THE 97-TH PROBLEM OF ESMARANDACHE *

Yi Yuan

Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China yuanyi@mail.xjtu.edu.cn

Abstract The main purpose of this paper is using the analytic method to study the *n*-ary

sieve sequence, and solved one conjecture about this sequence.

Keywords: Quad 97-th problem of F.Smarandache; *n*-ary sieve sequence; Conjecture.

§1. Introduction and results

In 1991, American-Romanian number theorist Florentin Smarandache introduced hundreds of interesting sequences and arithmetical functions, and presented 105 unsolved arithmetical problems and conjectures about these sequences and functions in book [1]. Already many researchers studied these sequences and functions from this book, and obtained important results. Among these problems, the 97-th unsolved problem is:

Let n be any positive integer with $n \geq 2$, starting to count on the natural numbers set at any step from 1:

- delete every n-th number;
- delete from the remaining ones, every (n^2) -th number;

. ;

and so on: delete from the remaining ones, every (n^k) -th number, $k=1,2,3,\cdots$.

For this special sequence, there are two conjectures:

- (1) there are an infinity of primes that belong to this sequence;
- (2) there are an infinity of number of this sequence which are not prime.

In this paper, we shall use the analytic method to study the n-ary sieve sequence, and solved conjecture (2). That is, we have the following conclusion:

Theorem. For any positive integer $n \ge 2$, the conjecture (2) of *n*-ary sequence is true.

^{*}This work is supported by the Zaizhi Doctorate Foundation of Xi'an Jiaotong University

§2. Proof of Theorem

In this section, we shall complete the proof of Theorem. For any fixed real number $x \geq 1$ and positive integer k, let $\mathcal{A}_k(x)$ denotes the number of remaining ones after deleting (n^k) -th number from the interval [1,x]. In the interval [1,x], for any $n \in [1,x]$, first we delete n-th number from the interval [1,x], then the number of remaining ones is

$$\mathcal{A}_1(x) = [x] - \left\lceil \frac{x}{n} \right\rceil,$$

where [x] denotes the greatest integer which is not exceeding x, and $x-1 \le [x] \le x+1$.

Note that

$$A_1(x) = [x] - \left[\frac{x}{n}\right] \le x + 1 - \frac{x}{n} = x\left(1 - \frac{1}{n}\right) + 1,$$
 (1)

if we delete every (n^2) -th number from the remaining ones, then the number of remaining ones is

$$\mathcal{A}_2(x) = [x] - \left[\frac{x}{n}\right] - \left[\frac{[x] - \left[\frac{x}{n}\right]}{n^2}\right].$$

From (1), we have the inequality

$$[x] - \left[\frac{x}{n}\right] - \left[\frac{[x] - \left[\frac{x}{n}\right]}{n^2}\right]$$

$$\leq \left[x\left(1 - \frac{1}{n}\right) + 1\right] - \left[\frac{x\left(1 - \frac{1}{n}\right) + 1}{n^2}\right]$$

$$\leq x\left(1 - \frac{1}{n}\right) + 2 - \frac{x\left(1 - \frac{1}{n}\right) + 1}{n^2}$$

$$= x\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n^2}\right) + \left(2 - \frac{1}{n^2}\right)$$

$$\leq x\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n^2}\right) + 2.$$

$$(2)$$

 \cdots , and so on: if we delete every (n^k) -th number, from the remaining ones, we also have the inequality

$$\mathcal{A}_k(x) = x\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n^2}\right)\cdots\left(1 - \frac{1}{n^k}\right) + k. \tag{3}$$

Similarly, we can also deduce that

$$x\left(1-\frac{1}{n}\right)-1=x-1-\frac{x}{n} \le \mathcal{A}_1(x)=[x]-\left[\frac{x}{n}\right],\tag{4}$$

The 97-th problem of F.Smarandache ¹

$$x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^2}\right)-2 \le \mathcal{A}_2(x) = [x] - \left[\frac{x}{n}\right] - \left[\frac{[x] - \left[\frac{x}{n}\right]}{n^2}\right],\tag{5}$$

· · · · · , and so on:

$$x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^2}\right)\cdots\left(1-\frac{1}{n^k}\right)-k \le \mathcal{A}_k(x). \tag{6}$$

Combining (5) and (6), we have the asymptotic formula

$$\mathcal{A}_k(x) = x\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n^2}\right)\cdots\left(1 - \frac{1}{n^k}\right) + O(k). \tag{7}$$

Note that $k \ll \ln x$, so we have

$$\mathcal{A}_k(x) = x\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n^2}\right)\cdots\left(1 - \frac{1}{n^k}\right) + O(\ln x). \tag{8}$$

Let $\pi(x)$ denotes the number of the primes up to x, then we have (see reference [2])

$$\pi(x) = \frac{x}{\ln x} + O\left(\frac{x}{\ln^2 x}\right). \tag{9}$$

Note that
$$\left(1 - \frac{1}{n}\right) \left(1 - \frac{1}{n^2}\right) \cdots \left(1 - \frac{1}{n^k}\right)$$
 is convergence if $k \to +\infty$, so $\mathcal{A}_k(x) - \pi(x) \to +\infty$, if $x \to +\infty$.

That is, there are an infinity of number of this sequence which are not prime. This completes the proof of Theorem.

References

- [1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House Chicago, 1993.
- [2] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.