
(σς)(ηθ).

Whence,

d̃ωµν − ωκλ ∧ ωµν
κλ =

1

2
T̃ µν

(κλ)(σς)ω
κλ ∧ ωσς .

Now since
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(d̃ωκλ
µν − ωϑι

µν ∧ ωκλ
ϑι )(eσς , eηθ)

= eσς(ω
κλ
µν (eηθ)) − eηθ(ω

κλ
µν (eσς)) − ωκλ

µν ([eσς , eηθ])

−ωϑι
µν(eσς)ω

κλ
ϑι (eηθ) + ωϑι

µν(eηθ)ω
κλ
ϑι (eσς)

= eσς(Γ
κλ
(µν)(ηθ)) − eηθ(Γ

κλ
(µν)(σς)) − ωϑι([eσς , eηθ])Γ

κλ
(µν)(ϑι)

−Γϑι
(µν)(σς)Γ

κλ
(ϑι)(ηθ) + Γϑι

(µν)(ηθ)Γ
κλ
(ϑι)(σς)

and

R̃(eσς , eηθ)eµν = D̃eσς
D̃eηθ

eµν − D̃eηθ
D̃eσς

eµν − D̃[eσς ,eηθ ]eµν

= D̃eσς
(Γκλ

(µν)(ηθ)eκλ) − D̃eηθ
(Γκλ

(µν)(σς)eκλ) − ωϑι([eσς , eηθ])Γ
κλ
(µν)(ϑι)eκλ

= (eσς(Γ
κλ
(µν)(ηθ)) − eηθ(Γ

κλ
(µν)(σς)) + Γϑι

(µν)(ηθ)Γ
κλ
(ϑι)(σς)

− Γϑι
(µν)(σς)Γ

κλ
(ϑι)(ηθ) − ωϑι([eσς , eηθ])Γ

κλ
(µν)(ϑι))eκλ

= (d̃ωκλ
µν − ωϑι

µν ∧ ωκλ
ϑι )(eσς , eηθ)eκλ.

Therefore, we get that

(d̃ωκλ
µν − ωϑι

µν ∧ ωκλ
ϑι )(eσς , eηθ) = R̃κλ

(µν)(σς)(ηθ),

that is,

d̃ωκλ
µν − ωσς

µν ∧ ωκλ
σς =

1

2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ.

�

Definition 2.3 Let (M̃, D̃) be a combinatorially connection space. Differential 2-forms Ωµν =

d̃ωµν − ωµν ∧ ωµν
κλ, Ωκλ

µν = d̃ωκλ
µν − ωσς

µν ∧ ωκλ
σς and equations

d̃ωµν = ωκλ ∧ ωµν
κλ + Ωµν , d̃ωκλ

µν = ωσς
µν ∧ ωκλ

σς + Ωκλ
µν

are called torsion forms, curvature forms and structural equations in a local frame {eij} of

(M̃, D̃), respectively.

By Theorem 2.3 and Definition 2.3, we get local forms for torsion tensor and curvature

tensor in a local frame following.

Corollary 2.1 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

T̃ = Ωµν ⊗ eµν and R̃ = ωµν ⊗ eκλ ⊗ Ωκλ
µν ,

i.e., for ∀X,Y ∈ X (M̃),

T̃ (X,Y ) = Ωµν(X,Y )eµν and R̃(X,Y ) = Ωκλ
µν(X,Y )ωµν ⊗ eµν .



24 Linfan Mao

Theorem 2.4 Let (M̃, D̃) be a combinatorially connection space and {eij} a local frame with

a dual {ωij} at a point p ∈ M̃ . Then

d̃Ωµν = ωκλ ∧ Ωµν
κλ − Ωκλ ∧ ωµν

κλ and d̃Ωκλ
µν = ωσς

µν ∧ Ωκλ
σς − Ωσς

µν ∧ ωκλ
σς .

Proof Notice that d̃2 = 0. Differentiating the equality Ωµν = d̃ωµν − ωµν ∧ ωµν
κλ on both

sides, we get that

d̃Ωµν = −d̃ωµν ∧ ωµν
κλ + ωµν ∧ d̃ωµν

κλ

= −(Ωκλ + ωσς ∧ ωκλ
σς ) ∧ ωµν

κλ + ωκλ ∧ (Ωµν
κλ + ωσς

κλ ∧ ωµν
σς )

= ωκλ ∧ Ωµν
κλ − Ωκλ ∧ ωµν

κλ.

Similarly, differentiating the equality Ωκλ
µν = d̃ωκλ

µν − ωσς
µν ∧ ωκλ

σς on both sides, we can also find

that

d̃Ωκλ
µν = ωσς

µν ∧ Ωκλ
σς − Ωσς

µν ∧ ωκλ
σς .

�

Corollary 2.2 Let (M,D) be an affine connection space and {ei} a local frame with a dual

{ωi} at a point p ∈M . Then

dΩi = ωj ∧ Ωi
j − Ωj ∧ ωi

j and dΩj
i = ωk

i ∧ Ωj
k − Ωk

i ∧ Ωj
k.

According to Theorems 2.1−2.4 there is a type (1, 3) tensor R̃p : TpM̃×TpM̃×TpM̃ → TpM̃

determined by R̃(w, u, v) = R̃(u, v)w for ∀u, v, w ∈ TpM̃ at each point p ∈ M̃ . Particularly, we

get its a concrete local form in the standard basis { ∂
∂xµν }.

Theorem 2.5 Let (M̃, D̃) be a combinatorially connection space. Then for ∀p ∈ M̃ with a local

chart (Up; [ϕp]),

R̃ = R̃ηθ
(σς)(µν)(κλ)dx

σς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ
(σς)(µν)(κλ) =

∂Γηθ
(σς)(κλ)

∂xµν
−
∂Γηθ

(σς)(µν)

∂xκλ
+ Γϑι

(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι

(σς)(µν)Γ
ηθ
(ϑι)(κλ))

∂

∂xϑι
,

where, Γσς
(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γσς

(κλ)(µν)

∂

∂xσς
.

Proof We only need to prove that for integers µ, ν, κ, λ, σ, ς, ι and θ,
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R̃(
∂

∂xµν
,

∂

∂xκλ
)
∂

∂xσς
= R̃ηθ

(σς)(µν)(κλ)

∂

∂xηθ

at the local chart (Up; [ϕp]). In fact, by definition we get that

R̃(
∂

∂xµν
,

∂

∂xκλ
)
∂

∂xσς

= D̃ ∂
∂xµν

D̃ ∂

∂xκλ

∂

∂xσς
− D̃ ∂

∂xκλ
D̃ ∂

∂xµν

∂

∂xσς
− D̃[ ∂

∂xµν , ∂

∂xκλ ]

∂

∂xσς

= D̃ ∂
∂xµν

(Γηθ
(σς)(κλ)

∂

∂xηθ
) − D̃ ∂

∂xκλ
(Γηθ

(σς)(µν)

∂

∂xηθ
)

=
∂Γηθ

(σς)(κλ)

∂xµν

∂

∂xηθ
+ Γηθ

(σς)(κλ)D̃ ∂
∂xµν

∂

∂xηθ
−
∂Γηθ

(σς)(µν)

∂xκλ

∂

∂xηθ
− Γηθ

(σς)(µν)D̃ ∂

∂xκλ

∂

∂xηθ

= (
∂Γηθ

(σς)(κλ)

∂xµν
−
∂Γηθ

(σς)(µν)

∂xκλ
)
∂

∂xηθ
+ Γηθ

(σς)(κλ)Γ
ϑι
(ηθ)(µν)

∂

∂xϑι
− Γηθ

(σς)(µν)Γ
ϑι
(ηθ)(κλ)

∂

∂xϑι

= (
∂Γηθ

(σς)(κλ)

∂xµν
−
∂Γηθ

(σς)(µν)

∂xκλ
+ Γϑι

(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι

(σς)(µν)Γ
ηθ
(ϑι)(κλ))

∂

∂xϑι

= R̃ηθ
(σς)(µν)(κλ)

∂

∂xηθ
.

This completes the proof. �

For the curvature tensor R̃ηθ
(σς)(µν)(κλ), we can also get these Bianchi identities in the next

result.

Theorem 2.6 Let (M̃, D̃) be a combinatorially connection space. Then for ∀p ∈ M̃ with a

local chart (Up, [ϕp]), if T̃ ≡ 0, then

R̃µν
(κλ)(σς)(ηθ) + R̃µν

(σς)(ηθ)(κλ) + R̃µν
(ηθ)(κλ)(σς) = 0

and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς) = 0,

where,

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) = D̃ ∂

∂xϑι
R̃κλ

(µν)(σς)(ηθ).

Proof By definition of the curvature tensor R̃ηθ
(σς)(µν)(κλ), we know that

R̃µν
(κλ)(σς)(ηθ) + R̃µν

(σς)(ηθ)(κλ) + R̃µν
(ηθ)(κλ)(σς)

= R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ R̃(

∂

∂xηθ
,

∂

∂xκλ
)
∂

∂xσς
+ R̃(

∂

∂xκλ
,
∂

∂xσς
)
∂

∂xηθ

= 0

with
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X =
∂

∂xσς
, Y =

∂

∂xηθ
and Z =

∂

∂xκλ
. ♮

in the first Bianchi equality and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς)

= D̃ϑιR̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ D̃σς R̃(

∂

∂xηθ
,
∂

∂xϑι
)
∂

∂xκλ
+ D̃ηθR̃(

∂

∂xϑι
,
∂

∂xσς
)
∂

∂xκλ

= 0.

with

X =
∂

∂xϑι
, Y =

∂

∂xσς
, Z =

∂

∂xηθ
, W =

∂

∂xκλ

in the second Bianchi equality of Theorem 2.2. �

§3. Curvatures on Combinatorially Riemannian Manifolds

Now we turn our attention to combinatorially Riemannian manifolds and characterize curvature

tensors on combinatorial manifolds further.

Definition 3.1 Let (M̃, g, D̃) be a combinatorially Riemannian manifold. A combinatorially

Riemannian curvature tensor

R̃ : X (M̃) × X (M̃) × X (M̃) × X (M̃) → C∞(M̃)

of type (0, 4) is defined by

R̃(X,Y, Z,W ) = g(R̃(Z,W )X,Y )

for ∀X,Y, Z,W ∈ X (M̃).

Then we find symmetrical relations of R̃(X,Y, Z,W ) following.

Theorem 3.1 Let R̃ : X (M̃) × X (M̃) × X (M̃) × X (M̃) → C∞(M̃) be a combinatorially

Riemannian curvature tensor. Then for ∀X,Y, Z,W ∈ X (M̃),

(1) R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z) = 0.

(2) R̃(X,Y, Z,W ) = −R̃(Y,X,Z,W ) and R̃(X,Y, Z,W ) = −R̃(X,Y,W,Z).

(3) R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ).

Proof For the equality (1), calculation shows that

R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z)

= g(R̃(Z,W )X,Y ) + g(R̃(W,X)Z, Y ) + g(R̃(X,Z)W,Y )

= g(R̃(Z,W )X + R̃(W,X)Z + R̃(X,Z)W,Y ) = 0
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by definition and Theorem 2.1(4).

For (2), by definition and Theorem 2.1(1), we know that

R̃(X,Y, Z,W ) = g(R̃(Z,W )X,Y ) = g(−R̃(W,Z)X,Y )

= −g(R̃(W,Z)X,Y ) = −R̃(X,Y,W,Z).

Now since D̃ is a combinatorially Riemannian connection, we know that ([9])

Z(g(X,Y )) = g(D̃ZX,Y ) + g(X, D̃ZY ).

Therefore, we find that

g(D̃ZD̃WX,Y ) = Z(g(D̃WX,Y )) − g(D̃WX, D̃ZY )

= Z(W (g(X,Y ))) − Z(g(X, D̃WY ))

− W (g(X, D̃ZY )) + g(X, D̃W D̃ZY ).

Similarly, we have that

g(D̃W D̃ZX,Y ) = W (Z(g(X,Y ))) −W (g(X, D̃ZY ))

− Z(g(X, D̃WY )) + g(X, D̃ZD̃WY ).

Notice that

g(D̃[Z,W ], Y ) = [Z,W ]g(X,Y ) − g(X, D̃[Z,W ]Y ).

By definition, we get that

R̃(X,Y, Z,W ) = g(D̃ZD̃WX − D̃W D̃ZX − D̃[Z,W ]X,Y )

= g(D̃ZD̃WX,Y ) − g(D̃W D̃ZX,Y ) − g(D̃[Z,W ]X,Y )

= Z(W (g(X,Y ))) − Z(g(X, D̃WY )) −W (g(X, D̃ZY ))

+ g(X, D̃W D̃ZY ) −W (Z(g(X,Y ))) +W (g(X, D̃ZY ))

+ Z(g(X, D̃WY )) − g(X, D̃ZD̃WY ) − [Z,W ]g(X,Y )

− g(X, D̃[Z,W ]Y )

= Z(W (g(X,Y ))) −W (Z(g(X,Y ))) + g(X, D̃W D̃ZY )

− g(X, D̃ZD̃WY ) − [Z,W ]g(X,Y ) − g(X, D̃[Z,W ]Y )

= g(X, D̃W D̃ZY − D̃ZD̃WY + D̃[Z,W ]Y )

= −g(X, R̃(Z,W )Y ) = −R̃(Y,X,Z,W ).

Applying the equality (1), we know that
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R̃(X,Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X,Z) = 0, (3.1)

R̃(Y, Z,W,X) + R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0. (3.2)

Then (3.1) + (3.2) shows that

R̃(X,Y, Z,W ) + R̃(W,Y,X,Z)

+ R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0

by applying (2). We also know that

R̃(W,Y,X,Z) − R̃(X,Z, Y,W ) = −(R̃(Z, Y,W,X) − R̃(W,X,Z, Y ))

= R̃(X,Y, Z,W ) − R̃(Z,W,X, Y ).

This enables us getting the equality (3)

R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ).

�

Applying Theorems 2.2, 2.3 and 3.1, we also get the next result.

Theorem 3.2 Let (M̃, g, D̃) be a combinatorially Riemannian manifold and Ω(µν)(κλ) =

Ωσς
µνg(σς)(κλ). Then

(1) Ω(µν)(κλ) = 1
2 R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ;

(2) Ω(µν)(κλ) + Ω(κλ)(µν) = 0;

(3) ωµν ∧ Ω(µν)(κλ) = 0;

(4) d̃Ω(µν)(κλ) = ωσς
µν ∧ Ω(σς)(κλ) − ωσς

κλ ∧ Ω(σς)(µν).

Proof Notice that T̃ ≡ 0 in a combinatorially Riemannian manifold (M̃, g, D̃). We find

that

Ωκλ
µν =

1

2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ

by Theorem 2.2. By definition, we know that

Ω(µν)(κλ) = Ωσς
µνg(σς)(κλ)

=
1

2
R̃σς

(µν)(ηθ)(ϑι)g(σς)(κλ)ω
ηθ ∧ ωϑι =

1

2
R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ.

Whence, we get the equality (1). For (2), applying Theorem 3.1(2), we find that

Ω(µν)(κλ) + Ω(κλ)(µν) =
1

2
(R̃(µν)(κλ)(σς)(ηθ) + R̃(κλ)(µν)(σς)(ηθ))ω

σς ∧ ωηθ = 0.
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By Corollary 2.1, a connection D̃ is torsion-free only if Ωµν ≡ 0. This fact enables us to

get these equalities (3) and (4) by Theorem 2.3. �

For any point p ∈ M̃ with a local chart (Up, [ϕp]), we can also find a local form of R̃ in the

next result.

Theorem 3.3 Let R̃ : X (M̃) × X (M̃) × X (M̃) × X (M̃) → C∞(M̃) be a combinatorially

Riemannian curvature tensor. Then for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι
(µν)(σς)Γ

ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo

(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

where g(µν)(κλ) = g( ∂
∂xµν ,

∂
∂xκλ ).

Proof Notice that

R̃(σς)(ηθ)(µν)(κλ) = R̃(
∂

∂xσς
,
∂

∂xηθ
,

∂

∂xµν
,

∂

∂xκλ
) = R̃(

∂

∂xµν
,

∂

∂xκλ
,
∂

∂xσς
,
∂

∂xηθ
)

= g(R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xµν
,

∂

∂xκλ
) = R̃ϑι

(µν)(σς)(ηθ)g(ϑι)(κλ)

By definition and Theorem 3.1(3). Now we have know that (eqn.(3.5) in [9])

∂g(µν)(κλ)

∂xσς
= Γηθ

(µν)(σς)g(ηθ)(κλ) + Γηθ
(κλ)(σς)g(µν)(ηθ).

Applying Theorem 2.4, we get that
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R̃(σς)(ηθ)(µν)(κλ)

= (
∂Γϑι

(σς)(κλ)

∂xµν
−
∂Γϑι

(σς)(µν)

∂xκλ
+ Γξo

(σς)(κλ)Γ
ϑι
(ξo)(µν) − Γξo

(σς)(µν)Γ
ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι

(σς)(κλ)g(ϑι)(ηθ)) − Γϑι
(σς)(κλ)

∂g(ϑι)(ηθ)

∂xµν
− ∂

∂xκλ
(Γϑι

(σς)(µν)g(ϑι)(ηθ))

+Γϑι
(σς)(µν)

∂g(ϑι)(ηθ)

∂xκλ
+ Γξo

(σς)(κλ)Γ
ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo

(σς)(µν)Γ
ϑι
(ξo)(κλ)g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι

(σς)(κλ)g(ϑι)(ηθ)) −
∂

∂xκλ
(Γϑι

(σς)(µν)g(ϑι)(ηθ))

+Γϑι
(σς)(µν)(Γ

ξo
(ϑι)(κλ)g(ξo)(ηθ) + Γξo

(ηθ)(κλ)g(ϑι)(ξo)) + Γξo
(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ)

−Γϑι
(σς)(κλ)(Γ

ξo
(ϑι)(µν)g(ξo)(ηθ) + Γξo

(ηθ)(µν)g(ϑι)(ξo)) − Γξo
(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2

∂

∂xµν
(
∂g(σς)(ηθ)

∂xκλ
+
∂g(κλ)(ηθ)

∂xσς
− ∂g(σς)(κλ)

∂xηθ
) + Γξo

(σς)(κλ)Γ
ϑι
(ξo)(µν)g(ϑι)(κλ)

−1

2

∂

∂xκλ
(
∂g(σς)(ηθ)

∂xµν
+
∂g(µν)(ηθ)

∂xσς
− ∂g(σς)(µν)

∂xηθ
) − Γξo

(σς)(µν)Γ
ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+Γξo
(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo

(σς)(µν)Γ
ϑι
(ξo)(κλ))g(ϑι)(ηθ).

This completes the proof. �

Combining Theorems 2.5, 3.1 and 3.3, we have the following consequence.

Corollary 3.1 Let R̃(µν)(κλ)(σς)(ηθ) be a component of a combinatorially Riemannian curvature

tensor R̃ in a local chart (U, [ϕ]) of a combinatorially Riemannian manifold (R̃, g, D̃). Then

(1) R̃(µν)(κλ)(σς)(ηθ) = −R̃(κλ)(µν)(σς)(ηθ) = −R̃(µν)(κλ)(ηθ)(σς);

(2) R̃(µν)(κλ)(σς)(ηθ) = R̃(σς)(ηθ)(µν)(κλ);

(3) R̃(µν)(κλ)(σς)(ηθ) + R̃(ηθ)(κλ)(µν)(σς) + R̃(σς)(κλ)(ηθ)(µν) = 0;

(4) D̃ϑιR̃(µν)(κλ)(σς)(ηθ) + D̃σς R̃(µν)(κλ)(ηθ)(ϑι) + D̃ηθR̃(µν)(κλ)(ϑι)(σς) = 0.

§4. Einstein’s Gravitational Equations on Combinatorial Manifolds

Application of results in last two sections enables us to establish these Einstein’ gravitational

filed equations on combinatorially Riemannian manifolds in this section and find their multi-

space solutions in next section under a projective principle on the behavior of particles in

multi-spaces.

Let (M̃, g, D̃) be a combinatorially Riemannian manifold. A type (0, 2) tensor E : X (M̃)×
X (M̃) → C∞(M̃) with

E = E(µν)(κλ)dx
µν ⊗ dxκλ (4.1)

is called an energy-momentum tensor if it satisfies the conservation laws D̃(E ) = 0, i.e., for any

indexes κ, λ, 1 ≤ κ ≤ m, 1 ≤ λ ≤ nκ,
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∂E(µν)(κλ)

∂xκλ
− Γσς

(µν)(κλ)E(σς)(κλ) − Γσς
(κλ)(κλ)E(µν)(σς) = 0 (4.2)

in a local chart (Up, [ϕp]) for any point p ∈ M̃ . Define the Ricci tensor R̃(µν)(κλ), Rocci scalar

tensor R and Einstein tensor G(µν)(κλ) respectively by

R̃(µν)(κλ) = R̃σς
(µν)(σς)(κλ), R = g(µν)(κλ)R̃(µν)(κλ) (4.3)

and

G(µν)(κλ) = R̃(µν)(κλ) −
1

2
g(µν)(κλ)R. (4.4)

Then we get results following hold by Theorems 2.4, 2.5 and 3.1.

R̃(µν)(κλ) = R̃(κλ)(µν), (4.5)

R̃(µν)(κλ) ==
∂Γσς

(µν)(κλ)

∂xσς
−
∂Γσς

(µν)(σς)

∂xκλ
+ Γϑι

(µν)(κλ)Γ
σς
(ϑι)(σς) − Γϑι

(µν)(σς)Γ
σς
(ϑι)(κλ). (4.6)

and

∂G(µν)(κλ)

∂xκλ
− Γσς

(µν)(κλ)G(σς)(κλ) − Γσς
(κλ)(κλ)G(µν)(σς) = 0. (4.7)

i.e., D̃(G ) = 0. Einstein’s principle of general relativity says that a law of physics should take

a same form in any reference system, which claims that a right form for a physics law should

be presented by tensors in mathematics. For a multi-spacetime, we conclude that Einstein’s

principle of general relativity is still true, if we take the multi-spacetime being a combinatorially

Riemannian manifold. Whence, a physics law should be also presented by tensor equations in

the multi-spacetime case.

Just as the establishing of Einstein’s gravitational equations in the classical case, these

equations should satisfy two conditions following.

(C1) They should be (0, 2) type tensor equations related to the energy-momentum tensor

E linearly;

(C2) Their forms should be the same as in a classical gravitational field.

By these two conditions, Einstein’s gravitational equations in a multi-spacetime should be

taken the following form

G = cE

with c a constant. Now since these equations should take the same form in the classical case,

i.e.,

Gij = −8πGEij
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for 1 ≤ i, j ≤ n at a point p in a manifold of M̃ not contained in the others. Whence, it must

be c = −8πG for c being a constant. This enables us finding these Einstein’s gravitational

equations in a multi-spacetime to be

R̃(µν)(κλ) −
1

2
Rg(µν)(κλ) = −8πGE(µν)(κλ). (4.8)

Certainly, we can also add a cosmological term λg(µν)(κλ) in (4.8) and obtain these gravitational

equations

R̃(µν)(κλ) −
1

2
Rg(µν)(κλ) + λg(µν)(κλ) = −8πGE(µν)(κλ). (4.9)

All of these equations (4.8) and (4.9) mean that there are multi-space solutions in classical

Einstein’s gravitational equations by a multi-spacetime view, which will be shown in the next

section.

§5. Multi-Space Solutions of Einstein’s Equations

For given integers 0 < n1 < n2 < · · · < nm,m ≥ 1, let (M̃, g, D̃) be a combinatorial Riemannian

manifold with M̃ = M̃(n1, n2, · · · , nm) and (Up, [ϕp]) a local chart for p ∈ M̃ . By definition,

if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix shown

following.

[ϕp] =




x11

s(p) · · · x1ŝ(p)

s(p) x1(ŝ(p)+1) · · · x1n1 · · · 0

x21

s(p) · · · x2ŝ(p)

s(p) x2(ŝ(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p) · · · xs(p)ŝ(p)

s(p) xs(p)(ŝ(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)




with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p).

For given non-negative integers r, s, r + s ≥ 1, choose a type (r, s) tensor F ∈ T r
s (M̃).

Then how to get multi-space solutions of a tensor equation

F = 0 ?

We need to apply the projective principle following.

[Projective Principle] Let (M̃, g, D̃) be a combinatorial Riemannian manifold and F ∈〈
T |T ∈ T r

s (M̃)
〉

with a local form F(µ1ν1)(µ2ν2)···(µsνs)ω
µ1ν1 ⊗ωµ2ν2 ⊗ · · ·⊗ωµnνn in (Up, [ϕp]).

If

F(µ1ν1)(µ2ν2)···(µnνn) = 0

for integers 1 ≤ µi ≤ s(p), 1 ≤ νi ≤ nµi
with 1 ≤ i ≤ s, then for any integer µ, 1 ≤ µ ≤ s(p),

there must be
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F(µν1)(µν2)···(µνs) = 0

for integers νi, 1 ≤ νi ≤ nµ with 1 ≤ i ≤ s.

Now we solve these vacuum Einstein’s gravitational equations

R̃(µν)(κλ) −
1

2
g(µν)(κλ)R = 0 (5.1)

by the projective principle on a combinatorially Riemannian manifold (M̃, g, D̃). For a given

point p ∈ M̃ , we get s(p) tensor equations

R̃(µν)(µλ) −
1

2
g(µν)(µλ)R = 0, 1 ≤ µ ≤ s(p) (5.2)

as these usual vacuum Einstein’s equations in classical gravitational field, where 1 ≤ ν, λ ≤ nµ.

For line elements in M̃ , the next result is easily obtained.

Theorem 5.1 If each line element dsµ is uniquely determined by equations (5.2), Then d̃s is

uniquely determined in M̃ .

Proof For a given index µ, let

ds2µ =

nµ∑

i=1

a2
µidx

2
µi.

Then we know that

d̃s2 =

ŝ(p)∑

i=1

(

s(p)∑

µ=1

aµi)
2dx2

µi +

s(p)∑

µ=1

nµ∑

i=ŝ(p)+1

a2
µidx

2
µi.

Therefore, the line element d̃s is uniquely determined in M̃ if dsµi is uniquely determined

by (5.2). �.

We consider a special case for these Einstein’s gravitational equations (5.1), solutions of

combinatorially Euclidean spaces M̃ =
⋃m

i=1 Rni with a matrix ([11])

[x] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · xmnm−1 xmnm




for any point x ∈ M̃ , where m̂ = dim(
m⋂

i=1

Rni) is a constant for ∀p ∈
m⋂

i=1

Rni and xil = xl

m for

1 ≤ i ≤ m, 1 ≤ l ≤ m̂. In this case, we have a unifying solution for these equations (5.1), i.e.,

d̃s2 =

m̂∑

i=1

(

m∑

µ=1

aµi)
2dx2

µi +

m∑

µ=1

nµ∑

i=m̂+1

a2
µidx

2
µi
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for each point p ∈ M̃ by Theorem 5.1.

For usually undergoing, we consider the case of nµ = 4 for 1 ≤ µ ≤ m since line elements

have been found concretely in classical gravitational field in these cases. Now establish m

spherical coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the center of the mass space.

Then we have known its a spherically symmetric solution for the line element dsµ with a given

index µ by Schwarzschild (see also [3]) for (5.2) to be

ds2µ = (1 − rµs

rµ
)c2dt2µ − (1 − rµs

rµ
)−1dr2µ − r2µ(dθ2µ + sin2 θµdφ

2
µ).

for 1 ≤ µ ≤ m, where rµs = 2Gmµ/c
2. Applying Theorem 5.1, the line element d̃s in M̃ is

d̃s = (

m∑

µ=1

√
1 − rµs

rµ
)2c2dt2 −

m∑

µ=1

(1 − rµs

rµ
)−1dr2µ −

m∑

µ=1

r2µ(dθ2µ + sin2 θµdφ
2
µ)

if m̂ = 1, tµ = t for 1 ≤ µ ≤ m and

d̃s = (
m∑

µ=1

√
1 − rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1 − rµs

rµ
)−1)2dr2 −

m∑

µ=1

r2µ(dθ2µ + sin2 θµdφ
2
µ)

if m̂ = 2, tµ = t, rµ = r for 1 ≤ µ ≤ m and

d̃s = (
m∑

µ=1

√
1 − rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1 − rµs

rµ
)−1)2dr2 −m2r2dθ2 −

m∑

µ=1

r2µ sin2 θµdφ
2
µ

if m̂ = 3, tµ = t, rµ = r, θµ = θ for 1 ≤ µ ≤ m and

d̃s = (

m∑

µ=1

√
1 − rµs

rµ
)2c2dt2 − (

m∑

µ=1

√
(1 − rµs

rµ
)−1)2dr2 −m2r2dθ2 −m2r2 sin2 θdφ2

if m̂ = 4, tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

For another interesting case, let m̂ = 3, rµ = r, θµ = θ, φµ = φ and

dΩ2(r, θ, φ) = (1 − rs
r

)−1dr2 − r2(dθ2 + sin2 θdφ2).

Then we can choose a multi-time system {t1, t2, · · · , tm} to get a cosmic model of m,m ≥ 2

combinatorially R4 spaces with line elements

ds21 = −c2dt21 + a2(t1)dΩ
2(r, θ, φ),

ds22 = −c2dt22 + a2(t2)dΩ
2(r, θ, φ),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
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ds2m = −c2dt2m + a2(tm)dΩ2(r, θ, φ).

In this case, the line element d̃s is

d̃s =

m∑

µ=1

(1 − rµs

rµ
)c2dt2µ − (

m∑

µ=1

√
(1 − rµs

rµ
)−1)2dr2 −m2r2dθ2 −m2r2 sin2 θdφ2.

As a by-product for our universe R3, these formulas mean that these beings with time

notion different from human being will recognize differently the structure of our universe if

these beings are intellectual enough for the structure of the universe.
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Abstract: The isotopic invariance or universality of types and varieties of quasigroups and

loops described by one or more equivalent identities has been of interest to researchers in loop

theory in the recent past. A variety of quasigroups(loops) that are not universal have been

found to be isotopic invariant relative to a special type of isotopism or the other. Presently,

there are two outstanding open problems on universality of loops: semi-automorphic in-

verse property loops(1999) and Osborn loops(2005). Smarandache isotopism(S-isotopism)

was originally introduced by Vasantha Kandasamy in 2002. But in this work, the concept is

restructured in order to make it more explorable. As a result of this, the theory of Smaran-

dache isotopy inherits the open problems as highlighted above for isotopy. In this paper, the

question: Under what type of S-isotopism will a pair of S-quasigroups(S-loops) form any vari-

ety? is answered by presenting a pair of specially Smarandachely isotopic quasigroups(loops)

that both belong to the same variety of S-quasigroups(S-loops). This is important because

pairs of specially Smarandachely isotopic S-quasigroups(e.g Smarandache cross inverse prop-

erty quasigroups) that are of the same variety are useful for applications, for example, to

cryptography.

Key words: Smarandache holomorph, S-isotopism, variety of S-quasigroups (S-loops).

AMS(2000): 08A05,20NO5.

§1. Introduction

1.1 Isotopy theory of quasigroups and loops

The isotopic invariance of types and varieties of quasigroups and loops described by one or

more equivalent identities, especially those that fall in the class of Bol-Moufang type loops as

first named by Fenyves [16]-[17] in the 1960s and later on in this 21st century by Phillips and

Vojtěchovský [35], [36] and [39] have been of interest to researchers in loop theory in the recent

past. Among such is Etta Falconer’s Ph.D [14] and her paper [15] which investigated isotopy

invariants in quasigroups. Loops such as Bol loops, Moufang loops, central loops and extra

loops are the most popular loops of Bol-Moufang type whose isotopic invariance have been

1Received November 25, 2007. Accepted December 16, 2007
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considered. For more on loops and their properties, readers should check [34], [8], [11], [13],

[18] and [40].

Bol-Moufang type of quasigroups(loops) are not the only quasigroups(loops) that are iso-

morphic invariant and whose universality have been considered. Some others are flexible loops,

F-quasigroups, totally symmetric quasigroups(TSQ), distributive quasigroups, weak inverse

property loops(WIPLs), cross inverse property loops(CIPLs), semi-automorphic inverse prop-

erty loops(SAIPLs) and inverse property loops(IPLs). As shown in Bruck [34], a left(right)

inverse property loop is universal if and only if it is a left(right) Bol loop, so an IPL is uni-

versal if and only if it is a Moufang loop. Jáıyéo.lá [20] investigated the universality of central

loops. Recently, Michael Kinyon et. al. in [25]-[27] solved the Belousov problem concerning the

universality of F-quasigroup which has been open since 1967. The universality of WIPLs and

CIPLs have been addressed by OSborn [32] and Artzy [2] respectively while the universality

of elasticity (flexibility) was studied by Syrbu [39]. In 1970, Basarab [4] later continued the

work of J. M. Osborn of 1961 on universal WIPLs by studying isotopes of WIPLs that are also

WIPLs after he had studied a class of WIPLs ([3]) in 1967. The universality of SAIPLs is still

an open problem to be solved as stated by Michael Kinyon during the LOOPs’99 conference.

After the consideration of universal AIPLs by Karklinsh and Klin [24], Basarab [6] obtained

a sufficient condition for which a universal AIPL is a G-loop. Although Basarab in [5], [7]

considered universal Osborn loops but the universality of Osborn loops was raised as an open

problem by Michael Kinyon in [28]. Up to the present moment, this problem is still open.

Interestingly, Adeniran [1] and Robinson [37], Oyebo and Adeniran [33], Chiboka and

Solarin [12], Bruck [9], Bruck and Paige [10], Robinson [38], Huthnance [19] and Adeniran [1]

have respectively studied the holomorphs of Bol loops, central loops, conjugacy closed loops,

inverse property loops, A-loops, extra loops, weak inverse property loops, Osborn loops and

Bruck loops. Huthnance showed that if (L, ·) is a loop with holomorph (H, ◦), (L, ·) is a WIPL

if and only if (H, ◦) is a WIPL in [19]. The holomorphs of an AIPL and a CIPL are yet to be

studied.

1.2 Isotopy theory of Smarandache quasigroups and loops

The study of Smarandache loops was initiated by W.B. Vasantha Kandasamy in 2002. In her

book [40], she defined a Smarandache loop(S-loop) as a loop with at least a subloop which

forms a subgroup under the binary operation of the loop. In that book, she introduced over 75

Smarandache concepts on loops. In [41], she introduced Smarandachely left (right) alternative

loops, S-Bol loops, S-Moufang loops, and S-Bruck loops. Similarly, in Jáıyéo.lá [21], these con-

ceptions Smarandachely inverse property loops (IPL), Smarandachely weak inverse property

loops (WIPL), G-loops, Smarandachely conjugacy closed loops (CC-loop), Smarandachely cen-

tral loops, extra loops, Smarandachely A-loops, Smarandachely K-loops, Smarandachely Bruck

loops, Smarandachely Kikkawa loops, Smarandachely Burn loops and homogeneous loops were

also introduced and studied relative to the holomorphs of loops. It is particularly established

that a loop is a Smarandache loop if and only if its holomorph is a Smarandache loop. This

statement was also shown to be true for some weak Smarandache loops(inverse property, weak

inverse property) but false for others(conjugacy closed, Bol, central, extra, Burn, A-, homoge-
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neous) except if their holomorphs are nuclear or central. The study of Smarandache quasigroups

was carried out in Jáıyéo.lá [22] after the introduction in Muktibodh [30]-[31]. In Jáıyéo.lá [23],

the universality of some Smarandache loops of Bol-Moufang types was studied and some nec-

essary and sufficient conditions for their universality were established.

In this paper, the question: Under what type of S-isotopism will a pair of S-quasigroups(S-

loops) form any variety? is answered by presenting a pair of specially Smarandachely isotopic

quasigroups (loops), abbreviated to S-isotopic quasigroups (loops) that both belong to the same

variety of S-quasigroups(S-loops). This fact is important because pairs of specially S-isotopic

quasigroups, e.g Smarandache cross inverse property quasigroups that are of the same variety

are useful for applications, for example, to cryptography.

§2. Definitions and Notations

Definition 2.1 Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈
L, for ∀ x, y ∈ L, (L, ·) is called a groupoid. If the equation system a ·x = b and y ·a = b have a

unique solution x and y for a given a, b ∈ L, then (L, ·) is called a quasigroup. Furthermore, if

there exists a unique element e ∈ L called the identity element such that ∀ x ∈ L, x·e = e·x = x,

(L, ·) is called a loop.

If there exists at least a non-empty and non-trivial subset M of a groupoid (quasigroup or

semigroup or loop) L such that (M, ·) is a non-trivial subsemigroup (subgroup or subgroup or

subgroup) of (L, ·), then L is called a S-groupoid, or S-quasigroup, or S-semigroup, or S-loop

with S-subsemigroup, or S-subgroup, or S-subgroup, or S-subgroup M .

A quasigroup (loop) is called a Smarandachely certain quasigroup (loop) if it has at least a

non-trivial subquasigroup (subloop) with the certain property and the later is referred to as the

Smarandachely certain subquasigroup (subloop). For example, a loop is called a Smarandachely

Bol-loop if it has at least a non-trivial subloop that is a Bol-loop and the later is referred to as

the Smarandachely Bol-subloop. By an initial S-quasigroup L with an initial S-subquasigroup

L′, we mean that L and L′ are purely quasigroups, i.e., they do not obey a certain property (not

of any variety).

Let (G, ·) be a quasigroup(loop). The bijections Lx : G → G and Rx : G → G defined by

yLx = x · yor yRx = y · x for ∀ x, y ∈ G is called a left (right) translation of G.

The set SYM(L, ·) = SYM(L) of all bijections in a groupoid (L, ·) forms a group called the

permutation(symmetric) group of the groupoid (L, ·). If L is a S-groupoid with a S-subsemigroup

H, then the set SSYM(L, ·) = SSYM(L) of all bijections A in L such that A : H → H forms

a group called the Smarandachely permutation (symmetric) group of the S-groupoid. In fact,

SSYM(L) ≤ SYM(L).

Definition 2.2 If (L, ·) and (G, ◦) are two distinct groupoids, then the triple (U, V,W ) : (L, ·) →
(G, ◦) such that U, V,W : L→ G are bijections is called an isotopism if and only if

xU ◦ yV = (x · y)W, for ∀ x, y ∈ L.

So we call L and G groupoid isotopes.

If U = V = W , then U is called an isomorphism, hence we write (L, ·) ∼= (G, ◦).
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Now, if (L, ·) and (G, ◦) are S-groupoids with S-subsemigroups L′ and G′ respectively such

that A : L′ → G′, where A ∈ {U, V,W}, then the isotopism (U, V,W ) : (L, ·) → (G, ◦) is called

a Smarandache isotopism(S-isotopism).

Thus, if U = V = W , then U is called a Smarandache isomorphism, hence we write

(L, ·) % (G, ◦).
If (L, ·) = (G, ◦), then the triple α = (U, V,W ) of bijections on (L, ·) is called an auto-

topism of the groupoid(quasigroup, loop) (L, ·). Such triples form a group AUT (L, ·) called the

autotopism group of (L, ·). Furthermore, if U = V = W , then U is called an automorphism

of the groupoid(quasigroup, loop) (L, ·). Such bijections form a group AUM(L, ·) called the

automorphism group of (L, ·).
Similarly, if (L, ·) is an S-groupoid with S-subsemigroup L′ such that A ∈ {U, V,W} is a

Smarandache permutation, then the autotopism (U, V,W ) is called a Smarandache autotopism

(S-autotopism) and they form a group SAUT (L, ·) which will be called the Smarandache auto-

topism group of (L, ·). Observe that SAUT (L, ·) ≤ AUT (L, ·).

Discussions To be more precise about the notion of S-isotopism in Definition 2.2, the following

explanations are given. For a given S-groupoid, the S-subsemigroup is arbitrary. But in the

proofs, we make use of one arbitrary S-subsemigroup for an S-groupoid at a time for our

arguments. Now, if (L, ·) and (G, ◦) are S-isotopic groupoids with arbitrary S-subsemigroups

L′ and G′ respectively under the triple (U, V,W ). In case the S-subsemigroup L′ of the S-

groupoid L is replaced with another S-groupoid L′′ of L(i.e a situation where by L has at least

two S-subsemigroups), then under the same S-isotopism (U, V,W ), the S-groupoid isotope G

has a second S-subsemigroups G′′. Hence, when studying the S-isotopism (U, V,W ), it will be

for the system

{(L, ·), (L′, ·)} → {(G, ◦), (G′, ◦)} or {(L, ·), (L′′, ·)} → {(G, ◦), (G′′, ◦)}

and not

{(L, ·), (L′, ·)} → {(G, ◦), (G′′, ◦)} or {(L, ·), (L′′, ·)} → {(G, ◦), (G′, ◦)}.

This is because |L′| = |G′| and |L′′| = |G′′| since (L′)A = G′ and (L′′)A = G′′ for all A ∈
{U, V,W} while it is not compulsory that |L′| = |G′′| and |L′′| = |G′|. It is very easy to see that

from the definition the component transformations U, V,W of isotopy after restricting them to

the S-subsemigroup or S-subgroup L′ are bijections. Let x1, x2 ∈ L′, then x1A = x2A implies

that x1 = x2 because x1, x2 ∈ L′ implies x1, x2 ∈ L, hence x1A = x2A in L implies x1 = x2.

The mappings A : L′ → G′ and A : L − L′ → G−G′ are bijections because A : L → G is a

bijection. Our explanations above are illustrated with the following examples.

Example 2.1 The systems (L, ·) and (L, ∗), with the multiplication shown in tables below

are S-quasigroups with S-subgroups (L′, ·) and (L′′, ∗) respectively, where L = {0, 1, 2, 3, 4},
L′ = {0, 1} and L′′ = {1, 2}. Here, (L, ·) is taken from Example 2.2 in [31]. The triple

(U, V,W ) such that

U =


 0 1 2 3 4

1 2 3 4 0


 , V =


 0 1 2 3 4

1 2 4 0 3


 and W =


 0 1 2 3 4

1 2 0 4 3



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are permutations on L, is an S-isotopism of (L, ·) onto (L, ∗). Notice that A(L′) = L′′ for all

A ∈ {U, V,W} and U, V,W : L′ → L′′ are all bijcetions.

· 0 1 2 3 4

0 0 1 3 4 2

1 1 0 2 3 4

2 3 4 1 2 0

3 4 2 0 1 3

4 2 3 4 0 1

∗ 0 1 2 3 4

0 1 0 4 2 3

1 3 1 2 0 4

2 4 2 1 3 0

3 0 4 3 1 2

4 2 3 0 4 1

Example 2.2 According Example 4.2.2 in [43], the system (Z6,×6) i.e the set L = Z6 under

multiplication modulo 6 is an S-semigroup with S-subgroups (L′,×6) and (L′′,×6), where L′ =

{2, 4} and L′′ = {1, 5}. This can be deduced from its multiplication table below. The triple

(U, V,W ) such that

U =


 0 1 2 3 4 5

4 3 5 1 2 0


 , V =


 0 1 2 3 4 5

1 3 2 4 5 0


 andW =


 0 1 2 3 4 5

1 0 5 4 2 3




are permutations on L, is an S-isotopism of (Z6,×6) unto an S-semigroup (Z6, ∗) with S-

subgroups (L′′′, ∗) and (L′′′′, ∗), where L′′′ = {2, 5} and L′′′′ = {0, 3} as shown in the sec-

ond table below. Notice that A(L′) = L′′′ and A(L′′) = L′′′′ for all A ∈ {U, V,W} and

U, V,W : L′ → L′′′ and U, V,W : L′′ → L′′′′ are all bijections.

×6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 4 1 1 4 4 1

2 5 1 5 2 1 2

3 3 1 5 0 4 2

4 1 1 1 1 1 1

5 2 1 2 5 1 5

From Example 2.1 and Example 2.2, it is very clear that the study of S-isotopy of two S-

groupoids, or S-quasigroups, or S-semigroups, or S-loops is independent of the S-subsemigroup

or S-subgroup that is in consideration. All results in this paper are true for any given S-

subsemigroups or S-subgroups of two S-isotopic groupoids, or S-quasigroups, or S-semigroups,

or S-loops. More examples of S-isotopic groupoids can be constructed by using S-groupoids in

[42].

Remark 2.1 Taking careful look at Definition 2.2 and comparing it with Definition 4.4.1 in

[40], it will be observed that the author did not allow the component bijections U ,V and W
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in (U, V,W ) to act on the whole S-loop L but only on the S-subloop(S-subgroup) L′. We feel

this is necessary to adjust here so that the set L− L′ is not out of the study. Apart from this,

our adjustment here will allow the study of Smarandache isotopy to be explorable. Therefore,

the S-isotopism and S-isomorphism here are clearly special types of relations(isotopism and

isomorphism) on the whole domain into the whole co-domain but those of Vasantha Kandasamy

[40] only take care of the structure of the elements in the S-subloop and not the S-loop.

For each loop (L, ·) with automorphism group AUM(L, ·), there corresponds another loop.

Let the set H = (L, ·) × AUM(L, ·). If we define ’◦’ on H such that (α, x) ◦ (β, y) = (αβ, xβ ·
y) for all (α, x), (β, y) ∈ H , then H(L, ·) = (H, ◦) is a loop as shown in Bruck [9] and is

called the Holomorph of (L, ·). Let (L, ·) be an S-quasigroup(S-loop) with S-subgroup (L′, ·).
Define the Smarandache automorphism of L to be the set SAUM(L) = SAUM(L, ·) = {α ∈
AUM(L)|α : L′ → L′}. It is easy to see that SAUM(L) ≤ AUM(L). SAUM(L) will be called

a Smarandachely automorphism group(SAG) of L. Now, let HS = (L, ·) × SAUM(L, ·). If we

define ’◦’ on HS such that (α, x)◦(β, y) = (αβ, xβ ·y) for all (α, x), (β, y) ∈ HS , then HS(L, ·) =

(HS , ◦) is a S-quasigroup(S-loop) with S-subgroup (H ′, ◦) where H ′ = L′×SAUM(L) and thus

will be called a Smarandache Holomorph(SH) of (L, ·).

§3. Main Results

Theorem 3.1 Let U = (L,⊕) and V = (L,⊗) be initial S-quasigroups such that SAUM(U)

and SAUM(V ) are conjugates in SSYM(L) i.e., there exists a ψ ∈ SSYM(L) such that for

any γ ∈ SAUM(V ), γ = ψ−1αψ where α ∈ SAUM(U). Then, HS(U) % HS(V ) if and only if

xδ ⊗ yγ = (xβ ⊕ y)δ for ∀ x, y ∈ L, β ∈ SAUM(U) and some δ, γ ∈ SAUM(V ). Hence,

(1) γ ∈ SAUM(U) if and only if (I, γ, δ) ∈ SAUT (V ).

(2) if U is a initial S-loop, then,

(a)Leδ ∈ SAUM(V );

(b)β ∈ SAUM(V ) if and only if Reγ ∈ SAUM(V ),

where e is the identity element in U and Lx, Rx are respectively the left and right translations

mappings of x ∈ V .

(3) if δ = I, then |SAUM(U)| = |SAUM(V )| = 3 and so SAUM(U) and SAUM(V ) are

Boolean groups.

(4) if γ = I, then |SAUM(U)| = |SAUM(V )| = 1.

Proof Let HS(L,⊕) = (HS , ◦) and HS(L,⊗) = (HS ,⊙). HS(U) % HS(V ) if and only if

there exists a bijection φ : HS(U) → HS(V ) such that [(α, x)◦ (β, y)]φ = (α, x)φ⊙ (β, y)φ and

(H ′,⊕)
φ∼= (H ′′,⊗), whereH ′ = L′×SAUM(U) and H ′′ = L′′×SAUM(V ), (L′,⊕) and (L′′,⊗)

are initial S-subquasigroups of U and V . Define (α, x)φ = (ψ−1αψ, xψ−1αψ) ∀ (α, x) ∈ (HS , ◦)
where ψ ∈ SSYM(L). Then we find that

HS(U) ∼= HS(V ) ⇔ (αβ, xβ⊕y)φ = (ψ−1αψ, xψ−1αψ)⊙(ψ−1βψ, yψ−1βψ) ⇔ (ψ−1αβψ, (xβ⊕
y)ψ−1αβψ) = (ψ−1αβψ, xψ−1αβψ ⊗ yψ−1βψ) ⇔ (xβ ⊕ y)ψ−1αβψ = xψ−1αβψ ⊗ yψ−1βψ ⇔
xδ ⊗ yγ = (xβ ⊕ y)δ where δ = ψ−1αβψ, γ = ψ−1βψ.
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Notice that γLxδ = Lxβδ and δRyγ = βRyδ ∀ x, y ∈ L. So, when U is an S-loop, γLeδ = δ

and δReγ = βδ. These can easily be used to prove the remaining part of this theorem. �

Theorem 3.2 Let F be any class of variety of S-quasigroups(loops). Let U = (L,⊕) and

V = (L,⊗) be initial S-quasigroups(S-loops) that are S-isotopic under the triple of the form

(δ−1β, γ−1, δ−1) for all β ∈ SAUM(U) and some δ, γ ∈ SAUM(V ) such that their SAGs are

non-trivial and are conjugates in SSYM(L) i.e there exists a ψ ∈ SSYM(L) such that for any

γ ∈ SAUM(V ), γ = ψ−1αψ where α ∈ SAUM(U). Then, U ∈ F if and only if V ∈ F.

Proof By Theorem 3.1, we have known that HS(U) ∼= HS(V ). Let U ∈ F, then since

H(U) has an initial S-subquasigroup(S-subloop) that is isomorphic to U and that initial S-

subquasigroup(S-subloop) is isomorphic to an S-subquasigroup(S-subloop) of H(V ) which is

isomorphic to V , V ∈ F. The proof for the converse is similar. �
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[36] J. D. Phillips and P. Vojtěchovský, The varieties of quasigroups of Bol-Moufang type : An

equational approach, J. Alg., Vol.293(2005), 17-33.

[37] D. A. Robinson, Bol loops, Ph. D thesis, University of Wisconsin, Madison, Wisconsin,

1964.
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Abstract: According to Smarandache’s neutrosophy, the Gödel’s incompleteness theorem

contains the truth, the falsehood, and the indeterminacy of a statement under consideration.

It is shown in this paper that the proof of Gödel’s incompleteness theorem is faulty, because

all possible situations are not considered (such as the situation where from some axioms

wrong results can be deducted, for example, from the axiom of choice the paradox of the

doubling ball theorem can be deducted; and many kinds of indeterminate situations, for

example, a proposition can be proved in 9999 cases, and only in 1 case it can be neither

proved, nor disproved). With all possible situations being considered with Smarandache’s

neutrosophy, the Gödel’s Incompleteness theorem is revised into the incompleteness axiom:

Any proposition in any formal mathematical axiom system will represent, respectively, the

truth (T), the falsehood (F), and the indeterminacy (I) of the statement under consideration,

where T, I, F are standard or non-standard real subsets of ]−0, 1+[. Considering all possible

situations, any possible paradox is no longer a paradox. Finally several famous paradoxes in

history, as well as the so-called unified theory, ultimate theory, · · · , etc. are discussed.

Key words: Smarandache’s Neutrosophy, Gödel’s Incompleteness theorem, Incomplete-

ness axiom, paradox, unified theory.

The most celebrated results of Gödel are as follows.

Gödel’s First Incompleteness Theorem: Any adequate axiomatizable theory is incomplete.

Gödel’s Second Incompleteness Theorem: In any consistent axiomatizable theory which

can encode sequences of numbers, the consistency of the system is not provable in the system.

In literature, the Gödel’s incompleteness theorem is usually stated by any formal mathe-

matical axiom system is incomplete, because it always has one proposition that can neither be

proved, nor disproved.

Gödel’s incompleteness theorem is a significant result in the history of mathematical logic,

and has greatly influenced to mathematics, physics and philosophy among others. But, any

1Received October 25, 2007. Accepted December 18, 2007
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theory cannot be the ultimate truth. Accompanying with the science development, new the-

ories will replace the old ones. That is also for the Gödel’s incompleteness theorem. This

paper will revise the Gödel’s Incompleteness theorem into the incompleteness axiom with the

Smarandache’s neutrosophy.

§1. An Introduction to Smarandache’s Neutrosophy

Neutrosophy is proposed by F.Smarandache in 1995. Neutrosophy is a new branch of philosophy

that studies the origin, nature, and scope of neutralities, as well as their interactions with

different ideational spectra.

This theory considers every notion or idea 〈A〉 together with its opposite or negation

〈Anti−A〉 and the spectrum of neutralities 〈Neut−A〉, i.e., notions or ideas located between

the two extremes, supporting neither 〈A〉 nor 〈Anti−A〉). The 〈Neut−A〉 and 〈Anti −A〉
ideas together are referred to as 〈Non−A〉.

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability

and statistics used in engineering applications, especially for software and information fusion,

medicine, military, cybernetics and physics, etc..

Neutrosophic Logic is a general framework for unification of existent logics, such as the

fuzzy logic, especially intuitionistic fuzzy logic, paraconsistent logic, intuitionistic logic,· · · ,
etc.. The main idea of Neutrosophic Logic (NL) is to characterize each logical statement in a

3D Neutrosophic Space, where each dimension of the space represents respectively the truth

(T), the falsehood (F), and the indeterminacy (I) of the statement under consideration, where

T, I, F are standard or non-standard real subsets of ]−0, 1+[ without necessarily connection

between them.

More information on Neutrosophy may be found in references [1-3].

§2. Some Errors in the Proof of Gödel’s Incompleteness Theorem

It has been pointed out some errors in the proofs of Gödel’s first and second incompleteness

theorems in the reference [4]. This paper will again show that the proof of Gödel’s incomplete-

ness theorems contain some errors, but from other point of view. It will be shown that in the

proof of Gödel’s incompleteness theorem, all possible situations are not considered.

First, in the proof, the following situation is not considered: wrong results can be deduced

from some axioms. For example, from the axiom of choice a paradox, the doubling ball theo-

rem, can be deduced, which says that a ball of volume 1 can be decomposed into pieces and

reassembled into two balls both of volume 1. It follows that in certain cases, the proof of Gödel’s

incompleteness theorem may be faulty.

Second, in the proof of Gödel’s incompleteness theorem, only four situations are considered,

that is, one proposition can be proved to be true, cannot be proved to be true, can be proved

to be false, cannot be proved to be false and their combinations such as one proposition can

neither be proved to be true nor be proved to be false. But those are not all possible situations.

In fact, there may be many kinds of indeterminate situations, including it can be proved to be

true in some cases and cannot be proved to be true in other cases; it can be proved to be false
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in some cases and cannot be proved to be false in other cases; it can be proved to be true in

some cases and can be proved to be false in other cases; it cannot be proved to be true in some

cases and cannot be proved to be false in other cases; it can be proved to be true in some cases

and can neither be proved to be true, nor be proved to be false in other cases; and so on.

Because so many situations are not considered, we may say that the proof of Gödel’s

incompleteness theorem is faulty, at least, is not one with all sided considerations.

In order to better understand each case, we consider an extreme situation where one

proposition as shown in Gödel’s incompleteness theorem can neither be proved, nor disproved.

It may be assumed that this proposition can be proved in 9999 cases, only in 1 case it can

neither be proved, nor disproved. We will see whether or not this situation has been considered

in the proof of Gödel’s incompleteness theorem.

Some people may argue that, this situation is equivalent to that of a proposition can

neither be proved, nor disproved. But the difference lies in the distinction between the part

and the whole. If one case may represent the whole situation, many important theories cannot

be applied. For example the general theory of relativity involves singular points; the law of

universal gravitation does not allow the case where the distance r is equal to zero. Accordingly,

whether or not one may say that the general theory of relativity and the law of universal

gravitation cannot be applied as a whole? Similarly, the situation also cannot be considered

as the one that can be proved. But, this problem may be easily solved with the neutrosophic

method.

Moreover, if we apply the Gödel’s incompleteness theorem to itself, we may obtain the fol-

lowing possibility: in one of all formal mathematical axiom systems, the Gödel’s incompleteness

theorem can neither be proved, nor disproved.

If all possible situations can be considered, the Gödel’s incompleteness theorem can be im-

proved in principle. But, with our boundless universe being ever changing and being extremely

complex, it is impossible considering all possible situations. As far as considering all possible

situations is concerned, the Smarandache’s neutrosophy is a quite useful way, and possibly

the best. Therefore this paper proposes to revise the Gödel’s incompleteness theorem into the

incomplete axiom with Smarandache’s neutrosophy.

§3. The Incompleteness Axiom

Considering all possible situations with Smarandache’s neutrosophy, one may revise the Gödel’s

Incompleteness theorem into the incompleteness axiom following.

Any proposition in any formal mathematical axiom system will represent the truth (T), the

falsehood (F), and the indeterminacy (I) of the statement under consideration, where T, I, F

are standard or non-standard real subsets of ]−0, 1+[, respectively.

§4. Several Famous Paradoxes in History

The proof of Gödel’s incompleteness theorem has a close relation with some paradoxes. However,

after considering all possible situations, any paradox may no longer be a paradox.



48 Yuhua Fu and Anjie Fu

Now we discuss several famous paradoxes in history.

Example 1. The Barber paradox, one of Russell’s paradoxes.

Consider all men in a small town as members of a set. Now imagine that a barber puts up

a sign in his shop that reads I shave all those men, and only those men, who do not shave

themselves. Obviously, we may divide the set of men in this town into two subsets, those who

shave themselves, and those who are shaved by the barber. To which subset does the barber

himself belong? The barber cannot belong to the first subset, because if he shaves himself, he

will not be shaved by the barber, or by himself; he cannot not belong to the second subset as

well, because if he is really shaved by the barber, or by himself, he will not be shaved by the

barber.

Now we will see from where comes the contradiction.

The contradiction comes from the fact that the barber’s rule does not take all possible

situations into consideration.

First, we should divide the set of men in this town into three subsets, those who shave

themselves, those who are shaved by the barber, and those who neither shave themselves, nor

are shaved by the barber. This contradiction can be avoided by the neutrosophy as follows.

If the barber belongs to the third subset, no contradiction will appear. For this purpose, the

barber should declare himself that he will be the third kind of person, and from now on, he will

not be shaved by anyone; otherwise, if the barber’s mother is not a barber, he can be shaved

by his mother.

Second, the barber cannot shave all men in this town. For example, the barber cannot

shave those who refuse to be shaved by the barber. Therefore, if the barber is the one who

cannot shave himself and ”who refuse to be shaved by the barber” , no contradiction will occur.

There also exist indeterminate situations to avoid the contradiction. The barber may say:

If I meet men from another universe, I will shave myself, otherwise I will not shave myself.

Example 2. Liar’s paradox, another Russell’s paradox.

Epimenides was a Cretan who said that all Cretans are liars. Is this statement true or false? If

this statement is true, he (a Cretan) is a liar, therefore, this statement is false; if this statement

is false, that means that he is not a liar, this statement will be true. Therefore, we always come

across a contradiction.

Now we will see from where comes the contradiction.

First, here the term ”liar” should be defined. Considering all possible situations, a ”liar”

can be one of the following categories: those whose statements are all lies; those whose state-

ments are partly lies, and partly truths; those whose statements are partly lies, partly truths

and sometimes it is not possible to judge whether they are truths or lies. For the sake of con-

venience, at this movement we do not consider the situation where it is not possible to judge

whether the statements are true or false.

Next, the first kind of liar is impossible, i.e., a Cretan could not be a liar whose state-

ments are all lies. This conclusion can not be reached by deduction, instead, it is obtained

through experience and general knowledge. With the situation where a liar’s statements are
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partly truths, and partly lies, Epimenides’ statement all Cretans are liars, will not cause any

contradiction. According to the definitions of liar of the second category and the fact that

Epimenides’ statements could not be all lies, this particular statement of Epimenides’ can be

true and with his other statements being possibly lies, Epimenides may still be a liar.

This contradiction can be avoided by the neutrosophy as follows.

For this statement of all Cretans are liars, besides true or false, we should consider the

situation where it is not possible to judge whether the statement is true or false. According to

this situation, this Russell’s paradox can be avoided.

Example 3. Dialogue paradox.

Considering the following dialogue between two persons A and B.

A: what B says is true.

B: what A says is false.

If the statement of A is true, it follows that the statement of B is true, that is, the statement

what A says is false is true, which implies that the statement of A must be false. We come to

a contradiction.

On the other hand, if the statement of A is false, it follows that the statement of B must

be false, that is, the statement what A says is false is false, which implies that the statement

of A must be true. We also come to a contradiction.

So the statement of A could neither be true nor false.

Now we will see that how to solve this contradiction.

It should be noted that, this dialogue poses a serious problem. If A speaks first, before B

says anything, how can A know whether or not what B says is true? Otherwise, if B speaks

first, B would not know whether what A says is true or false. If A and B speak at the same

time, they would not know whether the other’s statement is true or false.

For solving this problem, we must define the meaning of lie. In general situations a lie may

be defined as follows:

with the knowledge of the facts of cases, a statement does not show with the facts.

But in order to consider all possible situations, especially those in this dialogue, another

definition of lie must be given. For the situation when one does not know the facts of the case,

and one makes a statement irresponsibly, can this statement be defined as a lie? There exist

two possibilities: it is a lie, and it is not a lie. For either possibility, the contradiction can be

avoided.

Consider the first possibility, i.e., it is a lie.

If A speaks first, before B makes his statement, it follows that A does not know the facts

of the case, and makes the statement irresponsibly, it is a lie. Therefore the statement of A is

false. B certainly also knows this point, therefore B’s statement: what A says is false is a truth.

Whereas, if B speaks first before A makes his statement, it follows that B does not know

the facts of the case, and makes the statement irresponsibly, it is a lie. Therefore the statement

of B is false. A certainly also knows this point, therefore A’s statement: what B says is true is

false.
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If A and B speak at the same time, it follows that A and B do not know the facts of

the case, and make their statements irresponsibly, these statements are all lies. Therefore, the

statements of A and B are all false.

Similarly, consider the second possibility, i.e., it is not a lie, the contradiction can be also

avoided.

If we do not consider all the above situations, what can we do? With a lie detector! The

results of the lie detector can be used to judge whose statement is true, whose statement is

false.

§5. On the So-Called Unified Theory, Ultimate Theory and So on

Since Einstein proposed the theory of relativity, the so-called unified theory, ultimate theory

and so on have made their appearance.

Not long ago, some scholars pointed out that if the physics really has the unified theory,

ultimate theory or theory of everything, the mathematical structure of this theory also is

composed by the finite axioms and their deductions. According to the Gödel’s incompleteness

theorem, there inevitably exists a proposition that cannot be derived by these finite axioms and

their deductions. If there is a mathematical proposition that cannot be proved, there must be

some physical phenomena that cannot be forecasted. So far all the physical theories are both

inconsistent, and incomplete. Thus, the ultimate theory derived by the finite mathematical

principles is impossible to be created.

The above discussion is based on the Gödel’s incompleteness theorem. With Smarandache’s

neutrosophy and the incompleteness axiom, the above discussion should be revised.

For example, the proposition this theory is the ultimate theory should represent respective

the truth (T), the falsehood (F) and the indeterminacy (I) of the statement under consideration,

where T, I, F are standard or non-standard real subsets of ]−0, 1+[.

Now we discuss the proposition Newton’s law of gravity is the ultimate theory of gravitation

(Proposition A).

According to the Gödel’s incompleteness theorem, the ultimate theory is impossible, there-

fore, the above proposition is 0% true, 0% indeterminate, and 100% false. It may be written as

(0, 0, 1).

While according to the incomplete axiom, we may say that the Proposition A is 16.7% true,

33.3% indeterminate, and 50% false. It may be written as (0.167, 0.333, 0.500). The reason for

this sentence is on the following.

Consider the containing relation between the ultimate theory of gravitation and Newton’s

law of gravity. According to the incompleteness axiom, the proposition the ultimate theory of

gravitation contains Newton’s law of gravity (Proposition B) should represent respective the

truth (T), the falsehood (F) and the indeterminacy (I). For the sake of convenience, we may

assume that T = I = F = 33.3%.

If the Proposition B is equivalent to the Proposition A , the Proposition A also is 33.3%

true, 33.3% indeterminate, and 33.3% false. But they are not equivalent. Therefore we have to

see how the ultimate theory of gravitation contains Newton’s law of gravity. As is known, to
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establish the field equation of the general theory of relativity, one has to do a series of math-

ematical reasoning according to the principle of general covariance and so on, with Newton’s

law of gravity as the final basis. Suppose that the ultimate theory of gravitation is similar to

the general theory of relativity, it depends upon some principle and Newton’s law of gravity.

Again this principle and Newton’s law of gravity are equally important, they all have the same

share of truthfulness, namely 16.7% (one half of 33.3%), but the 16.7% shared by this princi-

ple may be added to 33.3% for falsehood. Therefore, the Proposition A is 16.7% true, 33.3%

indeterminate, and 50% false. It may be written as (0.167, 0.333, 0.500).

This conclusion indicates that Newton’s law of universal gravitation will continue to occupy

a proper position in the future gravitational theory.
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§1. Introduction.

Cycle bases of a cycle space have a variety of applications which go back at least as far as

Kirchoff’s treatise on electrical network [20]. The required bases have been used to give rise

to a better understanding and interpretations of the geometric properties of a given graph

when MacLane [21] made a connection between the planarity of a graph G and the number

of occurrence of edges of G in elements of cycle bases. Recently, the minimum cycle bases are

employed in sciences and engineering; for examples, in structural flexibility analysis [19], in

chemical structure and in retrieval systems [7] and [9].

In this paper, we investigate the basis number for the wreath product of two wheels and

we construct minimum cycle bases for same; also, we give their total length and the length of

the longest cycles.

§2. Definitions and Preliminaries

Recall that for a given simple graph G = (V (G), E(G)) the set E of all subsets of E(G) forms

an |E(G)|-dimensional vector space over Z2 with vector addition X⊕Y = (X\Y )∪ (Y \X) and

scalar multiplication 1 ·X = X and 0 ·X = ∅ for all X,Y ∈ E . The cycle space, C(G), of a graph

G is the vector subspace of (E ,⊕, ·) spanned by the cycles of G. Note that the non-zero elements

of C(G) are cycles and edge disjoint union of cycles. It is known that the dimension of the cycle

space is the cyclomatic number or the first Betti number dim C(G) = |E(G)|− |V (G)|+ r where

r is the number of components (see [8]).
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A basis B for C(G) is cycle basis of G. A cycle basis B of G is called a d-fold if each edge of

G occurs in at most d of the cycles in B. The basis number, b(G), of G is the least non-negative

integer d such that C(G) has a d-fold basis. A required basis of C(G) is a b(G)-fold basis. The

length l(B) of a cycle basis B is the sum of the lengths of its elements: l(B) =
∑

C∈B |C|. λ(G)

is defined to be the minimum length of the longest element in an arbitrary cycle basis of G. A

minimum cycle basis (MCB) is a cycle basis with minimum length. Since the cycle space C(G)

is a matroid in which an element C has weight |C|, the greedy algorithm can be used to extract

a MCB (see [24]). Chickering, Geiger and Heckerman [6], showed that λ(G) is the length of the

longest element in a MCB.

Horton [12] presents a polynomial time algorithm that finds a minimum cycle basis in

any graph, but the algorithm approach can lead us to miss deeper connections between the

structures of graphs and their cycle bases. Therefore, some authors have directly constructed

minimum cycle bases and determined the basis number for certain classes of graphs (see [3],

[22] and [23]).

Recently, the study of minimum cycle bases and basis numbers of graph products have

attracted many authors: Imrich and Stadler [14], Ali and Marougi [2] and Jaradat [16] have

each constructed minimum cycle bases and given upper bounds on the basis number of the

Cartesian and strong products. Also, Alsardary and Wojciechowski [4] gave an upper bound

on the basis number of the Cartesian products of complete graphs. Hammack [10] constructed

a minimum cycle basis of the direct product of two bipartite graphs and Jaradat [15] gave

an upper bound on the basis number of the same. Most recently, Hammack [11] presented

a minimum cycle basis of the direct product of two complete graphs of order greater than

2. Jaradat [16] and Jaradat and Al-Qeyyam [5] investigated basis numbers and constructed

minimum cycle bases for certain classes of graphs.

For completeness, we recall the following definitions: Let G and H be two graphs. Then

(1) the Cartesian product G�H is the graph whose vertex set is the Cartesian prod-

uct V (G) × V (H) and whose edge set is E(G�H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 =

v2, or v1v2 ∈ E(H) and u1 = u2}.

(2) the lexicographic product G1[G2] is the graph with vertex set V (G)×V (H) and edge set

E(G[H ]) = {(u1, u2)(v1, v2)|u1 = v1 and u2v2 ∈ E(H) or u1v1 ∈ E(G)} and the wreath product

G⋉H is the graph with vertex set V (G)×V (H) and edge set E(GρH) = {(u1, v1)(u2, v2)|u1 =

u2 and v1v2 ∈ H, or u1u2 ∈ G and there is α ∈Aut(H) such that α(v1) = v2} (see [1] and

[13]).

The following results will be used frequently in the sequel.

Theorem 2.1(MacLane [21]) A graph G is planar if and only if b(G) ≤ 2.

Lemma 2.2 (Jaradat, et al. [18]) Let A,B be sets of cycles of a graph G, and suppose that

both A and B are linearly independent, and that E(A)∩E(B) induces a forest in G (we allow

the possibility that E(A) ∩ E(B) = ∅). Then A ∪B is linearly independent.

In this paper, we continue the study initiated in [5] and [17] by investigating the basis
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number for the wreath products of two wheels Wn and Wm. Moreover, we construct a minimum

cycle basis and we give the total lengths and the lengths of longest cycles of the minimum cycle

bases of the same.

In the rest of this paper, we let {u1, u2, . . . , un} be the vertex set of Wn (the star Sn),

with dWn
(u1) = n − 1 (dSn

(u1) = n− 1), and {v1, v2, . . . , vm} be the vertex set Wm (the star

Sm), with dWm
(v1) = m − 1 (dSm

(u1) = m− 1). Wherever they appear a, b, c and l stand for

vertices and abc, lab are paths of order 3. Also, fB(e) stands for the number of elements of B

containing the edge e, and E(B) = ∪C∈BE(C) where B ⊆ C(G).

§3. The Basis Number of WnρWm

In this section, we investigate the basis number of the wreath product of two wheels. Through-

out this work we use the notations V(k)
ab and U (k)

lab which were introduced by Jaradat [17] and

Al-Qeyyam and Jaradat [5]: For each k = 1, 2, . . . ,m,

V(k)
ab =

{
V(k,j)

ab = (b, vk)(a, vj)(a, vj+1)(b, vk) | 2 ≤ j ≤ m− 1
}
,

U (k)
lab = {(l, vk)(a, vk)(b, vk)(l, vk)} ,

and

Hab = {(a, vj)(b, vi)(a, vj+1)(b, vi+1)(a, vj) | 2 ≤ i, j ≤ m− 1} .

Note that Hab is Schemeichel’s 4-fold basis of C(ab[Nm−1]) (see Theorem 2.4 in [22]).

Moreover, (1) if e = (a, v2)(b, vm) or e = (a, vm)(b, v2) or e = (a, v2)(b, v2) or e = (a, vm)(b, vm),

then fHab
(e) = 1; (2) if e = (a, v2)(b, vl) or (a, vj)(b, v2) or (a, vm)(b, vl) or (a, vj)(b, vm), then

fHab
(e) ≤ 2; and (3) If e ∈ E(ab[Nm−1]) and is not of the above forms, then fHab

(e) ≤ 4.

The following result of Jaradat [17] will be needed in the sequel.

Lemma 3.1 ([17]) (∪m
k=2V

(k)
ab ) ∪ (V(l)

ba ) is linearly independent for any 2 ≤ l ≤ m.

Let

Dlab = U (m)
lab ∪Hab ∪ V(2)

ba ∪ V(2)
ab ∪ U (1)

lab .

Lemma 3.2 Dlab is linearly independent.

Proof By Schmeichel’s Theorems and Lemma 3.1, each of Hab,V(2)
ba and V(2)

ab is linearly

independent. Since E(U (m)
lab )∩E(Hab) = {(a, vm)(b, vm)} which is an edge, U (m)

lab ∪Hab, is linearly

independent by Lemma 2.2. By specializing l = 2 in Lemma 3.1, we have that V(2)
ba ∪ V(2)

ab is

linearly independent. Since E(V(2)
ba )∪E(V(2)

ab )−{(a, vj)(a, vj+1), (b, vj)(b, vj+1) : 2 ≤ j ≤ m−1}
is a tree and since any linear combinations of cycles is a cycle or an edge disjoint union of cycles,

any linear combination of cycles of V(2)
ba ∪V(2)

ab must contain an edge of the form (a, vj)(a, vj+1)
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or (b, vj)(b, vj+1) which is not in any cycle of U (m)
lab ∪ Hab. Thus, U (m)

lab ∪ Hab ∪ V(2)
ba ∪ V(2)

ab is

linearly independent. Note that E(U (1)
lab )∩E(U (m)

lab ∪Hab ∪ V(2)
ba ∪ V(2)

ab ) = ∅. Therefore, Dlab is

linearly independent. �
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Fig.1 Cycles of Dlab for m = 6.

Remark 3.3 Let e ∈ E(labρWm). From the definitions of Dlab and by the aid of Figure 2,

one can easily see the following:

(1) If e = (a, v1)(b, v1) or (l, v1)(a, v1) or (l, v1)(b, v1) or (l, vm)(a, vm) or (l, vm)(b, vm),

then fDlab
(e) = 1.

(2) If e = (a, vj)(a, vj+1) or (b, vj)(b, vj+1), 2 ≥ j ≥ m− 1, then fDlab
(e) = 1.

(3) If e = (a, v2)(b, v2), then fDlab
(e) = 3.

(4) If e = (a, vj)(b, vm) or (a, vm)(b, vj), 2 ≥ j ≥ m, then fDlab
(e) = 2.

(5) If e = (a, vj)(b, vk), 2 ≥ j, k ≥ m which is not as in (1)-(4), then fDlab
(e) ≤ 4.

(6) If e ∈ E(labρWm) which is not as in any of (1)-(6), then fDlab
(e) = 0.

The graph WnρWm is decomposable into (SnρWm) ∪ Cn−1[Nm−1] ∪ {(uj, v1)(uj+1, v1) |
2 ≤ j ≤ n − 1} ∪ {(un, v1)(u2, v1)} where Cn−1 = u2u3 . . . unu2, and Nm−1 is the null graph

with vertex set V (Nm−1) = {v2, v3, . . . , vm}. Thus, |E(WnρWm)| = |E(SnρWm)|+(n−1)(m−
1)2 + (n− 1) = |E(SnρWm)| + (n− 1)(m2 − 2m+ 2). Hence,

dim C(WnρWm) = dim C(SnρWm) + (n− 1)(m2 − 2m+ 2).

By Theorem 3.3.2 of [15], we have that

dim C(SnρWm) = m2(n− 1) − nm+ 2m− 1.

Therefore,

dim C(WnρWm) = (n− 1)(2m2 − 3m+ 2) + (m− 1).
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Lemma 3.4 D = ∪n
i=2Du1uiui+1 is linearly independent where Du1unun+1 = Du1unu2 .

Proof We use the mathematical induction on n. If n = 2, then D = Du1u2u3 which is

linearly independent by Lemma 3.2. Assume that n > 2 and it is true for less than n. Note

that D = Du1unu2 ∪
(
∪n−1

i=2 Du1uiui+1

)
. By Lemma 3.2 and the inductive step, each of Du1unu2

and ∪n−1
i=2 Du1uiui+1 is linearly independent. Note that

E(Du1unu2) ∩ E(∪n−1
i=2 Du1uiui+1) = {(u1, v1)(un, v1), (u1, v1)(u2, v1), (u1, vm)(un, vm),

(u1, vm)(u2, vm)} ∪ {(un, vj)(un, vj+1), (u2, vj)(u2,

vj+1) | 2 ≤ j ≤ m− 1}

which is an edge set of a forest. Thus, by Lemma 2.2, D is linearly independent. �

The following set of cycles which were introduced in [17] and [5] will be needed in the

coming results:

Gab =
{
G(j)

ab = (a, v1)(a, vj)(b, v2)(a, vj+1)(a, v1) | 2 ≤ j ≤ m− 1
}
,

Wcab = {(c, v1)(c, v2)(a, v2)(b, vm)(b, v1)(a, v1)(c, v1)} ,

Ecab =
{
E(j)

cab = (c, v2)(a, vj)(b, vm)(a, vj+1)(c, v2) | 2 ≤ j ≤ m− 1
}
,

Pa =
{
P(j)

a = (a, v1)(a, vj)(a, vj+1)(a, v1) | 2 ≤ j ≤ m− 1
}
,

Sab = {(a, v1)(a, v2)(b, v2)(b, v1)(a, v1)} ,

and

Ia = {(a, v2)(a, v3) . . . (a, vm)(a, v2)} .

Let

Fab = Hab ∪ Gab ∪ Gba ∪ Sab

and

Fcab = Ecab ∪Hca ∪ Gca ∪Wcab

Theorem 3.5 ([5]) For any star Sn with n ≥ 2 and wheel Wm with m ≥ 5, we have that

B(SnρWm) = (∪n−1
i=2 Fui+1u1ui

)∪Fu1u2 ∪ (∪n
i=1Pui

)∪ (∪n
i=1Iui

) is a 4-fold basis of C(SnρWm).

Theorem 3.6 For any two wheels Wn and Wm with n ≥ 4 and m ≥ 5, b(WnρWm) ≤ 4.

Proof Define B(WnρWm) = B(SnρWm) ∪ D where B(SnρWm) is as in Theorem 3.5. By

Theorem 3.5 and Lemma 3.4, each of B(SnρWm) and D is linearly independent. Note that,

E(B(SnρWm)) ∩E(D) = E(Sn�{v1, vm}) ∪E(V (Cn−1)�Pm−1)
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which is an edge set of a forest where Cn−1 = u2u3 . . . unu2 and Pm−1 = v2v3 . . . vm. Therefore,

by Lemma 2.2, B(WnρWm) is linearly independent. Now,

|V(2)
ba | = (m− 2) and |Hab| = (m− 2)2 (3)

and so

|Du1uiui+1 | = |Dlab| = |U (3)
lab | + |Hab| + |V(2)

ba | + |V(2)
ab | + |U (1)

lab |
= 1 + (m− 2)2 + (m− 2) + (m− 2) + 1

= (m− 2)2 + 2(m− 2) + 2. (4)

By equation (3),

|D| =

n∑

i=2

|Du1uiui+1 |

= (n− 1)((m− 2)2 + 2(m− 2) + 2).

Thus,

|B(WnρWm)| = |B(SnρWm)| + |D|
= m2(n− 1) − nm+ 2m− 1 + (n− 1)((m− 2)2 + 2(m− 2) + 2)

= (n− 1)(2m2 − 3m+ 2) + (m− 1)

= dim C(WnρWm)

where the last equality followed from (1). Thus B(WnρWm) is a basis for C(WnρWm). Now,we

show that b(WnρWm) ≤ 4, for all n ≥ 4, m ≥ 5. Let e ∈ E(WnρWm). Then we consider the

following:

Case a e ∈ E(WnρWm) − E(Sn�{v1, vm}) ∪ E(V (Cn−1)�Pm−1) where Cn−1 and Pm−1 are

as defined above. Then we have the following:

(1) e = (ui, vj)(ui+1, vk) or (ui, v1)(ui+1, v1) with i ≤ n − 1 and 2 ≤ j, k ≤ m. Then e

occurs only in cycles of Du1uiui+1 . And so, by Remark 3.3, fB(WnρWm)(e) = fDu1uiui+1
(e) ≤ 4.

(2) e = (u2, vj)(un, vk) or (u2, v1)(un, v1) with 2 ≤ j, k ≤ m. Then e occurs only in cycles

of Du1unu2 . And so, by Remark 3.3, fB(WnρWm)(e) = fDu1unu2
(e) ≤ 4.

(3) e is not as in (1) or (2). Then e occurs only in cycles of B(SnρWm) and so, by Theorem

3.5, fB(WnρWm)(e) ≤ fB(SnρWm)(e) ≤ 4.

Case b e ∈ E(Sn�{v1, vm}) ∪ E(V (Cn−1)�Pm−1). Then we have the following:

(1) e ∈ E(ui�Pm−1) with 2 ≤ i ≤ n. Then e occurs only in Du1ui−1ui
,Du1uiui+1

and B(SnρWm). Thus, by Remark 3.3 and Theorem 3.5, fB(WnρWm)(e) = fDu1ui−1ui
(e) +

fDu1uiui+1
+ fB(SnρWm) ≤ 1 + 1 + 2.
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(2) e = (u1, v1)(u2, v1) or (u1, vm)(u2, vm). Then e occurs only in cycles of Du1u2u3 ,Du1u3u4

and B(SnρWm). And so, by Remark 3.3 and Theorem 3.5, fB(WnρWm)(e) = fDu1u2u3
(e) +

fDu1u3u4
+ fB(SnρWm) ≤ 1 + 1 + 2.

(3) e = (u1, v1)(ui, v1) or (u1, vm)(ui, vm). Then e occurs only in cycles of Du1ui−1ui
,Du1uiui+1

and B(SnρWm). And so, by Remark 3.3 and Theorem 3.5, fB(WnρWm)(e) = fDu1u2u3
(e) +

fDu1u3u4
+ fB(SnρWm) ≤ 1 + 1 + 2. �

Corollary 3.7 For any n ≥ 4 and m ≥ 6, we have 3 ≤ b(WnρSm) ≤ 4.

Proof By Theorem 3.6, it is enough to show that b(WnρSm) ≥ 3. Since SnρSm is a

subgraph of WnρWm and b(SnρSm) = 4 (Theorem 3.2.5 of [17]), b(WnρSm) ≥ 3 by MacLane

Theorem. �

§4. The Minimum Cycle Basis of WnρWm

In this section, we construct a minimum cycle basis of the wreath product of two wheels. Let

X ∗
lab = (∪m

k=2V(k)
ab ) ∪ V(m)

ba ∪ U (1)
lab ∪ U (m)

lab

Lemma 4.1 X ∗
lab is linearly independent.

Proof (∪m
k=2V

(k)
ab )∪(V(m)

ba ) is a linearly independent set by Lemma 3.1. Since E((∪m
k=2V

(k)
ab )

∪V(m)
ba ) ∩ E(U (1)

lab ) = ∅, (∪m
k=2V

(k)
ab ) ∪ (V(m)

ba ) ∪ U (1)
lab is linearly independent by Lemma 2.2.

Similarly, since E((∪m
k=2V

(k)
ab ) ∪ (V(m)

ba ) ∪ U (1)
lab ) ∩ E(U (3)

lab ) = {(a, vm)(b, vm)} which is an edge,

we have X ∗
lab is linearly independent. �

Lemma 4.2
(
∪n−1

i=2 X ∗
u1uiui+1

)
∪ X ∗

u1unu2
is linearly independent.

Proof We prove that ∪n−1
i=2 X ∗

u1uiui+1
is linearly independent using the mathematical induc-

tion on n. If n = 3, then ∪2
i=2X ∗

u1uiui+1
= X ∗

u1u2u3
which is linearly independent by Lemma

4.1. Assume that n ≥ 4 and it is true for less than n − 1. Note that ∪n−1
i=2 X ∗

u1uiui+1
=

(∪n−2
i=2 X ∗

u1uiui+1
) ∪ X ∗

un−1un
. Since

E(∪n−2
i=2 X ∗

u1uiui+1
) ∩E(X ∗

un−1un
) = {(u1, v1)(un−1, v1), (u1, vm)(un−1, vm)}

∪ {(un−1, vj)(un−1, vj+1) | 2 ≤ j ≤ m− 1}

which is an edge set of a forest, ∪n−1
i=2 X ∗

u1uiui+1
is linearly independent by Lemma 2.2. Similarly,

Since

E(∪n−1
i=2 X ∗

u1uiui+1
) ∩E(X ∗

u1unu2
) = {(u1, v1)(un, v1), (u1, vm)(un, vm), (u1, v1)(u2, v1),

(u1, vm)(u2, vm)}
∪ {(un, vj)(un, vj+1), (u2, vj)(u2, vj+1) | 2 ≤ j ≤ m− 1}
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which is an edge set of a forest,
(
∪n−1

i=2 X ∗
u1uiui+1

)
∪ X ∗

u1unu2
is linearly independent. �

Throughout the following results, Ba�Wm
stands for the cycle basis of a�Wm which consists

of 3-cycles.

Lemma 4.3 B∗(WnρWm) = B∗(SnρWm) ∪ (∪n−1
i=2 X ∗

u1uiui+1
) ∪ X ∗

u1unu2
is a cycle basis of

C(WnρWm) where B∗(SnρWm) = (∪n
i=2∪m

j=2V(j)
u1ui)∪(∪n

i=2V(m)
uiu1)∪(∪n

i=1Bui�Wm
)∪(∪n

i=2Su1ui
).

Proof B∗(SnρWm) is linearly independent by Lemma 4.3.2 of [5]. Since E(B∗(SnρWm))∩
E(
(
∪n

i=2X ∗
u1uiui+1

)
∪X ∗

u1unu2
) = E(Sn�{v1, vm})∪E(V (Pn−1)�Pm−1), which is an edge set of

a forest, as a result B∗(WnρWm) is linearly independent by Lemma 2.2 where Pn−1 = u2u3 · · ·un

and Pm−1 = v2v3 . . . vm. Now,

|X ∗
u1uiui+1

| = |X ∗
lab|

=
m∑

k=2

|V (k)
ab | + |V (m)

ab | + 2

=

m∑

k=2

(m− 2) + (m− 2) + 2

= m(m− 2) + 2.

Thus,

|B∗(WnρWm)| = |B∗(SnρWm)| + |(∪n
i=2X ∗

u1uiui+1
)|

= m2(n− 1) −mn+ 2m− 1 +

n∑

i=2

(m(m− 2) + 2)

= m2(n− 1) −mn+ 2m− 1 + (n− 1)(m(m− 2) + 2)

= (n− 1)(2m2 − 3m+ 2) + (m− 1)

= dim C(WnρWm).

Therefore, B∗(WnρWm) is a cycle basis for WnρWm. �

Theorem 4.4 B∗(WnρWm) is minimum cycle basis of C(SnρWm) for each n,m ≥ 5.

Proof Let P ∗ = ∪n
i=1Bui�Wm

. Since Bui�Wm
is a basis for C(ui�Wm) for each 1 ≤ i ≤ n

and since E(ui�Wm) ∩ E(ui�Wm) = ∅ for any i 6= j, we have P ∗ is a cycle basis for the

subgraph ∪n
i=1(ui�Wm). Let Q∗ = B∗(WnρWm) − (P ∗ ∪ (∪n

i=2Su1ui
)) and (WnρWm)− =

(WnρWm) − ∪n
i=1(E((ui�Sm) ∪ {(ui, v2)(ui, vm)})). Note that (WnρWm)− consists of two

components with V ((WnρWm)−) = V (WnρWm). Also,

|E((WnρWm)−)| = |E(WnρWm)| −
n∑

i=1

(|E(ui�Sm) + 1)

= |E(WnρWm)| − nm.

Thus,

dim C((WnρWm)−) = |E(WnρWm)| − nm−mn+ 2

= dim C(WnρWm) −mn+ 1



60 M.M.M.Jaradat and M.K.Al-Qeyyam

Now,

|Ba�Wm
| = m− 1

Hence,

|Q∗| = |B∗(WnρWm)| − |P ∗| − | ∪n
i=2 Su1ui

|
= dim C(WnρWm) − n(m− 1) − (n− 1)

= dim C(WnρWm) −mn+ 1

= dim C((WnρWm)−).

Therefore, Q∗ is a basis for (WnρWm)−. Now, we show that L = B∗(WnρWm) − (∪n
i=2Su1ui

)

is the largest linearly independent subset of WnρWm containing L and consisting of 3-cycles.

Suppose that {C} ∪ L is linearly independent where C is a 3-cycle of WnρWm. Then we have

the following three cases:

Case 1: E(C) ⊆ E(∪n
i=1ui�Wm). Then C ∈ P ∗ because the cycles of P ∗ is the only

3-cycles of ∪n
i=1(ui�Wm). This is a contradiction.

Case 2: E(C) ⊆ E((WnρWm)−). Then C can be written as a linear combination of Q∗

because Q∗ is a basis for (WnρWm)−. This is a contradiction.

Case 3: E(C) neither a subset of E(∪n
i=1ui�Wm) nor of E((WnρWm)−). Thus, C contains

at least one edge which does not belong to ∪n
i=1ui�Wm and at least one edge which does not

belong to (WnρWm)−. Note that

E((WnρWm)−) ∩ E(∪n
i=1ui�Wm) = ∪n

i=1 (ui�v2v3 . . . vm) .

Thus, C must contains at least one edge of (∪n
i=1ui�Wm)− (∪n

i=1ui�v2v3 . . . vm) and at least

one edge of (WnρWm)− − (∪n
i=1ui�v2v3 . . . vm). To this end, we have two subcases:

Subcase 3a: (ui, v2)(ui, vm) ∈ E(C) for some i. Then C = (ui, v2)(ui, vm)(uk , vs)(ui, v2)

where uiuk ∈ E(Wn) and 2 ≤ s ≤ m. Thus, C can be written as a linear combination of 3-cycle

as follows:

C =
(
⊕m−1

j=2 (ui, vj)(ui, vj+1)(ui, v1)(ui, vj)
)
⊕ (ui, v2)(ui, vm)(ui, v1)(ui, v2)

⊕m−1
j=2 (ui, vj)(ui, vj+1)(uk, vs)(ui, vj).

Note that each of (ui, vj)(ui, vj+1)(ui, v1)(ui, vj) and (ui, v2)(ui, vm)(ui, v1)(ui, v2) belongs to

P ∗. Also, (ui, vj)(ui, vj+1)(uk, vs)(ui, v2) is a linear combinations of (∪m
l=2V

(l)
uiuk) ∪ (V(m)

uiuk)

because (ui, vj)(ui, vj+1)(uk, vs)(ui, v2) ⊆ uiuk[v2v3 . . . vm] and (∪m
l=2V

(l)
uiuk)∪ (V(m)

uiuk) is a basis

for uiuk[v2v3 . . . vm] . Thus, C is a linear combinations of L. That is a contradiction.

Subcase 3b: (ui, v2)(ui, vm) /∈ E(C) for each i. Then C contains at least one edge of

∪n
i=1E(ui�Sm) and one edge of (WnρWm)−. Therefore, by the construction of WnρWm, C

must contains at least two edges of ∪n
i=1 (ui�Wm) and two other edges of (WnρWm)−. This is

a contradiction.
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Since the cycle space is a matroid and each cycle of ∪n
i=2Su1ui

is of length 4. Then

B∗(WnρWm) is a minimum cycle basis for WnρWm. �

Corollary 3.5 l(WnρWm) = 3((n−1)(2m2−3m+1)+(m−1))+4(n−1), and λ(WnρWm) = 4.

References

[1] M. Anderson and M. Lipman, The wreath product of graphs, Graphs and Applications

(Boulder, Colo., 1982), 23-39, Wiley-Intersci. Publ., Wiley, New York, 1985.

[2] A. A. Ali and G. T. Marougi, The basis number of cartesian product of some graphs, The

J. of the Indian Math. Soc. 58 (1992), 123-134.

[3] S. Alsardary and A. A. Ali, The basis number of some special non-planar graphs, Czechoslo-

vak Math. J. 53 (2003), no. 2, 225–240.

[4] A. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph,

Discrete Math. 188 (1998), no. 1-3, 13-25.

[5] K. M. Al-Qeyyam and M. M. M. Jaradat, On the basis number and the minimum cycle

bases of the wreath product of some graphs II, JCMCC (to appear).

[6] D. M. Chickering, D. Geiger and D. HecKerman, On finding a cycle basis with a shortest

maximal cycle, Inform. Processing Let., 54(1994), 55-58.

[7] L. O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear

graph, IEEE Trans. Circuit Theory, 20 (1973), 54-76.

[8] R. Diestel, Graph Theory, Graduate Texts in Mathematics, 173, Springer-Verlag, New

York, 1997.

[9] G. M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algo-

rithms for chemical graphs, J. Chem. Inf. Comput. Sci., 29 (1989), 172-187.

[10] R. Hammack, Minimum cycle bases of direct products of bipartite graphs, Australas. J.

Comb. 36 (2006), 213-221.

[11] R. Hammack, Minimum cycle bases of direct products of complete graphs. Inform. Process.

Lett. 102 (2007), no. 5, 214–218.

[12] J. D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph,

SIAM J. Comput. 16 (1987), 359-366.
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Theory of Relativity on the Finsler Spacetime
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Abstract: Einstein’s theory of special relativity and the principle of causality imply that

the speed of any moving object cannot exceed that of light in a vacuum (c). Nevertheless,

there exist various proposals for observing faster-than-c propagation of light pulses, using

anomalous dispersion near an absorption line, nonlinear and linear gain lines, or tunnelling

barriers. However, in all previous experimental demonstrations, the light pulses experienced

either very large absorption or severe reshaping, resulting in controversies over the interpre-

tation. Recently, L.J.Wang, A.Kuzmich and A.Dogariu use gain-assisted linear anomalous

dispersion to demonstrate superluminal light propagation in atomic caesium gas. The group

velocity of a laser pulse in this region exceeds c and can even become negative, while the

shape of the pulse is preserved. The textbooks say nothing can travel faster than light, not

even light itself. New experiments show that this is no longer true, raising questions about

the maximum speed at which we can send information. On the other hand, the light speed

reduction to 17 meters per second in an ultracold atomic gas. This shows that the light

speed could taken on voluntariness numerical value, This paper shows that if ones think of

the possibility of the existence of the superluminal-speeds (the speeds faster than that of

light) and redescribe the special theory of relativity following Einstein’s way, it could be

supposed that the physical spacetime is a Finsler spacetime, characterized by the metric

ds4 = gijkldxidxjdxkdxl.

If so, a new spacetime transformation could be found by invariant ds4 and the theory of

relativity is discussed on this transformation. It is possible that the Finsler spacetime F (x, y)

may be endowed with a catastrophic nature. Based on the different properties between the

ds2and ds4, it is discussed that the flat spacetime will also have the catastrophe nature on the

Finsler metric ds4. The spacetime transformations and the physical quantities will suddenly

change at the catastrophe set of the spacetime, the light cone. It will be supposed that

only the dual velocities of the superluminal-speeds could be observed. If so, a particle with

the superluminal-speeds v > c could be regarded as its anti-particle with the dual velocity

v1 = c2/v < c. On the other hand, it could be assumed that the horizon of the field of the

general relativity is also a catastrophic set. If so, a particle with the superluminal-speeds

could be projected near the horizon of these fields, and the particle will move on the spacelike

curves. It is very interesting that, in the Schwarzschild fields, the theoretical calculation for
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the spacelike curves should be in agreement with the data of the superluminal expansion of

extragalactic radio sources observed year after year.(see Cao,1992b)

The catastrophe of spacetime has some deep cosmological means. According to the some

interested subjects in the process of evolution of the universe the catastrophe nature of

the Finsler spacetime and its cosmological implications are discussed. It is shown that the

nature of the universal evolution could be attributed to the geometric features of the Finsler

spacetime (see Cao,1993).

Key words: Spacetime, catastrophe, Finsler metric, Finsler spacetime, speed faster than

light.

AMS(2000): 83A05, 83D05.

It is known that in his first paper on the special theory of relativity: “On the electrodynamics

of moving bodies”, Einstein clearly states (cf. Einstein, 1923) that ‘Velocities greater than that

of light have, no possibility of existence.’ But he neglected to point out the applicable range

of Lorentz transformation. In fact, his whole description must be based on velocities smaller

than that of light which we call subluminal-speed. So, the special theory of relativity cannot

negate that real motion at a speed greater than the speed of light in vacuum which we call

superluminal-speed could exist. In this paper, it is shown that if we think of the possibility

of existence of the superluminal-speed and redescribe the special theory of relativity following

Einstein’s way, a new theory would be founded on the Finsler spacetime. The new theory would

retain all meaning of the special theory of relativity when matters move with subluminal-speed

and would give new content when matters move with superluminal-speed. If we assume that

the superluminal-speed will accord with the spacelike curves in the general theory of relativity,

calculations indicate that the superluminal expansion of extragalactic radio sources exactly

corresponds with the spacelike curves of the Schwarzschild geometry.

Our discussion is still based on the principle of relativity and on the principle of constancy

of the velocity of light which have been defined by Einstein as follows:

(1)The laws by which the states of physical systems undergo change are not affected,

whether these changes of state be referred to the one or the other of two systems of coordinates

in uniform translatory motion (see Einstein, 1923;p.41).

(2)Any ray of light moves in the ‘stationary’ system of coordinates with the determined

velocity c, whether the ray be emitted by stationary or by a moving body.

Note that these two postulates do not impose any constraint on the relative speed v of the

two inertial observers.

§1 The General Theory of the Transformation of Spacetime

1.1 Definition of simultaneity and temporal order

In his description about definition of simultaneity, Einstein stated: “Let us take a system of

coordinates in which the equations of Newtonian mechanics hold good”, · · · , “Let a ray of light
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start at the ‘A time’ tA from A towards B, let it at the B time’ tB be reflected at B in the

direction of A, and arrive again at A at the ‘A time’ t′A.” In accordance with definition, the

two clocks synchronize if (see Einstein, 1923; p.40)

tB − tA = t′A − tB. (1.1)

“In agreement with experience we further assume the quantity

2AB

tB − tA
= c, (1.2)

to be a universal constant - the velocity of light in empty space.”

“It is essential to have time defined by means of stationary clocks in the stationary system,

and the time now defined being appropriate to the stationary system we call it ‘the time of the

stationary system’.” In this way, Einstein finished his definition of simultaneity. But he did

not consider the applicable condition of this definition, still less the temporal order and as it

appears to me these discussions are essential too. Let us continue these discussions following

Einstein’s way.

First and foremost, let us assume if the point B is moving with velocity v relative to the

point A, in agreement with experience we must use the following equations instead of Equation:

2AB

tA − tB
=





c− v,

c+ v,

when B

when B

is leaving

is approaching

A (a)

A (b)
(1.3)

Obviously, Equation (1.3a) is not always applicable, it must require v<c, but Equation

(1.3b) is always applicable-i.e., for v < c and v > c Einstein’s whole discussion is based on the

following formulae:

tB − tA =
rAB

c− v
and t′A − tB =

rAB

c+ v
. (1.4)

It must require v < c, because tB tA must be larger than zero. Particularly, in order to get the

Lorentz transformation, Einstein was based on the following formula (see Einstein, 1923; p.44)

1

2
[τ(0, 0, 0, t) + τ(0, 0, 0, t+ x′

c−v + x′

c+v )] = τ(x′, 0, 0, t+ x′

c−v ), (1.5)

where x′

c−v is just tB tA, so must require v < c, i.e., B must be the motion with the subluminal-

speed. Then the Lorentz transformation only could be applied to the motion with subluminal-

speed. It could not presage anything about the motion with the superluminal-speed, i.e., the

special theory of relativity could not negate that the superluminal-speed would exist.

In order for our discussion to be applied to the motion with the superluminal-speed, we

will only use Equation (1.3b), i.e., let the point B approach A. Now, let another ray of light

(it must be distinguished from the first) start at the ‘A time’ tA1 from A towards B (when B

will be at a new place B1) let it at the ‘B time’ tB1 be reflected at B in the direction of A, and

arrive again at A at the ‘A time’ tA1.

According to the principle of relativity and the principle of the constancy of the velocity

of light, we obtain the following formulas:
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1

2
(t′A − tA) = tB − tA =

AB

c+ v
, (1.6)

1

2
(t′A1 − tA1) = tA1 − tB1 =

AB1

c+ v
, (1.7)

AB −AB1 = v(tA1 − tA). (1.8)

Let

∆tA = tA1 − tA,∆tB = tB1 − tB and ∆t′A = t′A1 − t′A, (1.9)

where ∆tA,∆tB , and ∆t′A represent the temporal intervals of the emission from A, the reflection

from B, and arrival at A for two rays of light, respectively. The symbols of the temporal intervals

describe the temporal orders. When ∆t >0 it will be called the forward order and when ∆t <0,

the backward order.

From Equations (1.6)-(1.9) we can get

∆tB =
c

c+ v
∆tA, (1.10)

and

∆t′A =
c− v

c+ v
∆tA. (1.11)

Then we assume that, if ∆tA > 0, i.e., two rays of light were emitted from A, successively we

must have ∆tB >0 i.e., for the observer at system A these two rays of light were reflected by

the forward order from B. But

∆t′A ≥ 0, if and only if v ≤ c

and

∆t′A < 0, if and only if v > c.

It means that for the observer at system A these two rays of light arrived at A by the forward

order only when the point B moves with subluminal-speed, and by the backward order only

when with superluminal-speed. In other words, the temporal order is not always constant. It

is constant only when v<c, and it is not constant when v>c.

Usually, one thinks that this is a backward flow of time. In fact, it is only a procedure of

time in the system B with the superluminal-speed which gives the observer in the ‘stationary

system’ A an inverse appearance of the procedure of the time. It is an inevitable outcome

when the velocity of the moving body is faster than the transmission velocity of the signal.

This outcome will be called the relativity of the temporal order. It is a new nature of the time

when the moving body attains the supeluminal-speed. It is known that it is not spacetime that

impresses its form on things, but the things and their physical laws that determine spacetime.

So, the superluminal-speed need not be negated by the character of the spacetime of the special
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theory of relativity, but will represent the new nature of the spacetime, the relativity of the

temporal order.

1.2 The temporal order and the chain of causation

In order to explain the disparity between the backward flow of time and the relativity of the

temporal order, we will use spacetime figure (as Fig.1-1)

Fig.1-1. The spacetime figure

and take following definitions.

(1)The chain of the event, tA0,tA1,. . . ,tAi,. . . . The ith ray of light will be started at tAi

and ∆tAi = tA(i+1) tAi >0 It may or may not be chain of causality.

(2)The chains of the transference of the light tA0, tB0, t
′
A0; tA1, tB1, t

′
A1;. . . . Every chain

tAi, tBi, t
′
Ai must be a chain of causality -i.e.

1

2
(t′Ai − tAi) = tBi − tAi = t′Ai − tBi > 0. (1.12)

If they take a negative sign it will be the backward flow of time and will violate the principle

of causality.

(3)The chains of the motion are the rays of the light, which will be reflected at B, but it

will have different features when B moves with different velocity. Let us assume that:
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(a) v >0 when B is approaching A;

(b) v <0 when B is leaving A;

(c) c >0 when the ray of light from A backwards B;

(d) c <0 when the ray of light from A towards B.

So, if v=0, we must have c <0. Then

tA(i+1) − tAi = tB(i+1) − tBi = t′A(i+1) − t′Ai. (1.13)

If v < c, we must have c <0 and when v >0,

tA(i+1) − tAi > tB(i+1) − tBi > t′A(i+1) − t′Ai > 0. (1.14)

But when v < 0,

0 < tA(i+1) − tAi < tB(i+1) − tBi < t′A(i+1) − t′Ai. (1.15)

Last of all, if v > c, must have v >0; and when c <0,

tA(i+1) − tAi > tB(i+1) − tBi > |t′A(i+1)t
′
Ai| > 0. (1.16)

But

t′A(i+1) − t′Ai < 0. (1.17)

When c >0,

0 < tA(i+1) − tAi < |tB(i+1) − tBi| < |t′A(i+1) − t′Ai| (1.18)

and

tB(i+1) − tBi < 0 and t′A(i+1) − tAi < 0. (1.19)

These are rigid relations of causality.

4.The chains of the observation t′A0,t
′
A1,. . . ,t

′
Ai,. . . and tB0,tB1,. . . ,tBi,. . . are not chains of

causality. The relativity of temporal order is just that they could be a positive when v < c or

a negative when v > c and the vector v and c have the same direction.

In (1.4) when v > c, tB tA <0 it does not mean that velocities greater than that of light

have no possibility of existence but only that the ray of light cannot catch up with the body

with superluminal-speed.

1.3 Theory of the transformation of coordinates

From equations (1.10) and (1.11) we can get

∆tB =
c

c+ v
∆tA (1.20)

and
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∆tB =
c

c− v
∆t′A. quad (1.21)

It has been pointed out that ∆tA and ∆t′A are measurable by observer of the system A, but

∆tB is unmeasurable. Accordingly, the observer must conjecture ∆tB from ∆tA or ∆t′A. In

form, ∆tB in Equation (1.20) and ∆tB in (1.21) are different. If we can find a transformation

of coordinates it will satisfy following equation:

∆τ2 = ∆tA · ∆t′A (1.22)

and, according to Equations (1.10) and (1.11), could get

∆τ2 =





> 0, iff v < c,

= 0, iff v = c,

< 0, iff v > c.

(1.23)

Then, we get

∆t2B =
c2

c2 − v2
∆τ2

or

dt2 =
c2

c2 − v2
dτ2. (1.24)

Let ds2 = c2dτ2. We get

ds2 = c2dτ2 = (c2 v2)dt2. (1.25)

So

ds2 =





> 0, v < c timelike,

= 0, v = c lightlike,

< 0, v > c spacelike.

(1.26)

What merits special attention is that ds2 = (c2 − v2)dt2 and ds2 = c2dt2 − dx2 − dy2 − dz2

are not identical. Usually, the special theory of relativity does not recognize their difference

because motion with subluminal-speed does not involve the relative change of temporal orders,

so the symbol of ds2 remains unchanged when the inertial system changes.

Now let

ds2 = ds2v + ds20, (1.27)

where

ds2v = (c2 − v2)dt2, (1.28)

ds20 = dx2 + dy2 + dz2, (1.29)
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then

ds2 =





+ds2v + ds20, v < c,

−ds2v + ds20, v > c.
(1.30)

Between any two inertial systems

ds2v + ds20 =





+ds2v + ds20, v < c,

−ds2v + ds20, v > c.
(1.31)

According to classical mechanics, we can determine the state of a system with n degrees of free-

dom at time t by measuring the 2n position and momentum coordinates qi(t), pi(t), i=1,2,. . . ,n.

These quantities are commutative each other, i.e., qi(t) pj(t) = pj (t)qi(t). But, in quantum

mechanics the situation is entirely different. The operators Qop and Pop corresponding to

the classical observable position vector q and momentum vector p. These operators are non-

commutative each other, i.e.,

QP 6= PQ.

So, ones doubt whether the quantum mechanics is not a good theory at first. But, ones discover

that the non-commutability of operators is closely related to the uncertainty principle, it is just

an essential distinction between the classical and quantum mechanics.

So, I doubt that whether the non-positive definite metrics ds2 is just the best essential

nature in the relativity theory? But, it was cast aside in Einstein’s theory. Now, we could

assume that

ds4 = ds4v + ds40. (1.32)

In general, we could let

ds4 = gijkldx
idxjdxkdxl, i, j, k, l = 0, 1, 2, 3. (1.33)

Equations (1.32) and (1.33) which are defined as a Finsler metric are the base of the spacetime

transformations. From the physical point of view this means that a new symmetry between the

timelike and the spacelike could exist.

In his memoir of 1854, Riemann discusses various possibilities by means of which an n-

dimensional manifold may be endowed with a metric, and pays particular attention to a metric

defined by the positive square root of positive definite quadratic differential form. Thus the

foundations of Riemannian geometry are laid; nevertheless, it is also suggested that the positive

fourth root of a fourth-order differential form might serve as metric function (see Rund, 1959;

Introduction X).

In his book of 1977, Wolfgang Rindler stated: “Whenever the squared differential distance

dσ2 is given by a homogeneous quadratic differential form in the surface coordinates, as in (7.10),

we say that dσ2 is a Riemannian metric, and that the corresponding surface is Riemannian. It

is, of course, not a foregone conclusion that all metrics must be of this form: one could define,



Theory of Relativity on the Finsler Spacetime 71

for example, a non-Riemannian metric dσ2 =
√
dx4 + dy4 for some two-dimensional space, and

investigate the resulting geometry.(Such more general metrics give rise to ‘Finsler’ geometry.)”

(see W. Rindler,1997).

§2 The Special Theory of Relativity on the Finsler Spacetime ds4

2.1 Spacetime transformation group on the Finsler metric ds4

If v = vx, then, between any two inertial systems we have

c4dt4 + dx4 − 2c2dt2dx2 + dy4 + dz4 + 2dy2dz2

= c4dt′
4

+ dx′
4 − 2c2dt′

2
+ dy′

4
+ dz′

4
+ 2dy′

2
dz′

2
(2.1)

From (2.1) we could get transformations

t =
t′ + v

c2 x
′

4
√

1 − 2β2 + β4
, x = x′+vt′

4
√

1−2β2+β4
, y = y′, z = z′. (2.2)

These transformations are called spacetime transformations. All spacetime transformations

form into a group, called the spacetime transformation group (The Lorentz transformations

group is only subgroup of the spacetime transformation group). The inverse transformations

are of the form

±t′ =
t− β x

c
4
√

1 − 2β2 + β4
, ±x′ = x−vt

4
√

1−2β2+β4
, y′ = y, z′ = z, (2.3)

where β = v
c . We could also use dual velocity v1 = c2

v to represent the spacetime transforma-

tions. In fact, the transformations (2.2) can be rewritten as

t =
β1t

′ + x′

c
4
√

1 − 2β2
1 + β4

1

, x = β1x′+ct′

4
√

1−2β2
1+β4

1

, y = y′, z = z′. (2.4)

Their inverse transformations are of the form

±t′ =
β1t− x

c
4
√

1 − 2β2
1 + β4

1

, ±x′ = β1x−ct
4
√

1−2β2
1+β4

1

, y′ = y, z′ = z. (2.5)

where β1 = v1

c = c
v = 1

β .

It is very interesting that all spacetime transformations are applicable to both the subluminal-

speed (i.e.,β<1 or β1 >1) and the superluminal-speed (i.e.,β>1 or β1 <1). Whether the velocity

is superluminal- or subluminal-speed, it is characterized by minus or plus sign of their inverse

transformations, respectively.

Lastly, all spacetime transformations have the same singularity as the Lorentz transforma-

tion when the β = β1 = 1.

2.2 Kinematics on the ds4 invariant

We shall now consider the question of the measurement of length and time increment. In order

to find out the length of a moving body, we must simultaneously plot the coordinates of its
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ends in a fixed system. From Equation (2.2) and (2.4), an expression for the length of a moving

scale ∆x′ measured by a fixed observer follows as

±∆x′ = ∆x 4
√

1 − 2β2 + β4, (2.6)

and

±∆x′ = c∆t 4

√
1 − 2β2

1 + β4
1 , (2.7)

Einstein stated: “For v = c all moving objects - viewed from the ‘stationary’ system - shrivel

up into plain figures. For velocities greater than that of light our deliberations become mean-

ingless.” However, formula (2.6) can applied to the case for velocities greater than that of light.

Fig.2.1 give the relation between the length of a moving scale L and the velocity.

Fig.2.1. L-β curve

Let ∆t be the time increment when the clock is at rest with respect to the stationary

system, and ∆τ be the time increment when the clock is at rest with respect to the moving

system. Then

±∆τ = ∆t 4
√

1 − 2β2 + β4 (2.8)

and

±∆τ =
∆x

c
4

√
1 − 2β2

1 + β4
1 , (2.9)

Differentiating (2.3) or (2.5) and dividing dx′ by dt′ we obtain

dx′

dt′
= v′x =

dx/dt − v

1 − v/c2dx/dt
=

vx − v

1 − vvx/c2
, (2.10)

Noting that dy′ = dy, dz′ = dz, we have a transformation of the velocity components perpen-

dicular to v:
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dy′

dt′
= v′y =

vy
4
√

1 − 2β2 + β4

1 − vvx/c2
,
dz′

dt′
= v′z =

vz
4
√

1 − 2β2 + β4

1 − vvx/c2
, (2.11)

where

v2 = v2
x + v2

y + v2
z . (2.12)

From Equation (2.8), we could see that the composition of velocities have four physical impli-

cations: i.e.,

(1)A subluminal-speed and another subluminal-speed will be a subluminal-speed.

(2)A superluminal-speed and a subluminal-speed will be a superluminal-speed.

(3)The composition of two superluminal-speeds is a subluminal-speed.

(4)The composition of light-speed with any other speed (subluminal-,light-, or superluminal-

speed) still is the light-speed.

There are the essential nature of the spacetime transformation group. The usual Lorentz

transformation is a only subgroup of the spacetime transformation group.

It is necessary to point out that if 1 − vvx/c
2 = 0, i.e.,

vx = v/c2, (2.13)

then vx → ∞. It implies that if two velocities are dual to each other and in opposite directions,

then their composition velocity is an infinitely great velocity. We guess that it may well become

an effective way to make an appraisal of a particle with the superluminal-speed.

2.3 Dynamics on the ds4 invariant

The Lagrangian for a free particle with mass m is

L = −mc2 4
√

1 − 2β2 + β4, (2.14)

The momentum energy, and mass of motion of the particle are of the forms:

p = mv
4
√

1−2β2+β4
, E = mc2

4
√

1−2β2+β4
,M = m

4
√

1−2β2+β4
. (2.15)

Those could also be represented by dual velocity v1:

p(v) = mv
4
√

1−2β2+β4
= mc

4
√

1−2β2
1+β4

1

= 1
cE(v1), (2.16)

E(v) = mc2

4
√

1−2β2+β4
= mv1c

4
√

1−2β2
1+β4

1

= cp(v1), (2.17)

M(v) = m
4
√

1−2β2+β4
= β1m

4
√

1−2β2
1+β4

1

= β1M(v1). (2.18)
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Fig.2.2. E-β diagram Fig. 2.3. p-β diagram

Einstein stated: “Thus, when v = c, E becomes infinite, velocities greater than that of

light have - as in our previous results - no possibility of existence.” But, formula (2.7) can also

applied to the case for velocities greater than that of light. Fig.2.2 give the relation between

the energy of a moving particle and its velocity, and Fig.2.3 give the relation between the

momentum of a moving particle and its velocity.

It is very interesting that the momentum (or energy) in the v’s representation will change

into the energy (or momentum) in the v1’s representation. From (2.15) (or (2.16) and (2.17)), we

could get the following relation between the momentum and energy of a free material particle:

p(v) =
v

c2
E(v) or p(v1) =

v1
c2
E(v1), (2.19)

where the relation (2.19) keeps up the same form as the special theory of relativity. But a new

invariant will be obtained as

E4 + c4p4 − 2c2p2E2 = m4c8. (2.20)

The relation (2.20) is correct for both of the v′s and the v1’s representations. It is a new relation

on the ds4 invariant.

2.4 A charged particle in an electromagnetic field on the Finsler spacetine ds4

Let us now turn to the equations of motion for a charged particle in an electromagnetic field,

A,Φ, Ee andHe. Their Lagrangian is

L = −mc2 4
√

1 − 2β2 + β4 +
e

c
Av − eΦ. (2.21)

The derivative ∂L/∂v is the generalized momentum of the particle. We denote it by pe

pe = mv 4
√

1 − 2β2 + β4 +
e

c
A = p+

e

c
A. (2.22)
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where p denotes momentum in the absence of a field.

From the Lagrangian we could find the Hamiltonian function for a particle in a field from

the general formula

H = mc2 4
√

1 − 2β2 + β4 + eΦ. (2.23)

However, the Hamiltonian must be expressed not in terms of the velocity, but rather in terms

of the generalized momentum of the particle. From equations (2.2) and (2.3), we can get the

relation

[(
H − eΦ

c
)2 − (p− e

c
A)2]2 = m4c4. (2.24)

Now we write the Hamilton-Jacobi equation for a particle in an electromagnetic field in

the Finsler spacetime. It is obtained by replacing, in the equation for the Hamiltonian, P by

∂S/∂r, and H by −∂S/∂t. Thus we get from (2.24)

[(∇S − e

c
A)2 − 1

c2
(
∂S

∂t
+ eΦ)2]2 −m4c4 = 0. (2.25)

Now we consider the equation of motion of a charge in an electromagnetic field. It could be

written by Lagrangian (2.21) as

d

dt

mv
4
√

1 − 2β2 + β4
= eEe +

e

c
v ×He. (2.26)

where

Ee = −1

c

∂A

∂t
− gradΦ, He = curlA. (2.27)

It is easy to check the dEe = vdP , i.e.,

v
d

dt

mv
4
√

1 − 2β2 + β4
= mc2

d

dt

1
4
√

1 − 2β2 + β4
. (2.28)

Then from (2.26) we have

dE

dt
= eEev. (2.29)

Integrate (2.29) and get

mc2

4
√

1 − 2β2 + β4
− mc2

4
√

1 − 2β2
0 + β4

0

= eU. (2.30)

where

β0 =
v0
c
, U =

r∫

r0

Eedr. (2.31)

From (2.26) and (2.29), if we write it in terms of components, it is easy to obtain the spacetime

transformation equations for the field components, and we could obtain the field transformation

equation
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



H ′
x = Hx,

H ′
y =

Hy+βEz

4
√

1−2β2+β4
,

H ′
z =

Hz−βEy

4
√

1−2β2+β4
,

E′
x = Ex,

E′
y =

Ey−βHz

4
√

1−2β2+β4
,

E′
z =

Ez+βHy

4
√

1−2β2+β4
.

(2.32)

We could also use dual velocity v1 to represent the field transformation equation





H ′
x = Hx,

H ′
y =

β1Hy+Ez

4
√

1−2β2
1+β4

1

,

H ′
z =

β1Hz−Ey

4
√

1−2β2
1+β4

1

,

E′
x = Ex,

E′
y =

β1Ey−Hz

4
√

1−2β2
1+β4

1

,

E′
z =

β1Ez+Hy

4
√

1−2β2
1+β4

1

.

(2.33)

An invariant will be obtained as

H4
e + E4

e − 2H2
eE

2
e =constant,

of new nature for the electromagnetic field in Finsler spacetime.

§3 The Catastrophe of the Spacetime and Its Physical Meaning

3.1 Catastrophe of the spacetime on the Finsler metric ds4

The functions y = x2 and y = x4 are topologically equivalent in the theory of the singularities

of differentiable maps (see Arnold et al.,1985). But the germ y = x2 is topologically (and even

differentially) stable at zero. the germ y = x4 is differentially (and even topologically) unstable

at zero. So, there is a great difference between the theories of relativity on the ds2 and the ds4.

On the other hand, a great many of the most interesting macroscopic phenomena in nature

involve discontinuities. The Newtonian theory and Einstein’s relativity theory only consider

smooth, continuous processes. The catastrophe theory, however, provides a universal method

for the study of all jump transitions, discontinuities and sudden qualitative changes. The

catastrophe theory is a program. The object of this program is to determine the change in the

solutions to families of equations when the parameters that appear in these equations change.

In general, a small change in parameter values only has a small quantitative effect on the

solutions of these equations. However, under certain conditions a small change in the value of

some parameters has a very large quantitative effect on the solutions of these equations. Large

quantitative changes in solutions describe qualitative changes in the behaviour of the system

modeled.

Catastrophe theory is, therefore, concerned with determining the parameter values at which

there occur qualitative changes in solutions of families of equations described by parameters.

The double-cusp is the simplest non-simple in the sense of Arnold (see Arnold et al.,1985),

but the double-cusp is unimodal.

The double-cusp is compact, in the sense that the sets f≤constant are compact. In Arnold’s

notation, the double-cusp belongs to the family X9 and in that family there are three real types

of germ, according as to whether the germ has 0,2, or 4 real roots. For example representatives

of the three types are: type 1x4 + y4, type 2x4 y4, type 3x4 + y4 2δx 2y2,respectively, and only

the type 1 is compact.
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Compact germs play an important role in application (see Zeeman, 1977), because any

perturbation of a compact germ has a minimum; therefore if minima represent the stable

equilibria of some system, then for each point of the unfolding space there exists a stable state

of the system.

3.2 Catastrophe of the spacetime on the Finsler metric ds4

In accordance with the Finsler metric ds4 of the spacetime, we could

f(T,X, Y, Z) = T 4 +X4 + Y 4 + Z4 − 2T 2X2 + 2Y 2Z2, (3.1)

here T=ct. Equation (3.1) that describes the behaviour of the spacetime is a smooth

function.

As the catastrophe theory, first we must find the critical points of this

function. Let f = 0, and f ′ = 0, here f ′ = ∂f/∂s,s = T,X, Y, Z. i.e.,

f = T 4 +X4 + Y 4 + Z4 − 2T 2X2 + 2Y 2Z2 = 0,

f ′
T = ∂f/∂T = 4T (T 2 −X2) = 0,

f ′
X = ∂f/∂X = 4X(X2 − T 2) = 0,

f ′
Y = ∂f/∂Y = 4Y (Y 2 + Z2) = 0,

f ′
Z = ∂f/∂Z = 4Z(Z2 + Y 2) = 0.

So, the critical point are

X = ±T, T = X = Y = Z = 0.

Then, we form the stability matrix (∂2f/∂xi∂xj). It is of the form

H(T,X, Y, Z) =




12T 2 − 4x2 −8Tx 0 0

−8Tx 12x2 − 4T 2 0 0

0 0 12y2 + 4z2 8yz

0 0 8yz 12z2 + 4y2



.

Obviously, for the submatrix

H(Y, Z) =


 12y2 + 4z2 8yz

8yz 12z2 + 4y2


 ,

its determinant does not vanish, unless Y=Z=0.

With the Thom theorem (splitting lemma), we could get

fM (Y, Z) = Y 4 + Z4 + 2Y 2Z2, (3.2)

fNM (T,X) = T 4 +X4 − 2T 2X2, (3.3)
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where fM Morse function, can be reduced to the Morse canonical form

M2
0 = Y 2 + Z2,

and fNM , non-Morse function, is a degenerate form of the double-cusp catastrophe (see Zeeman,

1977). For another submatrix of H(T,X, Y, Z)

H(T,X) =

∣∣∣∣∣∣
12T 2 − 4X2 −8TX

−8XT 12X2 − 4T 2

∣∣∣∣∣∣
= −48(T 4 +X4 − 2T 2X2).

So, the spacetime submanifold M(T,X) will be divided into four parts by the different values

of the H(T,X):

H(T,X) 6= 0

(material states)

H(T,X) = 0

(singularities)

T 2 −X2 < 0

T 2 −X2 > 0

T = ±X
T = X = 0

spacelike state

timelike state

lightlike state

the origin (indeterminate).

(3.4)

It means that the light cone is just a catastrophe set on the spacetime manifold, and both the

timelike state and spacelike state are possible states of moving particles.

So, from the point of view of the catastrophe theory, the light cone is just a set of degenerate

critical points on the spacetime manifold. The spacetime is structurally unstable at the light

cone. It means that a lightlike state could change suddenly into a timelike state and a spacelike

state. Also, a timelike state and a spacelike state could change suddenly into a lightlike state. It

very much resembles the fact that two photons with sufficient energy could change suddenly into

a pair of a particle and an anti-particle and contrarily, a pair of a particle and an antiparticle

could annihilate and change into two photons.

According to the nature of catastrophe of the spacetime, the spacetime transformations

(2.2) could be resolved into two parts at the light cone:

t =
t′ + β

c x
′

√
1 − β2

, x =
x′ + vt′√

1 − β2
, y = y′, z = z′; β =

v

c
< 1. (3.5)

and

t =
t′ + β

c x
′

√
β2 − 1

, x =
x′ + vt′√
β2 − 1

, y = y′, z = z′; β =
v

c
> 1. (3.6)

In the same way, the transformation (2.4) could also be resolved into two parts at the light

cone:

t =
β1t

′ + 1
cx

′

√
β2

1 − 1
, x =

β1x
′ + ct′√
β2

1 − 1
, y = y′, z = z′; β1 =

v1
c
> 1. (3.7)
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and

t =
β1t

′ + 1
cx

′

√
1 − β2

1

, x =
β1x

′ + ct′√
1 − β2

1

, y = y′, z = z′; β1 =
v1
c
< 1. (3.8)

It is very interesting that transformations (3.5) and (3.7) have two major features: Firstly, they

keep the same sign between the ds2 and the ds′
2
;i.e.,

ds2v = ds′
2
v. (3.9)

Secondly, their inverse transformations are of the form

t′ =
t− β

c x√
1 − β2

, x′ =
x− vt√
1 − β2

, y′ = y, z′ = z; β < 1. (3.10)

and

t′ =
β1t− 1

cx√
β2

1 − 1
, x′ =

β1x− ct√
β2

1 − 1
, y′ = y, z′ = z; β1 > 1. (3.11)

These transformations keep the same sign between x, t and x′, t′. So, they will be called the

timelike transformations and (3.5) will be called the timelike representation of the timelike trans-

formation (TRTT),and (3.7) the spacelike representation of timelike transformation (SRTT).

In the same manner, transformations (3.6) and (3.8) have two common major features,

too. Firstly, they will change the sign between ds2 and ds’2,i.e.,

−ds2v = ds′
2
v. (3.12)

Secondly, their inverse transformations are of the form

−t′ =
t− β

c x√
β2 = 1

,−x′ =
x− vt√
β2 − 1

, y′ = y, z′ = z; β > 1. (3.13)

and

−t′ =
β1t− 1

cx√
1 − β2

1

,−x′ =
β1x− ct√

1 − β2
1

, y′ = y, z′ = z; β1 < 1. (3.14)

These transformations will change the sign between x, t andx′, t′. They will be called the space-

like transformations and (3.6) will be called the spacelike representation of spacelike transfor-

mation (SRST); and (3.8) the timelike representation of spacelike transformation (TRST).

Now, we have had four types of form of the spacetime transformation under ds2:

Type I. TRTT, (3.5), it is just the Lorentz transformation;

Type II. SRTT, (3.7), it is the spacelike representation of the Lorentz transformation with

the dual velocity v1 = c2/v, it is larger than the velocity of light;

Type III. SRST, (3.6), it is just the superluminal Lorentz transformation (see Recami,

1986 and Sen Gupta, 1973);
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Type IV. TRST, (3.8), it is the timelike representation of the

superluminal Lorentz transformation with the dual velocity v1 = c2/v, but it is less than

the velocity of light.

3.3 The catastrophe of physical quantities on the Finsler metric ds4

Firstly, we shall consider the question of the catastrophe of the measurement of length and time

increment. According to the nature of catastrophe of spacetime, the expression for the length

of a moving scale ∆x′ measured by a fixed observer (2.6)-(2.9) could be resolved into two parts,

∆x′ = ∆x
√

1 − β2, β < 1. (3.15)

−∆x′ = ∆x
√
β2 − 1, β > 1. (3.16)

−∆x′ = c∆t
√

1 − β2
1 , β1 < 1. (3.17)

∆x′ = c∆t
√
β2

1 − 1, β1 > 1. (3.18)

The expression for the time increment ∆τ of the clock at rest with respect to the moving system

could be resolved into two parts at the light cone:

∆τ = ∆t
√

1 − β2, β < 1, (3.19)

−∆τ = ∆t
√
β2 − 1, β > 1. (3.20)

−∆τ =
∆x

c

√
1 − β2

1 , β1 < 1, (3.21)

∆τ =
∆x

c

√
β2

1 − 1, β1 > 1; (3.22)

It is very interesting that the ∆x′, (or ∆x) will exchange with ∆t (or ∆τ) in the expressions

(3.17)-(3.18) and (3.21)-(3.22).

If we let (see the formula (3.20))

f(E,P ) = E4 + c4P 4 − 2c2E2P 2 (3.23)

as the catastrophe theory, we could find a catastrophe set

E = ±P (3.24)
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and we could have four types of the representation for the momentum, the energy, and the mass

of a moving particle with the rest mass m:

Type I. TRTT

pT (v) =
mv√
1 − β2

, ET (v) =
mc2√
1 − β2

,MT (v) =
m√

1 − β2
; β < 1. (3.25)

Type II. SRTT

pS{v1} =
mv1√
β2

1 − 1
, ES(v1) =

mc2√
β2

1 − 1
,MS(v1) =

m√
β2

1 − 1
; β1 > 1. (3.26)

Type III. SRST

pS{v} =
−mv√
β2 − 1

, ES(v) =
−mc2√
β2 − 1

,MS(v) =
−m√
β2 − 1

; β > 1. (3.27)

Type IV. TRST

pS{v1} =
−mv1√
1 − β2

1

, ES(v1) =
−mc2√
1 − β2

1

,MS(v1) =
−m√
1 − β2

1

; β1 < 1. (3.28)

The transformations between type I (or type II) and type III (or type IV) have the forms

pT (v) =
mv√
1 − β2

=
mc√
β2

1 − 1
=

1

c
ET (v1), (3.29)

ET (v) =
mc2√
1 − β2

=
mv1c√
β2

1 − 1
= cpT (v1), (3.30)

MT (v) =
m√

1 − β2
=

β1m√
β2

1 − 1
= β1M

T (v1) (3.31)

and

pS(v) =
−mv√
β2 − 1

=
−mc√
1 − β2

1

=
1

c
ES(v1), (3.32)

ES(v) =
−mc2√
β2 − 1

=
−mv1c√
1 − β2

1

= cpS(v1), (3.33)
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MS(v) =
−m√
β2 − 1

=
−β1m√
1 − β2

1

= β1M
S(v1). (3.34)

With these forms above, we could get that when β=β1=1,

cP (c) = E(c) = mc2 and M(c) = m. (3.35)

Note that although all through Einstein’s relativistic physics there occur indications that mass

and energy are equivalent according to the formula

E = mc2.

But it is only an Einstein’s hypothesis.

It is very interesting that from type I and type IV we could get

E2 − c2p2 = m2c4, v < c and v1 < c (i.e., v > c) (3.36)

and from type II and type III

E2 − c2p2 = −m2c4, v > c and v1 > c (i.e., v < c) (3.37)

Here, we have forgotten the indices for the types in Equations (3.35) to (3.37). If we let the

H2(E,P ) = E2 c2P 2, then we could get

f(H,mc) = H4 − (mc2)4. (3.38)

It is a type II of the double-cusp catastrophe, we could also get (3.36) and (3.37) from it.

3.4 The catastrophe a charged particle in an electromagnetic field on the Finsler

spacetime ds4

The Hamilton-Jacobi equation for a particle in an electromagnetic field in the Finsler spacetime,

formula (2.25) is a type II of the double-cusp catastrophe. We could get that

c2(∇S − e

c
A)2 − (

∂S

∂t
+ cΦ)2 +m2c4 = 0 (3.39)

for type I and type IV of the spacetime transformation.

c2(∇S − e

c
A)2 − (

∂S

∂t
+ cΦ)2 −m2c4 = 0 (3.40)

for type II and type III of the spacetime transformation.
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Now, we consider the catastrophe change of the equation of a charge in an electromagnetic

field. By equation (2.26), we could get

d

dt

mv√
1 − β2

= eEe +
e

c
v ×He, v < c (3.41)

and

− d

dt

mv√
β2 − 1

= eEe +
e

c
v ×He, v > c . (3.42)

If we integrate (3.41) and (3.42), then

mc2√
1 − β2

− mc2√
1 − β2

0

= eU, v0 < c (3.43)

and

mc2√
β2

0 − 1
− mc2√

β2 − 1
= eU, v0 > c . (3.44)

So, the velocity v has

v = c

√

1 −
(
eU

mc
+ 1/

√
1 − β2

0

)−2

< c, iff v0 < c, (3.45)

and

v = c

√

1 +

(
eU

mc
− 1/

√
β2

0 − 1

)−2

> c, iff v0 > c . (3.46)

The expressions (3.45) and (3.46) mean that if v0 < c, then for the charged particle always

v < c; and if v0 > c, then v > c. The velocity of light will be a bilateral limit: i.e., it is both of

the maximum for the subluminal-speeds and the minimum for the superluminal-speeds.

If we let

f(He, Ee) = H4
e + E4

e − 2H2
eE

2
e , (3.47)

we will get that the catastrophe set is

He = ±Ee (3.48)

and could obtain the spacetime transformation equations for the electromagnetic field compo-

nents(by (2.31) and (2.32)):

Type I. TRTT
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



H ′
x = Hx,

H ′
y =

Hy+βEz√
1−β2

,

H ′
z =

Hz−βEy√
1−β2

,

E′
x = Ex,

E′
y =

Ey−βHz√
1−β2

,

E′
z =

Ez+βHy√
1−β2

.

(3.49)

Type II. SRTT





H ′
x = Hx,

H ′
y =

β1Hy+Ez√
β2
1−1

,

H ′
z =

β1Hz−Ey√
β2
1−1

,

E′
x = Ex,

E′
y =

β1Ey−Hz√
β2
1−1

,

E′
z =

β1Ez+Hy√
β2
1−1

.

(3.50)

Type III. SRST





H ′
x = Hx,

−H ′
y =

Hy+βEz√
β2−1

,

−H ′
z =

Hz−βEy√
β2−1

,

E′
x = Ex,

−E′
y =

Ey−βHz√
β2−1

,

−E′
z =

Ez+βHy√
β2−1

.

(3.51)

Type IV. TRST





H ′
x = Hx,

−H ′
y =

β1Hy+Ez√
1−β2

1

,

−H ′
z =

β1Hz−Ey√
1−β2

1

,

E′
x = Ex,

−E′
y =

β1Ey−Hz√
1−β2

1

,

−E′
z =

β1Ez+Hy√
1−β2

1

.

(3.52)

3.5 The interchange of the forces between the attraction and the rejection

Usually, because of the equivalence of energy and mass in the relativity theory, ones believe

that an object has due to its motion will add to its mass. In other words, it will make it harder

to increase its speed. This effect is only really significant for objects moving at speeds close to

the speed of light. So, only light, or other waves that have no intrinsic mass, can move at the

speed of light.

The mass is the measure of the gravitational and inertial properties of matter. Once

thought to be conceivably different, gravitational mass and inertial mass have recently been

shown to be the same to one part in 1011.

Inertial mass is defined through Newton’s second law, F=ma, in which m is mass of body.

F is the force action upon it, and a is the acceleration of the body induced by the force. If two

bodies are acted upon by the same force (as in the idealized case of connection with a massless

spring), their instantaneous accelerations will be in inverse ratio to their masses.

Now, we need discuss the problem of defining mass m in terms of the force and acceleration.

This, however, implies that force has already been independently defined, which is by no means

the case.
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3.5.1 Electromagnetic mass and electromagnetic force

It is well known that the mass of the electron is about 2000 times smaller than that of the

hydrogen atom. Hence the idea occurs that the electron has, perhaps, no “ordinary” mass at all,

but is nothing other than an “atom of electricity”, and that its mass is entirely electromagnetic

in origin. Then, the theory found strong support in refined observations of cathode rays and

of the β-rays of radioactive substances, which are also ejected electrons. If magnetic action

on these rays allows us to determine the ratio of the charge to the mass, e
mel

, and also their

velocity v, and that at first a definite value for e
mel

was obtained, which was independent of v

if v << c. But, on proceeding to higher velocities, a decrease of e
mel

was found. This effect was

particularly clear and could be measured quantitatively in the case of the β-rays of radium,

which are only slightly slower than light. The assumption that an electric charge should depend

on the velocity is incompatible with the ideas of the electron theory. But, that the mass should

depend on the velocity was certainly to be expected if the mass was to be electromagnetic in

origin. To arrive at a quantitative theory, it is true, definite assumptions had to be made about

the form of the electron and the distribution of the charge on it. M. Abraham (1903) regarded

the electron as a rigid sphere, with a charge distributed on the one hand, uniformly over the

interior, or, on the other, over the surface, and he showed that both assumptions lead to the same

dependence of the electromagnetic mass on the velocity, namely, to an increase of mass with

increasing velocity. The faster the electron travels, the more the electromagnetic field resists

a further increase of velocity. The increase of mel explains the observed decrease of e
mel

, and

Abraham’s theory agrees quantitatively very well with the results of measurement of Kaufmann

(1901) if it is assumed that there is no “ordinary” mass present. But, the electromagnetic force

F = e[E + 1
c (v ×H)] was believed to be a constant and be independent of the velocity v.

Note that if we support that the mass m is independent of the velocity v, but the elec-

tromagnetic force F = e[E + 1
c (v ×H)] is dependent of the velocity v, it will be incompatible

with neither the ideas of the electron theory nor the results of measurement of Kaufmann.

One further matter needs attention: the E andH occurring in the formula for the force F are

supposed to refer to that system in which the electron is momentarily at rest.

3.5.2 The mass and the force in the Einstein’s special relativity

In the Einstein’s special relativity, Lorentz’s formula for the dependency of mass on velocity

has a much more general significance than is the electromagnetic mass apparent. It must hold

for every kind of mass, no matter whether it is of electrodynamics origin or not.

Experiments by Kaufmann (1901) and others who have deflected cathode rays by electric

and magnetic fields have shown very accurately that the mass of electrons grows with velocity

according to Lorentz’s formula (??). On the other hand, these measurements can no longer be

regarded as a confirmation of the assumption that all mass is of electromagnetic origin. For

Einstein’s theory of relativity shows that mass as such, regardless of its origin, must depend on

velocity in the way described by Lorentz’s formula.

Up to now, if we support that all kinds of the mass, m, are independent of the velocity

v, but all forces are dependent of the velocity v, it will be incompatible with neither the ideas

of the physical theory nor the results of measurement of physics. Could make some mew
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measurements of physics (or some observations of astrophysics) to support this viewed from

another standpoint.

3.5.3 The interchange of the forces between the attraction and the rejection

Let us return to the Newton’s second law, F=ma, we can see that the product of mass and

acceleration is a quantity antisymmetric with respect to the two interaction particles B and C.

We shall now make the hypothesis that the value of this quantity in any given case depends

on the relative position of the particles and sometimes on their relative velocities as well as

the time. We express this functional dependence by introducing a vector function FBC(r, ṙ, t),

where r is the position vector of B with respect to C and ṙ is the relative velocity. We then

write

mBaBC = FBC . (3.53)

and define the function FBC as the force acting on the particle B due to the particle C. It is

worth while to stress the significance of the definition of force presented here. It will be noted

that no merely anthropomorphic notion of push of pull is involved. Eq.(3.53) states that the

product of mass and acceleration, usually known as the kinetic reaction, is equal to the force.

Now, if we explain the experiments by Kaufmann (1901) with here point of view, then, we

could say that the electromagnetic force F = e[E + 1
c (v ×H)] is a function dependent of the

velocity v, F = F (v).

From the above mentioned, the relativity theory provides for an increase of apparent inertial

mass with increasing velocity according to the formula

m =
m0√
1 − β2

could be understood equivalently as a decrease of the effective force of the fields with

increasing relativistic velocity between the source of the field and the moving body according

to the formula

Feff = F
√

1 − β2.

Further, the negative apparent inertial mass could be understood equivalently as the effec-

tive forces of the fields have occurred the interchange between the attraction and the rejection

according to the formula.

Feff = −F
√
β2 − 1.

3.5.4. The character velocity and effective forces for a forces

Up to now, one common essential feature for forces is neglected that the character velocities

for forces. Ones commonly believe that if the resistance on the wagon with precisely the same
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force with which the horse pulls forward on the wagon then the wagon will keep the right line

moving with a constant velocity. However, we could ask that if the resistance on the wagon is

zero force then will the wagon be continue accelerated by the horse? How high velocity could be

got by the wagon? It is very easy understood that the maximum velocity of the wagon, vmax,

will be the fastest running velocity of the horse, vfst. The velocity vfst is just the character

velocity, vc, for the pulling force of the horse. When the velocity of the wagon is zero velocity,

the pulling force of the horse to the wagon has the largest effective value Feff = F . We assume

that a decrease of the effective force with increasing velocity of the wagon, and Feff = 0 if and

only if β = vw

vc
= 1. If β = vw

vc
> 1 then Feff= −kF. It means that when the velocity of the

wagonvw is larger the character velocity vc, not that the horse pulls the wagon, but that the

wagon pushes the horse.

If the interactions of the fields traverse empty space with the velocity of light, c, then the

velocity of light is just the character velocity for all kinds of the interactions of the fields. We

guess that the principle of the constancy of the velocity of light is just a superficial phenomenon

of the character of the interactions of the fields.

3.5.5. One possible experiment for distinguish between moving mass and effective force

The Newtonian law of universal gravitation assumes that, two bodies attract each other with a

force that is proportional to the mass of each body and is inversely proportional to the square

of their distance apart:

F = G
m1m2

r2
. (3.54)

According as Einstein’s special relativity, if the body1 is moving with constant speed v

with respect to the body2, then the mass of the body1 will become with respect to the body2

that

M1 =
m1√
1 − v2

c2

. (3.55)

According to the principle of equivalence the body’s gravitational mass equal to its inertia

mass. So, the force of gravitational interaction between the two bodies will be

FM.M. = G
m1m2

r2
√

1 − v2

c3

. (3.56)

But, according as the theory of the effective force, the force of gravitational interaction between

the two bodies will be

FE.F. = G
m1m2

r2

√
1 − v2

c2
. (3.57)

We hope that could design some new experiments to discover this deviation.

3.6 Decay of particles
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On the Einstein’s special relativity theory, consider the spontaneous decay of a body of mass

M into two parts with masses m1 and m2. The law of conservation of energy in the decay,

applied in the system of reference in which the body is at rest, gives

M = E10 + E20, (3.58)

where E10 and E20 are the energies of the emerging particles. Since E10 > m1 and E20 > m2,

the equality (120) can be satisfied only ifM¿m1+m2, i.e. a body can disintegrate spontaneously

into parts the sum of whose masses is less than the mass of the body. On the other hand, if

M ¡m1 + m2, the body is stable (with respect to the particular decay) and does not decay

spontaneously. To cause the decay in this case, we would have to supply to the body from

outside an amount of energy at least equal to its “binding energy” (m1 +m2 −M).

Usually, ones believe that momentum as well as energy must be conserved in the decay

process. Since the initial momentum of the body was zero, the sum of the momenta of the

emerging particles must be zero: p10+p20=0 in the special relativity theory. Consequently

p2
10 = p2

20, or

E2
10 −m2

1 = E2
20 −m2

2. (3.59)

The two equations (3.58) and (3.59) uniquely determine the energies of the emerging particles

E10 =
M2 +m2

1 −m2
2

2M
, E20 =

M2 −m2
1 +m2

2

2M
. (3.60)

In a certain sense the inverse of this problem is the calculation of the total energy M of

two colliding particles in the system of reference in which their total momentum is zero. (This

is abbreviated as the “system of the center of inertia” or the “C-system”.) The computation of

this quantity gives a criterion for the possible occurrence of various inelastic collision processes,

accompanied by a change in state of the colliding particles, or the “creation” of new particles.

A process of this type can occur only if the sum of the masses of the “reaction products” does

not exceed M .

Suppose that in the initial reference system (the “laboratory” system) a particle with mass

m1 and energy E1 collides with a particle of mass m2 which is at rest. The total energy of the

two particles is

E = E1 + E2 = E1 +m2,

and their total momentum is p=p1+p2 =p1. Considering the two particles together as a single

composite system, we find the velocity of its motion as a whole from (2.19):

V =
p

E
=

p1

E1 +m2
. (3.61)

This quantity is the velocity of the C-system with respect to the laboratory system (the L-

system).

However, in determining the mass M , there is no need to transform from one reference

frame to the other. Instead we can make direct use of formula (3.36), which is applicable to
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the composite system just as it is to each particle individually. We thus have

M2 = E2 − p2 = (E1 +m2)
2 − (E2

1 −m2
1),

from which

M2 = m2
1 +m2

2 + 2m2E1. (3.62)

§4 Conclusions

From the discussion in this paper, we could get the following conclusions:

(1) The special theory of relativity cannot negate the possibility of the existence of superlu-

minal-speed.

(2) The essential nature of the superluminal-speed is the relativity of the temporal order. If

one does not know how to distinguish the temporal orders, a particle moving with superluminal-

speed could be taken for one moving with a subluminal-speed of some unusual nature.

(3) The specal theory of relativity could be discussed in the Finsler spacetime. The space-

time transformation on the Finsler metric ds4 contains a new symmetry between the timelike

and spacelike.

(4) Some new invariants describe the catastrophe nature of the Finsler spacetime ds4.

They obey the double-cusp catastrophe. The timelike state cannot change smoothly into the

spacelike state for a motion particle. But a lightlike state could change suddenly into a timelike

state and spacelike state. Also, a timelike state and a spacelike state could change suddenly

into a lightlike state.

(5) The length x will exchange the position with the time increment t between v′s rep-

resentation and v′1s representation. The momentum (or energy) in the timelike (or spacelike)

representation will be transformed into the energy (or momentum) in the spacelike (or timelike)

representation.

(6) The difference between the subluminal- and superluminal-speed would be described

as follows: a particle with the subluminal-speed has positive momentum, energy, and moving

mass, and a particle with the superluminal-speed has negative ones.

(7) Usually, it is believed that Tachyons have a spacelike energy-momentum four-vector so

that

E2 < c2P 2.

Hence, the square of the rest mass m defined by

m2c4 = E2 − c2P 2 < 0

requires the ‘rest mass’ to be imaginary’ (see Hawking and Ellis, 1973).

As has been said in this paper, from the expressions (3.25)-(3.28) it is clear that, no

matter whether a particle is moving with a subluminal- or superluminal-speed, in the timelike

representation it will obey Equation (3.36), but, in the spacelike representation it will obey



90 Shenglin Cao

Equation (3.37). So, for a particle with superluminal-speed its mass M(v) (energy E(v), and

momentum P (v)) is negative rather than imaginary. As expression (3.28)

ES(v1) = −mc2

when β → 0.

So the particle with superluminal-speed, in the timelike representation, will remain a neg-

ative ‘rest-mass’. We shall write:

E =





+mc2 for subluminal − speed, i.e., v < c( or v1 > c),

−mc2 for sup erlumin al− speed, i.e., v > c( or v1 < c).

It was just analyzed by Dirac for the anti-particle. So, we guess that a particle with the

superluminal-speedv > c could be regarded as its anti-particle with the dual velocity v1 =

c2/v < c.
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§1. Introduction

For a simple graph G = (V (G), E(G)), a vertex labeling of G is a mapping θ : V (G) → Z of

non-negative integers that induces for each edge xy a label depending on θ(x) and θ(y). A

labeling is called a graceful labeling of a graph G if it satisfying three conditions following:

(i) ∀u, v ∈ V (G), if u 6= v, then θ(u) 6= θ(v);

(ii) max{θ(v)|v ∈ V (G)} = |E(G)|;
(iii) For ∀e = xy ∈ E(G), let θ(e) = |θ(x) − θ(y)|. Then ∀e1, e2 ∈ E(G), if e1 6= e2, then

θ(e1) 6= θ(e2).

Many research works on graph labeling can be found in the reference [2], particularly,

graceful graphs. Gracefulness of some graph families can be also seen in references [4] − [10].

In this paper, we concentrate on the enumeration problem of graceful trees with given order.

Let Kn = (V,E) be a complete graph with n vertices v1, v2, · · · , vn. All edges of Kn can be

denoted by eij = vivj , where i, j ∈ N = {1, 2, · · · , n}), (i 6= j. We denote the vertex labeling of

vi by θ(vi), and label it with θ(vi) = i. Then all edges labeling are respective θ(vnv1) = n− 1,

θ(vnv2) = n − 2, θ(vn−1v1) = n − 2, · · · , θ(vnvn−1) = 1, θ(vn−1vn−2) = 1, · · · , θ(v2v1) = 1.

Obviously, all edge labels θ(vivj) make up (n − 1)! graceful graphs. Certainly, these graceful

graphs include disconnected and isomorphic graphs.

If all edges eij correspond to coordinates (xi, yj) on a Euclidean plane by xi = i, yj = j for

1 < i ≤ n, 1 ≤ j < n, then there is a bijection between eij and (xi, yj). Its diagram is a lower

triangle with y = x− a for a = 1, 2, · · · , n− 1, and the graceful label θ(e) of an edge e is on the

oblique line y = x− a.

For example, let G = K6. Its diagram can be found in Fig.1.1.

1Received September 30, 2007. Accepted January 28, 2008
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-6̀ ` ` ` ` ` ` ` ``̀̀̀̀̀ ` ` ` ` `` ` ` `` ` `` `̀
1 2 3 4 5 6 7 8

1
2
3
4
5
6

Fig.1.1

In this diagram, if θ(e) = 1, then θ(e) ∈ {|x − y| : 2 − 1, 3 − 2, 4 − 3, 5 − 4, 6 − 5}.
If θ(e) = 2, then θ(e) ∈ {|x − y| : 3 − 1, 4 − 2, 5 − 3, 6 − 4}. · · · , If θ(e) = 6 − 1, then

θ(e) ∈ {|x− y| : 6− 1}. In other words, there are 5 oblique lines on Fig.1 when n = 6. Suppose

these lines are L1, L2, L3, L4, L5. Let (xli, ylj) be a point on the plane with the coordinate

(xi, yj) and l denotes l − th oblique line. Then {(x16, y11) = (6, 1)} ∈ L1, {(x25, y21) =

(5, 1), (x26, y22) = (6, 2)} ∈ L2, {(x34, y31) = (4, 1), (x35, y32) = (5, 2), (x36, y33) = (6, 3)} ∈ L3,

· · · ,{(x52, y51) = (2, 1), (x53, y52) = (3, 2), (x54, y53) = (4, 3), (x55, y54) = (5, 4), (x56, y55) =

(6, 5)} ∈ L5. Moreover, we define

y11(y21 + y22) · · · (yn−1,1 + yn−1,2 + · · · + yn−1,n−1) =
∑

y1j1y2j2 · · · yn−1,jn−1 , (1)

x1,n(x2,n−1 + x2,n) · · · (xn−1,2 + xn−1,3 + · · · + xn−1,n) =
∑

x1j1x2j2 · · ·xn−1,jn−1 . (2)

The expansion of these polynomials (1) and (2) both have (n−1)! terms. Terms
∏n−1

r=1 xsr ,ir

and
∏n−1

r=1 ysr ,jr
) in their expansion are called the correspondent term pair, denoted by (x, y) =

(
∏n−1

r=1 xsr ,ir
,
∏n−1

r=1 ysr ,jr
). Then each pair (x, y) corresponds to a graceful graph as just ex-

plained.

In a labeling graph G, if a vertex labeling vi = n− i+1 is replaced by vi = i, then all edge

labels are invariant. This kind of labeling are called equivalent, seeing in Fig 1.2 for details, in

where, (a→ a′ and b→ b′).

���� AAAA · · ·����1 2 3 n-1

n

a a a aa ���� AAAA · · ·����n n-1 n-2 2

1

a a a aa ` ` ` ` `1 5 2 4 3` ` ` ` `5 1 4 2 3

(a) (a′)

Fig.1.2

(b′)

(b)

For instance, choose n = 4 in (1) and (2), i.e.,

y11(y21 + y22)(y31 + y32 + y33)

= y11y21y31 + y11y21y32 + y11y21y33 + y11y22y31 + y11y22y32 + y11y22y33
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x14(x23 + x24)(x32 + x33 + x34)

= x14x23x32 + x14x23x33 + x14x23x34 + x14x24x32 + x14x24x33 + x14x24x34

If (x, y) = (x14x23x32, y11y21y31), we get x14 − y11 = 3, x23 − y21 = 2, x32 − y31 = 1. Hence

(x, y) is correspondent to a graceful star graph.

If (x, y) = (x14x23x33, y11y21y32), we find x14 − y11 = 3, x23 − y21 = 2, x33 − y32 = 1, which

is correspondent to a graceful path graph.

If (x, y) = (x14x23x34, y11y21y33), we have x14 − y11 = 3, x23 − y21 = 2, x34 − y33 = 1. It is

correspondent to a graceful triangular graph.

Notice that by definition, these two labeling in pairs (x, y) = (x14x24x32, y11y22y31) and

(x, y) = (x14x23x34, y11y21y33), (x, y) = (x14x24x33, y11y22y32) and (x, y) = (x14x23x33, y11y21y32),

(x, y) = (x14x24x34, y11y22y33) and (x, y) = (x14x23x32, y11y21y31) are equivalent.

§2. The Enumeration of Graceful Trees

For enumerating graceful trees, a well-known result is useful.

Lemma 2.1([3]) Let T = {t1, t2, · · · , tn−1} be a set of n− 1 involutions on N = {1, 2, · · · , n}.
Then the product t1t2 · · · tn−1 is an n-cyclic permutation if and only if (N,T ) is a tree.

From Lemma 2.1 we obtain a result in the following.

Theorem 2.1 Let (x, y) be a correspondent term pair. If it is an n-cyclic permutation, then

(x, y) corresponds to a graceful tree.

Proof From the formulae (1) and (2), we have y11 and x1n → (x1n, y11), y21 and x2,n−1 →
(x2,n−1, y21), y22 and x2,n → (x2,n, y22), · · · ,etc.. They satisfy y = x−a, a = 1, 2, · · · , n−1. So

(x, y) = (
∏n−1

r=1 xsr ,ir
,
∏n−1

r=1 ysr ,jr
), namely {θ(x, y)} = {1, 2, · · · , n− 1}}. Now if it is n- cyclic

permutation (not exist less than n), then it is correspondent to a connected graph of n vertices

with n− 1 edges by the Lemma 2.1. Therefore it is a graceful tree. �

Corollary 2.1 A correspondent term pair (x, y) is a graceful tree only if

n−1⋃

i=1

xi

⋃ n−1⋃

j=1

yj = {1, 2, · · · , n}.

Define a matrix A by

A = [axy],

where axy = (x, y). This matrix shows that there are (n − 1)!/2 labeling ways on graceful

graphs, but in which (n− 2)!/2 labeling ways are equivalent. We need to delete the pair (2, n)

in the matrix A. This is tantamount to cancel equivalent labeling. In addition, the three pairs

(1, n), (1, n−1) and (n−1, n) consist of a 3-cyclic with an edge set {e1n, e1,n−1, en−1,n}. In other

words, there are (n− 2)!/2 graceful graphs contain 3-cyclic with edge en−1,n, correspondent to
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the pair (n− 1, n). Hence cancel the pair (n − 1, n) in the matrix A. So we get a new matrix

A′ from A.

According to the previous discussions, define a permutation

T (n) =


 y1 y2 · · · yn−1

x1 x2 · · · xn−1


 ,

where y1 = y2 = 1, x1 = n, x2 = n− 1. Then we have the next result.

Theorem 2.2 For an integer n ≥ 3,

(i) if yi+1 = yi or yi+1 = yi + 1 for all indexes i, then T (n) corresponds to a graceful tree;

(ii) if there is an integer k such that yi = yi+1 and yi+2 = yi +1, yi+3 = yi +2, · · · , yi+k =

yi + k − 1, rearrange yj such that the j-th entry is y′j ≤ j for i + 2 ≤ j ≤ i + k and define

x′j = y′j + n− j. Then the new pair (x′, y′) , namely

T ′(n) =


 1 1 y′3 y′4 · · · y′n−1

n n− 1 x′3 x′4 · · · x′n−1




.

is still correspondent to a graceful tree.

Proof The case of y3 = y4 = · · · = yn−1 = 1 and xi = n − i + 1, i = 3, 4, · · · , n − 1 is

trivial,which corresponds to a star tree.

We verify Theorem 2.2(i) in the first. When y1 = y2 = 1, x1 = n, x2 = n − 1, so v1, vn−1

and vn three vertices consist of a path. When yi = yi+1, xi = yi + n − i, then xi+1 = yi +

n − i − 1 = xi − 1. When yi+1 = yi + 1, xi = yi + n − i, then xi+1 = xi. So for any integer

i, 1 ≤ i ≤ n, we know that yi+1 = yi + 1 → xi+1 = xi; yi+1 = yi → xi+1 = xi − 1, i.e.,

0 ≤ |yi+1 − yi| ≤ 1, 0 ≤ |xi+1 − xi| ≤ 1 and xn−1 − yn−1 = 1. Thereafter,

n−1⋃

i=1

yi

⋃ n−1⋃

j=1

xj = {1, 2, · · · , n}.

Because three vertices v1, vn−1 and vn consist of a path. When y3 = y2 = y1 = 1, we

obtain x3 = n− 2. So vn−2 and v1 are connected. Similarly, if y3 = 2, x3 = n− 1, v2 and vn−1

are connected. In fact, for any integer i, 1 ≤ i ≤ n, we have yi+1 = yi → xi+1 = xi + 1 or

yi+1 = yi + 1 → xi+1 = xi. If yi+1 = yi, then yi+1 and yi corresponds to same vertex vs, xi+1

corresponds to vertex vt, vs and vt are connected, by xi = yi + n − i. Similarly, if xi+1 = xi,

then xi+1 and xi corresponds to same vertex vt,yi+1 corresponds to vertex vs, vs and vt are

connected. we know that T (n) corresponds to a graceful tree by Lemma 2.1.

For Theorem 2.2(ii), let N = {1, 2, · · · , n}. If yi = yi+1, xi+1 = xi − 1 and yi+2, yi+3, · · · ,
yi+k are consecutive plus 1 of yi, then xi+2 = xi+3 = · · · = xi+k = xi+1. Since yi+1 does

not participate in the rearrangement, we know that xi+1 = yi+1 + n − i + 1. Notice that

yi+2, yi+3, · · · , yi+k participating in the rearrangement do not change these labels of n vertices.

Namely, the labeling set {1, 2, · · · , n} is not dependent on xi+2, xi+3, · · · , xi+k by xi+2 = xi+3 =

· · · = xi+k = xi+1. In fact, yi+2, yi+3, · · · , yi+k correspond to k − 1 leaves of a tree, and
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min{xi} = xn−1 > max{yi} = yn−1, i = 1, 2, · · · , n. If yi+r is replaced by yi+r−j(1 ≤ j ≤
r − 2) for 2 ≤ i ≤ k, then yi+r > yi+r−j. We obtain x′i+r−j > xi+r−j = xi+1, since there

exists an xs = x′i+r−j(x1 ≥ xs ≥ xi+1) correspondent to a vertex of a tree, which does not

change these yi+r correspondent to leaves. If yi+r is replaced by yi+r+j(1 ≤ j ≤ k − r), we

obtain x′i+r+j = yi+r + n − i − r − j < xi+r+j = xi+1. If x′i+r+j ≥ xn−1, there exists an

xs = x′i+r+j(xi+1 ≥ xs ≥ xn−1). Now if x′i+r+j ≤ yn−1, then there still exists a yt = x′i+r+j .

Both of them do not change these yi+r correspondent to leaves. Therefore,

T ′(n) =


 1 1 y′3 y′4 · · · y′n−1

n n− 1 x′3 x′4 · · · x′n−1


 .

still corresponds to a graceful tree. �

According to Theorem 2.2, the rearrangement on yi enable us to get new graceful tree, is

not equivalent to the original tree. We enumerate all rearrangement labeling on graceful trees

in the following.

Let T (12, 22, 32, · · · , kr0) denote a permutation


 1 1 y3 y4 · · · yn−1

n n− 1 x3 x4 · · · xn−1


 ,

in which, y1 = y2, y3 = y4, · · · , y2i−1 = y2i = i for i ≤ k. Let E(Tn) denote the number of all

non-equivalent graceful trees of n vertices, and E(Tn, k
r0) denote the number of permutations

on k+1, k+2, · · · , n−k−r0+1 satisfying yi ≤ i and xi = yi+n−i for k+1 ≤ i ≤ n−k−r0 +1.

Applying Theorem 2.2 we find the following result.

Theorem 2.3 For any integer n > 2, let E(Tn,K) =
∑

1≤k≤n
2
E(Tn, k

r0). If n ≡ 0(mod2),

then

E(Tn,K) =
α∑

i=2

in−3i+2(ii−1 − 1) · (i− 2)!

+

β−1∑

i=1

(α+ i)((α + i)α−2i+1 − 1) · (α+ i− 2)!

+

γ∑

i=1

(2i− 1) · (n
2
− i)! + (α− 1)

λ∑

i=0

i!

+

β∑

i=1

i(α− 2i+ ρ+ 2) · (α− 2i+ ρ)!, (3)

where,





α = n
3 , β = n

6 , γ = n
6 , λ = n

3 − 1, ρ = 0, if n ≡ 0(mod6);

α = n−1
3 , β = n+2

6 , γ = n−4
6 , λ = n−1

3 , ρ = 1, if n ≡ −2(mod6);

α = n+1
3 , β = n−2

6 , γ = n−2
6 , λ = n−2

3 , ρ = −1, if n ≡ 2(mod6).
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If n ≡ 1(mod2), then

E(Tn,K) =

α′∑

i=2

in−3i+2(ii−1 − 1) · (i− 2)!

+

β′∑

i=1

((α′ + i)α′−2i − 1) · (α′ + i− 2)!

+

γ′∑

i=1

(2i− 1) · (n− 1

2
− i)! + (α′ − 1)

λ′∑

i=0

i!

+

β′∑

i=1

i(α′ − 2i+ ρ′ + 2) · (α′ − 2i+ ρ′)! + β′ + 1, (4)

where,





α′ = n+1
3 , β′ = n−5

6 , γ′ = n+1
6 , λ′ = n+1

3 − 2, ρ′ = −1, if n ≡ −1(mod6);

α′ = n
3 , β

′ = n−3
6 , γ′ = n−3

6 , λ′ = n
3 − 1, ρ′ = 0, if n ≡ 3(mod6);

α′ = n+2
3 , β′ = n−7

6 , γ′ = n−1
6 , λ′ = n−4

3 , ρ′ = −2, if n ≡ 2(mod6).

Proof Let k = 1, r0 = 2. Then

T (12) =


 1 1 2 3 4 · · · n− 2

n n− 1 n− 1 n− 1 n− 1 · · · n− 1


 .

In fact, it is correspondent to a graceful tree(see Fig.2.1 below).���� AAAA · · ·����1 2 3 n-2

n− 1n
Fig.2.1

If y3 6= 2, then y3 = 3 because xi = yi + n− i and max{xi} = n. Similarly, if y4 6= 2 too,

then y4 = 4. If there is an integer r,3 ≤ r ≤ n − 1 such that yr = 2, then yi = i, xi = n for

3 ≤ i < r. In other word, only y3 = 2 or y3 = 3, and y4 is one element of the set {2, 3, 4}−{y3},
y5 is one element of the set {2, 3, 4, 5}−{y3, y4}, · · · . Continuing this process, yn−1 is uniquely

determined at the final. Hence the number of permutations is 2 × 2 × 2 × · · · × 2 × 1 = 2n−4.

When

T (13) =


 1 1 1 2 3 · · · n− 3

n n− 1 n− 2 n− 2 n− 2 · · · n− 2


 ,

then choose an element y4 in the set {2, 3, 4}, an element y5 in the set {2, 3, 4, 5} − {y4}, · · · .
Continuing in this manner, yn−2 and yn−1 are 2 selectable. So the number of such permutations

is 3 × 3 × 3 × · · · × 3 × 2! = 3n−6 · 2!.
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Similarly, When

T (14) =


 1 1 1 1 2 3 · · · n− 4

n n− 1 n− 2 n− 3 n− 3 n− 3 · · · n− 3


 ,

we have E(Tn, 1
4) = 4 × 4 × 4 × · · · × 4 × 3! = 4n−8 · 3! and generally,

E(Tn, 1
r) =





rn−2r(r − 1)!,





2 ≤ r ≤ n
2 − 1, n is even;

2 ≤ r ≤ n−1
2 , n is odd.

(5)

(n− r − 1)!,





n
2 − 1 < r ≤ n− 1, n is even;

n−1
2 < r ≤ n− 1, n is odd.

In general, if k + ⌈k
2 ⌉ ≤ n

2 − 1

E(Tn, k
r) =

n
2 −⌈ k

2 ⌉∑

r=k+1

rn−2r−k+1 · (r − 1)! +
n−k∑

r=n
2 −⌈ k

2 ⌉+1

(n− k − r)!, n is even;

E(Tn, k
r) =

⌈n−k
2 ⌉∑

r=k+1

rn−2r−k+1 · (r − 1)! +

n−k∑

r=⌈n−k
2 ⌉+1

(n− k − r)!, n is odd. (6)

If k + ⌈k
2 ⌉ > n

2 − 1

E(Tn, k
r) =





∑n−2k
r=1 (n− 2k − r)!, n is even;

∑n−2k−1
r=1 (n− 2k − r)!, n is odd.

(7)

By (6) and (7), when n is even, define

f(k) =

n
2 −⌈ k

2 ⌉∑

r=k+1

rn−2r−k+1 · (r − 1)!

with k ∈ {n
3 − 1, n−1

3 − 1, n+1
3 − 1}. Then we know that

(a) if n ≡ 0(mod6), k = n
3 − 1, then

f(
n

3
− 1) = (

n

3
)2(

n

3
− 1)!;

(b) if n ≡ −2(mod6), k = n−1
3 − 1, then

f(
n− 1

3
− 1) = (

n− 1

3
)3(

n− 1

3
− 1)! + (

n− 1

3
+ 1)(

n− 1

3
)!;

(c) if n ≡ 2(mod6), k = n
3 − 1, then

f(
n+ 1

3
− 1) = (

n+ 1

3
)(
n+ 1

3
− 1)!.
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Whence we obtain that

r< n+1
3∑

i=2

(in−2i + in−2i−1 + in−2i−2 + · · ·+ in−3i+2)(i− 1)! =

r< n+1
3∑

i=2

in−3i+2(ii−1 − 1)(i− 2)!. (8)

When n ≡ 0(mod6),

n
6 −1∑

i=1

((
n

3
+ i)1 + (

n

3
+ i)2 + (

n

3
+ i)3 + · · · + (

n

3
+ i)

n
3 −2i+1)(

n

3
+ i− 1)!

=

n
6 −1∑

i=1

(
n

3
+ i)((

n

3
+ i)(

n
3 −2i+1) − 1)(

n

3
+ i− 2)!.

We obtain that

∑

k+⌈ k
2 ⌉≤

n
2 −1

n
2 −⌈ k

2 ⌉∑

r=k+1

rn−2r−k+1(r − 1)!

=

n
3∑

i=2

in−3i+2(ii−1 − 1)(i− 2)! +

n
6 −1∑

i=1

(
n

3
+ i)((

n

3
+ i)(

n
3 −2i+1) − 1)(

n

3
+ i− 2)!. (9)

Similarly, when n ≡ −2(mod6),

∑

k+⌈ k
2 ⌉≤

n
2 −1

n
2 −⌈ k

2 ⌉∑

r=k+1

rn−2r−k+1(r − 1)!

=

n−1
3∑

i=2

in−3i+2(ii−1 − 1)(i− 2)!

+

n−4
6∑

i=1

(
n− 1

3
+ i)((

n− 1

3
+ i)(

n−1
3 −2i+1) − 1)(

n− 1

3
+ i− 2)!, (10)

and when n ≡ 2(mod6),

∑

k+⌈ k
2 ⌉≤

n
2 −1

n
2 −⌈ k

2 ⌉∑

r=k+1

rn−2r−k+1(r − 1)!

=

n+1
3∑

i=2

in−3i+2(ii−1 − 1)(i− 2)!

+

n−8
6∑

i=1

(
n+ 1

3
+ i)((

n+ 1

3
+ i)(

n+1
3 −2i+1) − 1)(

n+ 1

3
+ i− 2)!. (11)
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Now let

f1(k) =

n−k∑

r= n
2 −⌈ k

2 ⌉+1

(n− k − r)!.

Similarly, we get that

(a) When n ≡ 0(mod6), k = n
3 − 1,

n−k∑

r=n
2 −⌈ k

2 ⌉+1

(n− k − r)! =

n
3 −1∑

i=1

f1(i)

=

n
6∑

i=1

(2i− 1)(
n

2
− i)! + (

n

3
− 1)

n
3 −1∑

i=0

i!. (12)

(b) When n ≡ −2(mod6), k = n−1
3 − 1,

n−k∑

r= n
2 −⌈ k

2 ⌉+1

(n− k − r)! =

n−1
3 −1∑

i=1

f1(i)

=

n−4
6∑

i=1

(2i− 1)(
n

2
− i)! + (

n− 1

3
− 1)

n−1
3 −1∑

i=0

i!. (13)

(c) When n ≡ 2(mod6), k = n+1
3 − 1,

n−k∑

r= n
2 −⌈ k

2 ⌉+1

(n− k − r)! =

n+1
3 −1∑

i=1

f1(i)

=

n−2
6∑

i=1

(2i− 1)(
n

2
− i)! + (

n+ 1

3
− 1)

n+1
3 −1∑

i=0

i!. (14)

When k + ⌈k
2 ⌉ > n

2 − 1. Let

f2(k) =

n−2k∑

r=1

(n− 2k − r)!.

We know that

(a)When n ≡ 0(mod6), k > n
3 − 1,

∑
f2(k ≥ n

3
) =

n
6∑

i=1

i(
n

3
− 2i+ 2)(

n

3
− 2i)!. (15)

(b) When n ≡ −2(mod6), k > n−1
3 − 1,
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∑
f2(k ≥ n− 1

3
) =

n+2
6∑

i=1

i(
n− 1

3
− 2i+ 3)(

n− 1

3
− 2i+ 1)!. (16)

(c) When n ≡ 2(mod6), k > n+1
3 − 1,

∑
f2(k ≥ n+ 1

3
) =

n−2
6∑

i=1

i(
n+ 1

3
− 2i+ 1)(

n+ 1

3
− 2i− 1)!. (17)

To sum up, we obtain (3) by formulae (9), (10), (11), (12), (13), (14), (15), (16) and (17).

Similarly, the discussion for the case n ≡ 1(mod2) can be divided into three subcases, i.e.,

n ≡ −1(mod6), k = n−2
3 , n ≡ 3(mod6), k = n

3 − 1 and n ≡ 1(mod6), k = n−4
3 , and the formula

(4) can be found as the formula (3). �

For example, E(T6,K) = 10 when n = 6. We obtain 10 non-equivalent graceful trees by

permutations following.

(
1 1 2 3 4

6 5 5 5 5

)
→ {e16, e15, e25, e35, e45};

(
1 1 2 4 3

6 5 5 6 4

)
→ {e16, e15, e25, e46, e34};

(
1 1 3 2 4

6 5 6 4 5

)
→ {e16, e15, e36, e24, e45};

(
1 1 3 4 2

6 5 6 6 3

)
→ {e16, e15, e36, e46, e23};

(
1 1 1 2 3

6 5 4 4 4

)
→ {e16, e15, e14, e24, e34} ;

(
1 1 1 3 2

6 5 4 5 3

)
→ {e16, e15, e14, e35, e23};

(
1 1 1 1 2

6 5 4 3 3

)
→ {e16, e15, e14, e13, e23};

(
1 1 1 1 1

6 5 4 3 3

)
→ {e16, e15, e14, e13, e12};

(
1 1 2 2 3

6 5 5 4 4

)
→ {e16, e15, e25, e24, e34};

(
1 1 2 2 2

6 5 5 4 3

)
→ {e16, e15, e25, e24, e23}.

When n is a large number, E(Tn) >> E(Tn,K). Of course, there exist a lot of isomorphic

trees in the previous enumeration. We have verified the number of non-isomorphic graceful

paths Pn for n ≤ 13 vertices in the following table.

n 2 3 4 5 6 7 8 9 10 11 12 13

E(Pn) 1 1 1 2 6 8 10 30 74 162 330 760

References
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Kutató Int. Közl., 4, 1959, 63-71.

[2] Joseph A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combi-

natorics, Jan 3,2007.

[3] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Proc. (1966),

349-355.



On the Number of Graceful Trees 101

[4] Y.C.Yang and G.X.Wang, On the gracefulness of two graph families, J.Beijing Polytechnic

University, Vol.11, 4(1985), 59-66.

[5] Y.C.Yang and G.X.Wang, On the gracefulness of Cn × P2, J. Math. Res. & Exp., Vol.12,

1(1992), 143-148.

[6] Y.C.Yang and G.X.Wang, An initial research on the gracefulness of Pn ∪ Pm, J. Beijing

Polytechnic University, Vol.19, 4(1993), 15-26.

[7] Y.C.Yang and G.X.Wang, On the gracefulness of Pn ∪ Pm, J. Guangxi University, Vol.18,

2(1993), 87-94.

[8] Y.C.Yang and G.X.Wang, On the gracefulness of the union of two stars and three stars,

Combinatorics, Graph Theory, Algorithms and Applications (Beijing, 1993), 417-424, World

Sci. Publishing, River Edge, NJ, 1994.

[9] Y.C.Yang and G.X.Wang, On the gracefulness of product graph C4n+2 × P4m+3, Combi-

natorics, Graph Theory, Algorithms and Applications (Beijing, 1993), 425-431, World Sci.

Publishing, River Edge, NJ, 1994.

[10] Y.C.Yang and G.X.Wang, Generalized graceful graphs with applications, J. Taiyuan In-

stitute of Machinery, Vol.15 (Supp. 1994), 6-15.



We think in generalities, but we live in detail.

By A.N. Whitehead, a British mathematician.



Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers

prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member

of the Editorial Board for consideration in the International Journal of Mathematical

Combinatorics (ISSN 1937-1055). An effort is made to publish a paper duly recommended

by a referee within a period of 3 months. Articles received are immediately put the refer-

ees/members of the Editorial Board for their opinion who generally pass on the same in six

week’s time or less. In case of clear recommendation for publication, the paper is accommo-

dated in an issue to appear next. Each submitted paper is not returned, hence we advise the

authors to keep a copy of their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, lat-

est Mathematics Subject Classification of the American Mathematical Society, Keywords and

phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and ref-

erences should be arranged in alphabetical order by the surname of the first author in the

following style:

Books

[4]K. Kawakubo, The Theory of Transformation Groups, Oxford University Press, New York,

1991.

Research papers

[8]K. K. Azad and Gunjan Agrawal, On the projective cover of an orbit space, J. Austral. Math.

Soc. 46 (1989), 308-312.

[9]Kavita Srivastava, On singular H-closed extensions, Proc. Amer. Math. Soc. (to appear).

Figures: Figures should be sent as: fair copy on paper, whenever possible scaled to about 200%,

or as EPS file. In addition, all figures and tables should be numbered and the appropriate space

reserved in the text, with the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will not

be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors

agree that the copyright for their articles is transferred to the publisher, if and when, the

paper is accepted for publication. The publisher cannot take the responsibility of any loss of

manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper,

unless requested otherwise, without the original manuscript, for corrections after the paper is

accepted for publication on the basis of the recommendation of referees. Corrections should be

restricted to typesetting errors. Authors are advised to check their proofs very carefully before

return.

Reprints: One copy of the journal included his or her paper(s) are provided to the authors

freely. Additional sets may be ordered at the time of proof correction.



January 2008

Contents

Halfsubgroups

BY ARUN S. MUKTIBODH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .01

Flexibility of Embeddings of a Halin Graph on the Projective Plane

BY HAN REN and YUN BAI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .06

Curvature Equations on Combinatorial Manifolds with Applications to

Theoretical Physics

BY LINFAN MAO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

A Pair of Smarandachely Isotopic Quasigroups and Loops of

the Same Variety
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