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Abstract The main purpose of this paper is using the analytic method to study the n-ary
sieve sequence, and solved one conjecture about this sequence.
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§1. Introduction and results
In 1991, American-Romanian number theorist Florentin Smarandache in-

troduced hundreds of interesting sequences and arithmetical functions, and
presented 105 unsolved arithmetical problems and conjectures about these se-
quences and functions in book [1]. Already many researchers studied these se-
quences and functions from this book, and obtained important results. Among
these problems, the 97-th unsolved problem is:

Let n be any positive integer with n ≥ 2, starting to count on the natural
numbers set at any step from 1:

— delete every n-th number;
— delete from the remaining ones, every (n2)-th number;
· · · · · ·;
and so on: delete from the remaining ones, every (nk)-th number, k =

1, 2, 3, · · · .
For this special sequence, there are two conjectures:
(1) there are an infinity of primes that belong to this sequence;
(2) there are an infinity of number of this sequence which are not prime.
In this paper, we shall use the analytic method to study the n-ary sieve se-

quence, and solved conjecture (2). That is, we have the following conclusion:
Theorem. For any positive integer n ≥ 2, the conjecture (2) of n-ary

sequence is true.
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§2. Proof of Theorem
In this section, we shall complete the proof of Theorem. For any fixed

real number x ≥ 1 and positive integer k, let Ak(x) denotes the number of
remaining ones after deleting (nk)-th number from the interval [1, x]. In the
interval [1, x], for any n ∈ [1, x], first we delete n-th number from the interval
[1, x], then the number of remaining ones is

A1(x) = [x]−
[
x

n

]
,

where [x] denotes the greatest integer which is not exceeding x, and x − 1 ≤
[x] ≤ x + 1.

Note that

A1(x) = [x]−
[
x

n

]
≤ x + 1− x

n
= x

(
1− 1

n

)
+ 1, (1)

if we delete every (n2)-th number from the remaining ones, then the number
of remaining ones is

A2(x) = [x]−
[
x

n

]
−

[
[x]− [x

n ]
n2

]
.

From (1), we have the inequality

[x]−
[
x

n

]
−

[
[x]− [x

n ]
n2

]
(2)

≤
[
x

(
1− 1

n

)
+ 1

]
−


x

(
1− 1

n

)
+ 1

n2




≤ x

(
1− 1

n

)
+ 2−

x
(
1− 1

n

)
+ 1

n2

= x

(
1− 1

n

) (
1− 1

n2

)
+

(
2− 1

n2

)

≤ x

(
1− 1

n

) (
1− 1

n2

)
+ 2.

· · · · · ·, and so on: if we delete every (nk)-th number, from the remaining ones,
we also have the inequality

Ak(x) = x

(
1− 1

n

) (
1− 1

n2

)
· · ·

(
1− 1

nk

)
+ k. (3)

Similarly, we can also deduce that

x

(
1− 1

n

)
− 1 = x− 1− x

n
≤ A1(x) = [x]−

[
x

n

]
, (4)
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x

(
1− 1

n

) (
1− 1

n2

)
− 2 ≤ A2(x) = [x]−

[
x

n

]
−

[
[x]− [

x
n

]

n2

]
, (5)

· · · · · ·, and so on:

x

(
1− 1

n

) (
1− 1

n2

)
· · ·

(
1− 1

nk

)
− k ≤ Ak(x). (6)

Combining (5) and (6), we have the asymptotic formula

Ak(x) = x

(
1− 1

n

) (
1− 1

n2

)
· · ·

(
1− 1

nk

)
+ O(k). (7)

Note that k ¿ lnx, so we have

Ak(x) = x

(
1− 1

n

) (
1− 1

n2

)
· · ·

(
1− 1

nk

)
+ O(lnx). (8)

Let π(x) denotes the number of the primes up to x, then we have (see refer-
ence [2])

π(x) =
x

lnx
+ O

(
x

ln2 x

)
. (9)

Note that
(
1− 1

n

) (
1− 1

n2

)
· · ·

(
1− 1

nk

)
is convergence if k → +∞, so

Ak(x)− π(x) → +∞, if x → +∞.

That is, there are an infinity of number of this sequence which are not prime.
This completes the proof of Theorem.
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