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Abstract— Compression-based similarity measures are effectively employed in applications on diverse 

data types with a basically parameter-free approach. Nevertheless, there are problems in applying 

these techniques to medium-to-large datasets which have been seldom addressed. This paper proposes 

a similarity measure based on compression with dictionaries, the Fast Compression Distance (FCD), 

which reduces the complexity of these methods, without degradations in performance. On its basis a 

content-based color image retrieval system is defined, which can be compared to state-of-the-art 

methods based on invariant color features. Through the FCD a better understanding of compression-

based techniques is achieved, by performing experiments on datasets which are larger than the ones 

analyzed so far in literature.  
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1. INTRODUCTION 

 

Compression-based similarity measures employ in an unusual way general off-the-shelf compressors, 

by exploiting them to estimate the amount of information shared by any two objects. Such techniques, 

of which the most well-known is the Normalized Compression Distance (NCD) [1], have a 

characteristic parameter-free flavor, which decreases the disadvantages of working with parameter-



dependent algorithms [2] [3]. In addition, the data-driven approach characteristic of these notions 

permits to apply them to any kind of data, and in several domains such as unsupervised clustering, 

classification and anomaly detection [4]. 

Nevertheless these data-driven techniques have the drawback of being computationally 

intensive and have been applied, in the general case, to restricted datasets: in [4] the authors 

estimate the running time of a variant of NCD as “less than ten seconds (on a 2.65 GHz machine) to 

process a million data points”. In the case of images datasets, almost ten seconds would be then 

needed to process five RGB images of size 256x256. This represents a major drawback for 

compression-based analysis in real applications, where usually medium-to-large datasets are involved.   

In [7] the authors suggest to perform a first dimensionality reduction step using standard clustering 

procedures, computing then with NCD a distance matrix related to the clusters instead of all the 

objects in the dataset. In [13] a different solution is brought forward by suggesting a Support Vector 

Machine (SVM) [14] based classification, where NCD distances with representative objects for each 

class, which are chosen as anchors, form a feature vector which is then used as an input for the SVM. 

Nevertheless, this solution introduces undesired subjective choices, such as choosing the right anchors. 

Results would then be based on a partial analysis of the dataset, and this would be a drawback 

especially for retrieval tasks, where a decision has to be taken for each object in the set.  

Finally, the Pattern Representation using Data Compression (PRDC) [5], a general classification 

methodology based on the compression with dictionaries directly extracted from the data, is faster but 

less effective than NCD [17]. 

This paper defines a compression-based similarity measure, the Fast Compression Distance (FCD), 

which combines the accuracy of NCD with the reduced complexity of PRDC. In a first offline step, 

the images are quantized in a convenient color space and converted into strings, after being modified 

to preserve some textural information in the process; subsequently, representative dictionaries are 

extracted from each object and similarities between individual images are computed by comparing 

each couple of dictionaries. This allows testing for the first time compression-based techniques on 

datasets composed of up to 10,000 images.  



A Content-based Image Retrieval (CBIR) system based on FCD is then defined, and retrieval results 

suggest that FCD is comparable to state of the art methods based on invariant color features, and 

outperforms other compression-based methods. 

The next sections of this paper are structured as follows. We give a reminder on compression-based 

similarity measures in Section 2. Section 3 introduces the FCD and on its basis defines a CBIR 

system. Experiments on 4 datasets and comparisons to other methods are presented in Section 4. We 

conclude in Section 5. 

 

2. COMPRESSION-BASED SIMILARITY MEASURES 

 

The most widely known and used compression based similarity measure for general data is the 

Normalized Compression Distance (NCD), proposed by Li et al. [1]. The NCD derives from the 

Kolmogorov complexity K(x) of an object x, which quantifies how difficult it is to compute or 

describe x [6]: the quantity K(x) is incomputable, but can be approximated by compression algorithms 

and on its basis the NCD is defined for any two objects x and y as:  
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where C(x) represents the size of the (lossless) compressed version of x, and C(x,y) the size of the 

file obtained by compressing the concatenation of x and y. The idea is that if x and y share 

common information they will compress better together than separately, as the compressor will be able 

to reuse the recurring patterns found in one of them to more efficiently compress the other. The NCD 

can be explicitly computed between any two strings or files x and y and has a characteristic data-

driven, parameter-free approach, that allows performing clustering, classification and anomaly 

detection on diverse data types [7-12].  

The problems in applying NCD-like distances to large datasets have been seldom addressed. Usually, 

the data-driven approach of these methods requires iterative processing of the full data, not allowing 

compact representations in any explicit parameter space. Most of the experiments performed on the 



basis of these techniques include the computation of a distance matrix between all objects in a dataset, 

with the latter seldom containing more than 100 objects (see e.g. [4] [7]). 

Another compression-based technique seems more apt to be exploited for these means: the Pattern 

Representation based on Data Compression (PRDC), a classification methodology introduced by 

Watanabe et al. [5] independently from the NCD. A link between these two quantities is investigated 

in [15]. The idea to the basis of PRDC is to extract offline typical dictionaries, obtained with a 

compressor belonging to the LZ family [16], directly from the data previously encoded into strings: 

these dictionaries are later used to compress other files in order to discover similarities with them on 

the basis of the dictionaries compression power. For two strings x and y PRDC is usually faster than 

NCD, as the joint compression of x and y which is the most computationally intensive step is avoided. 

Furthermore, if y is compared to multiple objects, the compression of y, implicitly carried out by 

extracting the dictionary D(y), has to be computed only once, while NCD always processes from 

scratch the full x and y in the computation of each distance. Nevertheless, results obtained by PRDC 

are not as accurate as the ones obtained by applying the more reliable NCD: while the latter is a 

relation between compression factors, the former is basically a compression factor in itself, and fails at 

normalizing according to the complexity of each object the similarity indices obtained [17]. 

 

3. FAST COMPRESSION DISTANCE 

 

The Fast Compression Distance (FCD) is derived by combining the speed of PRDC without skipping 

the joint compression step which yields better performance with NCD. The idea is the following: a 

dictionary D(x) is extracted with the LZW algorithm [18] from each object encoded into a string x, and 

sorted in ascending order: the sorting is performed to enable the binary search of each pattern within 

D(x) in time O(logN), where N is the number of entries in D(x). The dictionary is then stored for future 

use: this procedure may be carried out offline and has to be performed only once for each data 

instance. Whenever a string x is checked against a database containing n dictionaries, D(x) is extracted 

from x and matched against each of the n dictionaries. We define the FCD between x and an object y 

represented by D(y) as: 
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where |D(x)| and |D(y)| are the sizes of the relative dictionaries, represented by the number of entries 

they contain, and  ))(),(( yDxD  is the number of patterns which are found in both dictionaries. A 

graphical representation of the mentioned sets is reported in Fig. 1. The FCD(x,y) ranges for every x 

and y from 0 to 1, representing minimum and maximum distance, respectively. If x = y, then 

FCD(x,y)=0. Every matched pattern counts as 1 regardless of its length: the difference in size between 

the matched dictionary entries is balanced by LZW’s prefix-closure property which applies to the 

patterns contained in the dictionary. So, a long pattern p common to D(x) and D(y) will be counted 

1|| p  times, where |p| is the size of p. The intersection between dictionaries represents the joint 

compression step performed in NCD, as the patterns in both the objects are taken into account.  

 

3.1 Speed comparison with NCD 

We can compare the numbers of operations needed by NCD and FCD to perform the most time-

consuming step, and the only one which has to be repeated for the computation of every distance. This 

is the compression of the joint file C(x, y) for NCD, and the computation of the intersection between 

the two dictionaries D(x) and D(y) for FCD. For sake of comparison, we consider LZ-based 

compression for NCD. The numbers of operations needed for two strings x and y are proportional to: 
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where xn  is the number of elements in x and xm  the number of patterns extracted from x. In the worst 

case FCD is 4 times faster than NCD, if x and y have comparable complexity and are totally random. 

As regularity within an object x increases, xm  decreases with respect to xn , as fewer longer patterns 



are extracted, and the number of operations needed by FCD is reduced. Other ideas can be used to 

further speed-up the computation. If in the search within D(y) a pattern xp  in D(x) gives a mismatch, 

all patterns with xp  as a prefix may be directly skipped: LZW’s prefix-closure property ensures that 

they will not be found in D(y). Furthermore, short patterns composed of two values may be regarded 

as noise and ignored if the dictionaries are large enough. The dictionaries extraction step may be 

carried out offline for FCD, therefore each dictionary needs to be computed only once for each object 

and can be then reused. In the average case, the experiments contained in this section will show that 

the complexity decreases by one order of magnitude even when we ignore every restriction on buffer 

size and lookup tables imposed by real compressors; this is done to expense of the generality of NCD, 

which is directly applicable to general data without a previous step of encoding the objects into 

strings.  

 

3.2 CBIR System 

Typical CBIR systems operate with parameters representing the direct data content (typically color 

histograms, layouts, shapes, and/or invariant color features); in a classical query-by-example system, 

the user is able to present to the system a query image, and retrieve images which are similar, 

according to given criteria [20-22]. In this paragraph we define a system with these characteristics 

based on FCD. 

Before extracting the dictionaries and computing the distance between images, it is needed to assign a 

single value to each pixel and convert the 2D image in a 1D string. As a first step, being the RGB 

channels correlated, the Hue Saturation Value (HSV) is chosen as color space, in order to have 

independent information in each channel. 

A uniform quantization of the color space is then performed to avoid a full representation of the data, 

as using a limited alphabet facilitates the compressor in individuating shared patterns. In the HSV 

color space a finer quantization of hue is recommended with respect to saturation and intensity, since 

the human visual perception is more sensitive to changes in the former [23]. We use then 16 levels of 

quantization for the hue component, and 4 for both saturation and value. Therefore, the HSV color 

space is quantized in 8 bits, which allow a representation with 2564416   values. 



The images are then converted into strings: this introduces a loss of information, as traversing the 

image in raster order destroys the vertical texture, while the horizontal one is implicitly kept. 

Therefore we choose to add an extra bit to each pixel value, capturing the basic vertical interactions of 

the pixel. We assign 0 to smooth and 1 to rough transitions respectively between a pixel and both its 

adjacent vertical neighbours (see Fig. 2).   For a pixel p at row i and column j, the value of the bit 

related to the vertical information jiv ,  is given by the following equation: 
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t is a threshold comprised between 0 and 1, and pp sh ,  and pi  are respectively the hue, saturation and 

intensity values of p scaled from 0 to 1. In other words, it is simply checked whether the Euclidean 

distance in the HSV space between the norms of a pixel and any adjacent vertical neighbor is above a 

given threshold t. The decision to represent textural information with only one bit is adopted to keep a 

reduced alphabet size, to avoid hindering the compressor in finding similar patterns in the data. While 

this additional information improves the similarity indices obtained, multiple trials revealed that any 

more detailed textural information yields a worse performance, caused by an overfitting of the image 

content description.    

According to [39], the local gradients in natural images are to some degree invariant from the image 

scale, therefore a single threshold can be chosen for all the images datasets at hand. This threshold t 

should be chosen in order to convey the maximum information in the vertical texture (4), i.e. to yield  
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[40]. The entropy H(v) is measured for different threshold settings on a set of test images coming from 

different datasets and classes, and the )}({max vH
t

 is given for 4.0t  An inspection confirmed that 



setting 4.0t for all the datasets taken into consideration splits the data in two sets of comparable 

cardinality.  

Each image x goes through the above steps of data preparation, is converted into a string by recurring 

the image in raster order, and is finally compressed, yielding a dictionary D(x). If it is desired to 

retrieve images in the database which are similar to a query image q, one may apply a simple threshold 

to the FCD between q and any object in the dataset and retrieve all the images within the chosen 

degree of similarity. A sketch of the workflow is depicted in Fig. 3. 

 

4. EXPERIMENTS 

 

In the experiments presented in this section we used the following datasets: 

1. A subset of the COREL dataset [25], for a total of 1500 images equally divided in 15 classes, of 

which a sample is reported in Fig. 4. 

2. The Nister-Stewenius (N-S) dataset [26], containing 2,550 objects, each of which is imaged 

from four different viewpoints, for a total of 10,200 images. 

3. The Lola dataset [27], composed of 164 video frames extracted at 19 different locations in the 

movie “Run, Lola, run”. 

4. The Fawns and Meadows dataset [28], comprised of 144 meadows images, some of which 

contain a fawn hiding in the grass. 

As scoring measures we used standard Precision-Recall, where Precision is the number of relevant 

documents retrieved by a query divided by the total number of documents retrieved, and Recall is the 

number of relevant documents retrieved divided by the total number of relevant documents [30]. In 

some experiments we also used general classification accuracy, and ad hoc scores for the N-S and 

Lola datasets; the variety of figures of merit used is for sake of comparison to distinct methods 

adopted in previous works which have performed experiments on these datasets. All experiments have 

been run on a machine with a double 2 GHz processor and 2GB of RAM. 

 

4.1 The COREL dataset 



In recent years content-based image retrieval systems relying on Vector Quantization (VQ) [31] have 

been defined. These are of particular interest for the scope of this work, as VQ is naturally related to 

data compression. Among these, the Minimum Distortion Image Retrieval (MDIR) by Jeong and Gray 

outperforms previous techniques based on histogram matching, by fitting to the training data Gaussian 

Mixture Models, later used to encode the query features and to compute the overall distortion [24] 

[32]. Daptardar and Storer introduce then a similar approach using VQ codebooks and mean squared 

error (MSE) distortion, decoupling to some degree spectral and spatial information by training 

separate codebooks in different regions of the images, outperforming in turn MDIR: we refer to their 

methodology as Jointly Trained Codebooks (JTC) [33]. 

Both MDIR and JTC have been tested on the COREL dataset with Precision vs. Recall curves, and in 

the following experiments the same set of 210 query images used by their authors has been 

considered, in order to have a fair comparison. All images of original size 256x256 have been 

resampled to different resolutions, from 128x128 to 32x32. This has been done considering the 

experiments contained in [34], where it is empirically shown that for a given 256x256 image is usually 

enough for a human to analyze its 32x32 subsampled version to understand the image semantic 

content and to recognize almost every object within the scene. We then compared the results for the 

same images with sizes of 128x128, 64x64 and 32x32 pixels. A slightly better performance has been 

obtained with the 64x64 images, with Fig. 5 showing the slight differences when adopting a different 

image size. Fig. 6 reports a comparison of FCD with MDIR and JTC: for values of recall higher than 

0.2, FCD outperforms the previous techniques. In addition to a simple UQ a more refined VQ has been 

tested, with the training vectors being computed on the basis of 24 training images, but this 

representation did not improve the results. In addition, adopting a non uniform VQ would require a 

new computation of the vector quantizer whenever new semantic classes are added to the dataset. 

A simple classification experiment has been then performed on the same dataset, with each image q 

being used as query against all the others. For each query, q has been assigned to the class minimizing 

the average distance: results obtained, reported in Table 1, show an accuracy of 71.3%. It has to be 

remarked that intraclass variability in the COREL dataset may be high: for example most of the 10 

images not recognized for the African class may be in fact considered as outliers as just landscapes 



with no human presence are contained within (see Fig. 7); this shows the existence of limits imposed 

by subjective choices of the training datasets. The total running time for extracting the dictionaries and 

compute the distance matrix for the 1500 64x64 images is around 15 minutes, while it takes more than 

150 with NCD (estimated on a 200 images dataset subset through the tool Complearn [35]). 

 

4.2 “Lola” dataset 

A sample of the Lola dataset is reported in Fig. 8. The retrieval performance is measured using the 

Average Normalized Rank ANR of relevant images [36] given by  
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where rN  is the number of relevant images for a given query image, N is the size of the image set, 

and iR  is the rank of the ith relevant image. The ANR ranges from 0 to 1, with the former meaning 

that all rN  images are returned first, and with 0.5 corresponding to random retrieval. 

In this case the results, reported in Fig. 9 and Table 2, are much worse than the best obtained by Sivic 

and Zissermann using Scale-Invariant Feature Transform (SIFT) methods [27]. Nevertheless they are 

acceptable, if we consider that no feature has been extracted from the scenes and no parameter had to 

be set or adjusted, and consistent with the Precision vs. Recall curve in the information retrieval 

experiment in Fig. 14. 

 

4.3 An Application to a Large Dataset: Stewenius-Nister 

A sample of the N-S dataset is depicted in Fig. 10. The measure of performance defined by the authors 

is counting how many of the 4 relevant images are ranked in the top-4 retrieved objects when an image 

q is used as query against the full or partial dataset.  

Even though there would be faster query methods, to keep unaltered the workflow used so far we 

extracted all the dictionaries from the images and computed a full 10200x10200 distance matrix using 

the FCD as distance measure; afterwards, we checked the 4 closest objects for each image. To the best 

of our knowledge, this is the first time that a full distance matrix using compression-based similarity 



measure is computed on a dataset of this size. While this has been possible for the FCD in 

approximately 20 hours, the NCD would have required about 10 times more, so we built with the latter 

in 3 hours a 1000x1000 distance matrix related to a partial dataset, in order to compare performances.  

Results reported in Fig. 11 show that the FCD yields results as good as the NCD on the partial dataset, 

but not as good as the best obtained by Stewenius and Nister using SIFT methods; on the other hand, 

different combination of parameters and training sets yield very different results in the experiments of 

Stewenius and Nister, of which only some are better than the performance given by the FCD. For 

example, if the authors compute the score at one level only, namely on the leaves level of the 

hierarchical vocabulary tree adopted, results are slightly worse than the ones obtained by the FCD. 

Keeping in mind that more than 4 millions parameters are extracted in [37], while this step is skipped 

by the FCD, it can be notice how the latter avoids the drawbacks of working with algorithms in which 

the definition and setting of parameters plays a central role. Furthermore, the FCD does not adopt any 

ad hoc procedure for the dataset, but it is applied with no variations with respect to the other 

experiments contained in this section. 

 

4.4 Detection of wild animals 

Detection may be regarded as a subset of the classification task; about detection in images, in general 

the interest lies in knowing which images contain a certain object, or where the object is to be found 

within the images.  

We tested the FCD in a wild animal detection experiment: the Fawns and Meadows dataset by Israel 

et al. [28] is comprised of 144 infrared images of meadows, 41 of which contain a fawn hiding in the 

grass; the image size is 160 x 120. The detection of fawns can be a tricky task, as patches of bare earth 

may have shape and temperature similar to the animals (Fig. 12). After the extraction of the 

dictionaries, as in the workflow in Fig. 3, the images have been classified on the base of their average 

distance from a class (fawn/meadows), with an accuracy of 97.9%, with 3 missed detections and 0 

false positives, clearly outperforming NCD running with default parameters in both running time and 

accuracy (see Fig. 13 and Table 3). The processing of the full dataset (dictionaries extraction, distance 



matrix computation and decision process) took less than one minute. A Precision vs. Recall curve is 

reported in Fig. 14. 

 

 

5. CONCLUSIONS 

 

This paper introduced a similarity measure based on compression with dictionaries directly extracted 

from the data, the Fast Compression Distance (FCD). The FCD extracts offline a dictionary for each 

object which has previously been encoded into a string. In the string encoding step, some textural 

information is embedded within each pixel value to preserve as much information as possible. 

Subsequently, similarities between two objects are computed through an effective binary search on the 

intersection set between the relative dictionaries. The FCD has a reduced computational complexity 

with respect to the most popular compression-based similarity measure, the Normalized Compression 

Distance (NCD), as the latter processes iteratively the full data in order to discover similarities 

between the objects. At the same time, the data-driven approach typical of NCD is maintained, thus 

keeping a workflow with a parameter-free flavour. 

Compression-based techniques can be then tested for the first time on medium-sized datasets 

composed of up to 10,000 objects, while in the past such methods have been usually applied to sets 

comprised of up to 100 objects, thus estimating their behaviour in a more statistically meaningful way.  

The FCD could represent a first step towards tackling the practical problems which arise when 

compression-based techniques have to be applied in data mining applications, as the query time for a 

dataset comprising more than 10,000 images was of 8 seconds on a standard machine, and could be 

further improved by optimizing the dictionary representation, for example by making use of built-in 

functions in Database Management Systems. 

The experiments also show that FCD do not lose in accuracy with respect to NCD and often yields 

better performances, and we justify this with two remarks: firstly, the FCD should be more robust 

since it focuses exclusively on meaningful patterns, which capture most of the information contained 

in the objects; secondly, the use of a full dictionary allows discarding any limitation that real 



compressors have concerning the size of buffers and lookup tables employed, being the size of the 

dictionaries bounded only by the number of relevant patterns contained in the objects. 

On the other hand, performances by fine-tuned systems based on invariant color features analysis 

often outperform FCD: this shows that compression-based techniques are not magic wands which 

yield in most cases the best results with minimum human intervention and therefore effort, as 

experiments on restricted datasets may have hinted in the past. Nevertheless, the overall highly 

satisfactory performance of these techniques, along with their universality, the simplicity in their 

implementation, and the fact that they require basically neither setting of parameters nor any 

supervision from an expert, justify the use of these notions in practical applications. 

A distance similar to the FCD, the Normalized Dictionary Distance (NDD) has been independently 

proposed in [19], and proved to be a metric: the present paper can be seen as a companion of this 

work, as it derives from different considerations and draws different conclusions. Firstly, this paper 

considers the computational complexity aspects of the introduced distance, as it derives by combining 

the accuracy of NCD with the reduced complexity of PRDC. Secondly, it preserves basic textural 

information in the step of image encoding into strings. Finally, the proposed distance is validated on a 

larger number of datasets, and compared to other compression-based methods and state of the art 

techniques based on invariant color features. 

With respect to traditional image analysis methods, the FCD and in general compression-based 

measures stand out as a different kind of image analysis, since patterns belonging to objects or to the 

background within the data are treated equally, being no part of the image privileged in the analysis. 

The FCD would then be more apt at capturing general image mood similarity rather than be focused 

on specific objects: depending on the applications, this could be an advantage or a drawback. On the 

one hand, the FCD is less suitable for the detection of objects within a scene; on the other hand, 

applications for which the context of an image is relevant would benefit from employing this 

technique: these include image types where the context analysis is crucial, such as satellite images, and 

applications to near copy detection. 

A last remark has to be made on the lossless compression, adopted in order not to lose the universality 

of compression-based similarity measures. Lossy compression is the dominant form in multimedia and 



image representation, and is naturally connected to classification and retrieval. Therefore, the 

performance of lossy compression should be extensively tested: the dictionaries or codebooks 

extracted from the images could be compared through distortion measures to find the minimum 

distortion match to an observed signal. This could help in better capturing the relevant information 

within a given image, and would enable more complex comparisons between objects, also taking into 

account the frequency domain. 
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FIGURES 

 

 

 

Fig. 1. Graphical representation of the intersection between two dictionaries D(x) and D(y), 
respectively extracted from two objects x and y through compression with the LZW algorithm. 
 

 
Fig. 2. Pixels considered to embed the basic vertical interactions information for pixel jip ,  at a row i 

and column j. A value of 0 and 1 is assigned to jip ,  if the vertical texture is smooth or rough, 

respectively. Horizontal texture is not considered, as it is implicit in the compression step as the image 
is converted into string by traversing it in raster order. 
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Fig. 3. Workflow for the dictionary-based retrieval system. After preprocessing, a query image Q 
generates a dictionary which is then compared to other dictionaries previously extracted from all the 

data instances. 
 
 
 

 
Fig. 4.  Dataset sample of each of the 15 classes in raster order (2 images per class): Africans, Beach, 

Architecture, Elephants, Flowers, Horses, Caves, Postcards, Sunsets, Buses, Dinosaurs, Tigers, 
Mountains, Food, and Women. 
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Fig. 5. Precision vs. Recall for different sizes of the images. The best performance is given for an 

image size of 64x64 pixels. 
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Fig. 6.  Precision vs. Recall curves, comparing MDIR and JTC with the proposed method FCD. The 
FCD is applied after to the pixel values represented in the HSV color space, with an extra bit added to 
capture the essential vertical information, and after a scalar quantization of the HSV space. 
 
 

 
Fig. 7. Typical images for the class “Africans” (top row) and all misclassified images (bottom row), 
ref. Table 1. The false alarms depend on a subjective choice of the images, and the confusion with the 
class “tigers” is justified by the landscapes dominating the scenes with no human presence. An 
exception is represented by the 6th image in the bottom row (incorrectly assigned to the class “food”). 
 



 
Fig. 8. Sample of Lola dataset. Each of the 5 rows contains images from the same class. 
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Fig. 9. Lola dataset ANR score for each object in the dataset. The values of 0 and 0.5 for each object 
correspond respectively to exact and random retrieval of all the images in the same class in the dataset. 
 
 
 

 
Fig. 10. Sample of Nister-Stewenius dataset. 
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Fig. 11. Stewenius-Nister dataset score, upper-bounded by 4. Comparison with SIFT-based methods 
with different parameters settings, and comparison with NCD for a partial dataset. The x axis shows 
the size of the dataset subset considered. 

 
  

 

 
Fig.12. Sample from the Fawns and Meadows dataset. Top row: fawns. Bottom row: meadows. 
 

 

 
Fig. 13. The 3 fawns not detected by FCD (ref. Table 3). 
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Fig. 14. Precision-Recall curves for most of the datasets analyzed in this work. The comparison has 

the only purpose of estimating which dataset presents more difficulties in being categorized. A dataset 
characterized by greater content diversity yields a lower curve in the graph.  



TABLES 
 
 
 

TABLE 1 
CONFUSION MATRIX FOR CLASSIFICATION ACCORDING TO THE MINIMUM AVERAGE DISTANCE FROM A CLASS 

 Afr. Beach Archit. Bus. Dinos. Eleph. Flow. Hors. Mount. Food Caves Post. Suns. Tig. Wom. 
Africans 90 0 0 0 1 0 0 0 0 1 0 0 0 8 0
Beach 12 43 8 14 0 1 0 0 1 3 0 0 0 18 0

Architecture 7 0 72 3 0 0 0 0 0 1 0 0 1 16 0
Buses 6 0 0 93 0 0 0 0 0 1 0 0 0 0 0

Dinosaurs 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
Elephants 16 0 2 2 0 46 0 4 0 3 0 1 0 26 0
Flowers 6 0 3 1 0 0 83 1 0 3 0 0 0 3 0
Horses 0 0 0 0 0 0 0 97 0 0 0 0 0 3 0

Mountains 7 1 11 23 0 2 0 0 39 0 0 0 0 17 0
Food 6 0 0 1 0 0 0 0 0 92 0 0 0 1 0
Caves 17 0 9 1 0 1 0 0 0 5 60 0 0 7 0

Postcards 0 0 0 0 1 0 0 0 0 1 0 98 0 0 0
Sunsets 18 0 1 6 0 0 2 0 0 16 3 1 39 14 0
Tigers 1 0 0 1 0 0 0 5 0 0 0 0 0 93 0

Women 35 0 0 6 2 0 0 0 0 20 4 0 0 5 28
Avg Accuracy 71.3% 

 
 

TABLE 2 
ANR SCORES FOR THE  LOLA DATASET 

FCD 0.093 
SIFT 0.013 

 

 
 

TABLE 3 
CONFUSION MATRIX FOR THE FAWNS DATASET 
 Fawn Meadow Accuracy Time 

Fawn 38 3 
FCD 

Meadow 0 103 
97.9% 58 sec 

Fawn 29 12 
NCD 

Meadow 20 83 
77.8% 14 min 

 

 


