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Abstract 

Prenatal life is the most sensitive stage of human development to environmental pollutants. Early

exposure to Persistent Organic Pollutants (POPs) may increase the risk of adverse health effects

during childhood. The mechanisms of transference of POPs during pregnancy are still not well

understood. The present study is aimed to investigate the transfer of POPs between mother and

fetus. The concentrations of 14 organochlorine pesticides, 7 polychlorinated biphenyls (PCBs)

and  14  polybromodiphenyl  ethers  (PBDEs)  congeners  have  been  measured  in  308  maternal

serum samples, their respective umbilical cords and 50 placental tissues from a mother-infant

cohort  representative  of  Spanish  general  population.  In  general,  the  adjusted  lipid-basis

concentrations  were  higher  in  maternal  serum  than  in  cord  serum  and  placenta.  The

concentrations of most pollutants between maternal serum and cord serum and between maternal

serum and placenta  were  significantly correlated.  These distributions  were  consistent  with  a

predominant  maternal  source  that  transfers  the  pollutants  into  the  placenta  and  the  fetus.

However, this distribution did not correspond to passive diffusion of these compounds between

these tissues according to lipid content. The compounds more readily metabolized were higher in

newborns, which suggest that differences in metabolic capabilities may be responsible of the

observed variations in POP distributions between mother and newborns. Prenatal exposure to

4,4’-DDT and some PBDEs such as BDE 99 and BDE 209 is much higher than it could be

anticipated from the composition of venous maternal blood. POP exposure assessment studies of

newborns may overlook the effects of some of these pollutants if they only consider maternal

determinations.
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Highlights

1. The concentrations of most POPs in maternal and cord serum are correlated

2. A predominant mother-to-fetus pollutant transfer is observed

3. Pollutant transfer does not respond to passive lipid-associated diffusion

4. Immature fetal metabolism leads to higher POP accumulation

5. The degradable PBDEs are in higher concentrations in fetal than maternal serum

Keywords: Prenatal  exposure,  transplacental  transfer, maternal serum, umbilical  cord serum,

placenta, DDT, DDE, hexachlorobenzene, hexachlorocyclohexane, PCBs, PBDEs.
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Abbreviations: 

BDE: bromodiphenyl ether

BMI: Body mass Index

CB: Chlorobiphenyl

HCB: Hexachlorobenzene 

HCH: Hexachlorocyclohexane

GC-ECD: Gas chromatography coupled to electron capture detection

GC-MS: Gas chromatography coupled to mass spectrometry

INMA: Spanish Children´s Health and Environment 

IQR: Interquartile range

LOD: Limit of detection

ng/g: Nanogram per gram 

ng/mL: Nanogram per mililiter 

NICI: Negative Ionization Chemical Ionization

OC: Organochlorine Compound

OCP: Organochlorine Pesticide

PBDE: Polybromodiphenyl ether

PCB: Polychlorobiphenyl

POP: Persistent Organic Pollutant

P : Percentile 

SD: Standard deviation
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1. Introduction

Human exposure to Persistent Organic Pollutants (POPs) begins in the uterine life period by

transplacental transfer (Rogan et al. 1986). Placenta may prevent transfer of some pollutants but

there is evidence that POPs, even those of high molecular weight can reach the fetuses (Vizcaino

et al. 2011). Transfer of contaminants during pregnancy may have implications for fetus health.

Fetuses  are  more  vulnerable  than  adults  to  chemical  exposure  as  their  immune  system and

detoxification  mechanisms  are  not  fully  developed.  In-utero  exposure  may  lead  to  severe

repercussions for newborns and may predispose to late adult deleterious effects (Boekelheide et

al.  2012).  Thus,  in  utero  exposure  to  POPs,  including  polybromodiphenyl  ethers  (PBDEs),

polychlorobiphenyls (PCBs) and organochlorine pesticides (OCPs), has shown to increase the

risk of adverse development outcomes in children (Gascon et al. 2012; Herbstman et al. 2010;

Lopez-Espinosa et al. 2011; Park et al. 2008a; Ribas-Fito et al. 2007; Valvi et al. 2012). These

results  have  increased  notably the interest  of  the  scientific  community on exposure to  these

compounds during gestation. 

Consequently,  the  number  of  studies  reporting  prenatal  concentrations  of  POPs  has

increased  in  the  recent  years.  Examination  of  this  previous  work  evidences  difficulties  for

comparison  since  there  is  a  lack  of  standardization  regarding  subject  selection,  timing  of

sampling and reported levels (Jakobsson et al. 2012). Placenta, maternal and cord serum are the

most common matrices to assess prenatal exposure to POPs, notwithstanding the processes of

transfer of these pollutants from mother to fetus during pregnancy are still not clear (Barr et al.

2005). Previous studies stated that the distribution in body compartments of chemicals with log

Kow >4 is driven solely by lipid fraction in tissues and blood (Haddad et al. 2000). Accordingly,

partition ratios between matrices of POPs should be close to 1 when adjusted for lipid content.
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However, there is small experimental evidence from human studies to evaluate this statement.

Some exposure assessment studies have shown good correlations between mother, placenta and

cord serum (Bergonzi et al. 2009) but studies describing the distributions and partition ratios of

POPs between placenta, cord and maternal serum in humans are very scarce and limited to a

reduced number of subjects (Needham et al. 2011) .

The present study is aimed to give insight into the transfer of POPs through placenta in a

population exposed to baseline levels by examination of maternal and fetal distribution of POPs

in mother-child pairs and quantification of the partition ratios between placenta, maternal and

cord serum samples. Hexachlorobenzene (HCB),  β-hexachlorocyclohexane (β-HCH), 44’-DDT

and their principal metabolite 4,4’-DDE, PCBs (PCB 118, 138, 153 and 180) and PBDEs (BDE

28, 47, 99, 153, 154 and 209) have been studied. A mother-infant cohort from Asturias (Spain)

that is representative of Spanish general population has been selected as test case. Except BDE

209 all these compounds are listed in the Stockholm Convention on POPs as priority chemicals.

BDE 209 has been restricted in Europe but as its production and use is still ongoing in most of

the world (EBFRIP, 2009) continued environmental exposure to this compound is expected over

next years.

2. Material and Methods

2.1 Study Population

The cohort of study was established in Asturias by the Preventive Department of the University

of Oviedo, as part  of the INMA –Infancia y Medio Ambiente (Environment and Childhood)

Project. This project encompasses seven Spanish areas and analyzes the influence of prenatal

environmental exposures on growth, development, and health of infants from early fetal life until
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childhood (Guxens et al.  2012). 494 pregnant women were recruited between May 2004 and

June 2007. Deliveries took place between October 2004 and February 2008 at  the reference

hospital  San Agustin,  in  Avilés  (Asturias,  Spain).  326 cord blood samples  were successfully

collected from assistance to 485 childbirths within the cohort population. 308 mother-umbilical

cord blood paired samples were finally available as consequence of this project. Placental tissues

were collected in a subset of 50 women. We present data of POP concentration for the 308 paired

samples available and 50 placenta samples. The characteristics of the mothers from this group of

308 paired samples did not show significant differences from the whole recruited group (data not

shown). The study protocol was approved by the Ethics Committee of the reference hospital, and

informed consent was obtained for every participant.

2.2 Data and sample collection

Maternal  blood samples  were  collected  during  the  first  trimester  of  gestation  (median  = 12

weeks; range = 10-13 wks).Whole cord blood samples were collected using venipuncture of cord

vessels  before  the  placenta  was  delivered.  Maternal  and  cord  serum  were  collected  after

centrifugation for 10 minutes, separated into aliquotes of 1 ml and stored at −80°C until analyses.

The whole placenta was collected immediately after delivery. Half of the placenta, including

maternal and fetal sides and central and peripheral parts, was placed in a glass container of a

mixer (Büchi Mixer B-400 Büchi Laboratories AG, Flawil, Switzerland) for its homogenization.

Once  homogenized,  aliquots  of  25  g  were  stored  and  frozen  at  −80ºC.  Pregnant  women

completed two detailed in-person questionnaires (weeks 10–13 and 28–32) on anthropometric

and sociodemographic characteristics and lifestyle variables.
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2.3 Laboratory analyses

The laboratory analytical methods and quality control procedures for the analysis of POPs have

been described elsewhere (Grimalt et al. 2010; Vizcaino et al. 2009).  Concentrations of 7 PCB

congeners  (PCB28,  PCB52,  PCB101,  PCB118,  PCB153,  PCB138 and PCB180),  α-HCH,  β-

HCH,  γ-HCH,  δ-HCH,  HCB,  PeCB,  2,4’-DDT, 4,4’-DDT, 2,4’-DDE,  4,4’-DDE,  2,4’-DDD,

4,4’-DDD   and  14  PBDE  congeners  (BDE17,  BDE28,  BDE47,  BDE66,  BDE71,  BDE85,

BDE99, BDE 100, BDE153, BDE154 BDE138 BDE 183 and BDE 190 and BDE 209) were

analyzed in placental, maternal and cord serum samples.

Briefly,  1  mL of  serum  or  1  gr  of  placental  tissue  were  spiked  with  the  surrogate

standards tetrabromobenzene (TBB) and decachlorobiphenyl (CB 209) and vortex stirred for 30 s

at 2,000 rpm. n-Hexane (3 mL) was added, followed by concentrated sulfuric acid (2 mL). After

reaction, the mixture was stirred for 30 s and the supernatant n-hexane phase was separated by

centrifugation.  The remaining sulfuric  acid solution was re-extracted twice with 2 mL of n-

hexane (each by 30 s stirring and centrifugation). The combined n-hexane extracts (7 mL) were

additionally cleaned with  sulfuric  acid (2 mL,  stirring 30 s).  Then,  the  n-hexane phase was

separated by centrifugation and reduced to a small volume under a gentle nitrogen stream. The

extract was transferred to gas chromatography (GC) vials using four 25 μl rinses of isooctane.

CB 142, BDE 118 (20  μl) and [13C]-BDE 209 (10  μl) were added as internal standards before

injection.  Organochlorine  compounds  (OCs)  were  determined  by  GC  with  electron  capture

detection (GC-ECD). BDE congeners were analyzed by GC coupled to mass spectrometry in

chemical ionization mode and negative ion recording.

Total cholesterol and triglycerides were determined in maternal and cord serum samples using

colorimetric  enzymatic  methods  in  the  General  Biochemistry  Laboratory  of  Hospital  San
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Agustin. The samples were processed using a Roche Diagnostics COBAS C711.  Total serum

lipids concentrations were calculated as described by Phillips et al (1989) using the following

formula: 

                                         TL = (2.27*TC) + TG + 62.3 mg·dL-1

Placental  lipids  were  determined  gravimetrically. 1  gr  of  placental  tissue  was

homogenized  in  5  ml  of  chloroform:methanol:hydrochloric  acid  (20:10:0.1)  (v/v/v).  After

repeating the process, 10 ml of 0.1 N HCl were added and centrifuged at 3000 rpm for10 min.

The organic phase was then collected; the non-organic phase was re-extracted and added to the

first  extraction product.  Total  lipid  content  was determined after  drying the  organic  extracts

under a nitrogen stream to constant weight and total lipid were expressed in grams of lipid per

gram of placenta (Lopez-Espinosa et al. 2007).

Validation of analytical results  (including POPs and total  lipid concentrations) was made by

analysis  of  reference  material  obtained  from the  Artic  Monitoring  and  Assessment  Program

(AMAP).  We participate regularly in the AMAP Ring Test Proficiency Program for POPs in

human serum (Centre de Toxicologie Institut National de Santé Publique du Québec, Québec,

Canada) and the laboratory results usually are within 20% of the consensus values, including

lipid concentrations.

2.4. Data analysis

POP levels were expressed in ng/mL. They were also adjusted to total serum lipid concentrations

(ng/g lipid). Values of half detection limit were assigned when measurable analyte concentrations

were  not  found.  Spearman  correlation  and  scatter  plots  were  used  to  examine  associations
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between POP levels in placenta, maternal and cord serum. Placental transfer was evaluated by

calculation of the concentrations ratios between paired samples for each compound on ng/mL

and ng/g lipid:

                                              Rcm= ;   Rpm=                   

where Cuc is the umbilical cord concentration, Cm is the maternal concentration and Cp is the

placental  concentration.  Correlations  and concentration  ratios  were  calculated  excluding non

detected  values.  Values  exceeding  three  times  the  standard  deviation  of  the  mean  were

considered outliers and consequently excluded from the ratio calculations. The ratios of each

compound were only calculated if there were at least 10 paired samples above the detection limit

(Needham, et al. 2011). Regression analyses with forcing regression to 0 were also calculated.

No  major  differences  were  found  between  these  options  (data  non  shown).  Therefore,  only

median concentration ratios are reported.

3. Results

Mean maternal age and standard deviation at delivery was 31.5 (4.3) (Table 1). 97.4% of the

mothers were originally born in Spain, 63.5 % were primiparous and around 54% belonged to

the lowest socioeconomic status. More than 42% had finished secondary education and about

76% were employed during pregnancy. 21.5% of the mothers were overweight and 6.8% were

obese according to WHO body mass index (BMI) standards. On average, gestational weight gain

was 14.1 ± 5.2 kg (Table 1).

The mean lipid content in placenta was 1.2% (range 0.43-1.7%) and total lipids in cord

and maternal serum were 2.6 g/L (1.7-16 g/L) and 5.3 g/L (3.3-11 g/L), respectively. 
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PCB congeners 52 and 101, PBDE congeners 17, 66, 71, 85, 100, 138, 183 and 190 and

PeCB,  γ-HCH,  δ-HCH,  α-HCH, 2,4’-DDT, 2,4’-DDE, 4,4’-DDD and 2,4’-DDD were usually

below limit  of detection.  The concentrations of  POPs quantifiable  in  more than 50% of  the

samples in at least one of the studied matrices are shown in Table 2. 4,4'-DDE was the pesticide

found in highest abundance and was found above limit of quantification in 100% of all samples

analyzed.  HCB was  also  above  limit  of  quantification  in  100% of  the  maternal  serum and

placenta samples and in 98% of the cord serum samples.

On lipid basis, the concentrations of organochlorine pesticides (OCPs) were higher in

mothers than in newborns and placental samples (Table 2). 4,4'-DDT was the only exception to

this trend and was higher in newborns. PCBs were found above limit of detection in all maternal

samples. The maternal concentrations of these compounds (median=164 ng/g lipid and range

between 47-1353 ng/g lipid) were much higher than in newborns (median=118 ng/g lipid and

range between 24-967 ng/g lipid) and placenta (median=40 ng/g lipid and range between10-230

ng/g lipid).  In all  matrices,  the PCB distributions were dominated by PCB 153, followed in

abundance by PCB 180 and PCB 138 in newborns and mothers.  In placenta,  PCB 153 was

followed by PCB 138 and PCB 28. The median concentrations of total PBDEs were higher in

maternal serum (11 ng/g lipid) than in newborns (5.4 ng/g lipid) and placenta (2.3 ng/g lipid)

(Table 2). 

Different PBDE congener profiles were found in each of these three types of matrices.

BDE 153 and 154 were most abundant congeners in maternal serum. In placenta the dominant

congener was BDE 209. The median values of all congeners in cord blood serum were below

detection limit but BDE47 was the compound found at higher concentrations in some samples

(Table 2).
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Spearman correlations between paired samples ranged from weakly negative to strongly

positive (Spearman rho= -0.04 to 0.9; Table 3). HCB and β-HCH showed significant correlations

between maternal and cord serum and placenta (p < 0.001). 4,4’-DDE also showed significant

correlations between these matrices. The concentrations of 4,4’-DDT in maternal and cord serum

were significantly correlated but those between maternal serum and  placenta were not (Table 4).

The more chlorinated PCB congeners, PCBs 138, 153 and 180, were again showing significant

correlations between maternal serum, cord serum and placenta. The concentrations of the less

chlorinated congeners did not exhibit significant correlations. No correlation was observed for

the  concentrations  of  PBDEs  between  maternal  serum  and  placenta.  However,  statistically

significant correlations were observed for BDEs 47, 153 and 154 between maternal and cord

serum (Table  3).  No substantial  correlation  differences  were  observed when considering  the

concentrations on wet weight or lipid weight basis (data not shown). 

Median Cuc/Cm varied between 0.28 and 0.91 when the concentrations were considered in

ng/mL and between 0.57 and 1.8 when calculating the concentrations in ng/g lipid (Table 4). The

PCB congeners showed different ratios following a trend that was consistent with the number of

chlorine substituents. CB 118 (5 chlorine substituents) had the highest ratio, 0.45, CB138 and

CB153 (6 chlorine substituents) had ratios of 0.39 and 0.37, respectively, and CB180 (7 chlorine

atoms) had a  median  ratio  of  0.28.  4,4’-DDT showed the  highest  ratio,  0.91,  of  all  studied

compounds. Among PBDEs, BDE 209 showed the highest ratio, 0.8, followed by BDE 99, 0.66,

and BDE 47, 0.58.

Median Cp/Cm varied between 0.36 and 1.2 in ng/mL and between 0.17 and 0.61 in ng/g

lipid. β-HCH presented the highest accumulation in placenta (Cp/Cm of 1.2 in ng/mL and 0.61 in

ng/ g lipid) and 4,4’-DDE the lowest (Cp/Cm of 0.36  in ng/mL and 0.17 in ng/ g lipid).
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Another way to represent the distribution of these pollutants among the three matrices

may be obtained by calculation of the relative percent distribution of the concentrations between

maternal  and cord samples  (Fig.  1)  or  maternal,  placental  and cord samples  (Fig.  2).  These

relative  distributions  must  be  calculated  for  each  individual  and  the  resulting  proportions

averaged. Obviously, only the individuals having concentration above quantification limits for all

matrices  considered were included in  the  compound averages.  The distributions  can also be

calculated using either concentrations in ng L-1 or ng/g lipid. As observed for the ratios in the

second case, the proportions of pollutants in cord serum or placenta increased (Figs. 1 and 2)

because maternal serum has higher lipid content than cord serum and placenta, 5.3, 2.6 and 1.2 g

L-1, respectively.

4. Discussion

Correspondences in the composition of POPs in maternal and fetal serum and placenta

The  maternal  and  newborn  concentrations  of  the  examined  pollutants  and  their  relative

distributions differed slightly but the observed concentrations were highly correlated for most

compounds. Thus, HCB, β-HCH, 4,4’-DDT, 4,4’-DDE, PCB 138, PCB 153, PCB 180, BDE 47,

BDE 153 and BDE 154 showed significant Spearman coefficients (p < 0.001; Table 3). These

results are in agreement with previous observations in which strong maternal-faetal correlations

for the concentrations of these pollutants were found (Bergonzi, et al. 2011; Eik Anda et al. 2007;

Fukata, et al. 2005; Mazdai, et al. 2003; Meironyté Guvenius, et al. 2003; Waliszewski et al.

2000a) and others involving significant correlations with lower Spearman coefficients (Covaci,

et al. 2002; Jarrell, et al. 2005; Kawashiro et al. 2008; Koopman-Esseboom, et al. 1994; Park, et

al.  2008b).  Studies in  Slovakia (Park et  al.  2008b),  Catalonia (Sala et  al.  2001) or Belgium
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(Covaci, et al. 2002) found similar maternal-newborn rates of PCBs, about 20-30% of maternal

concentrations in cord serum on ng/mL as in the present study. In Sweden (Meironyté Guvenius

et al. 2003), Poland (Jaraczewska, et al. 2006), Faroe Islands (Needham, et al. 2011) and Canada

(Muckle, et al.  2001) lipid adjusted concentrations of cord serum ranged from 50 to 90% of

maternal concentrations which is again in agreement with the present results.

Conversely, these correlations were not found in other studies (Antignac,  et  al.  2009;

Gómara, et al. 2007; Kanja et al. 1992; Nair et al. 1996; Sala, et al. 2001; Soechitram, et al.

2004) and in some cases, e.g. Japan (Fukata et al. 2005) or Netherlands (Soechitram et al. 2004),

lipid  adjusted  concentrations  of  PCBs were  almost  equal  or  slightly  higher  in  cord  than  in

maternal serum. 

The correlations  observed in  the  present  study were found between maternal  venous

blood collected at 12 weeks of pregnancy and cord blood collected at delivery. In general, no

changes in maternal POP concentrations have been observed during gestation (Glynn et al. 2011;

Jarrell  et  al.  2005;  Longnecker et  al.  1999; Meijer  et  al.  2008) although some studies show

discrepant results (Bloom et al. 2009; Bloom et al. 2007; Hansen et al. 2010).

Mother- to-fetus POPs transfer

The correlations observed in the present study involve a direct correspondence between

higher maternal and newborn concentrations which is consistent with the transfer of pollutants

from mother to fetus. Accordingly, all compounds exhibiting significant correlation coefficients

between these two matrices have Cuc/Cm ratios < 1 when calculated from ng/mL units or, with the

only exception of 4,4’-DDT, when calculated from ng/g lipid units (Table 4). Representation of

the averaged relative proportion distributions of these pollutants in the maternal newborn serum

pairs also show higher proportion of all correlated pollutants in the former than in the latter when
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calculated over the ng/mL data as well as over ng/g lipid, with the only exception of 4,4’-DDT in

this last case (Fig. 1).

Similarly, a high number of significant Spearman coefficients were observed between

maternal and placental concentrations, e.g. HCB, β-HCH, 4,4’-DDE, PCB 138, PCB 153 and

PCB 180 (p  <  0.001).  Again,  these  coefficients  document  a  significant  association  between

higher concentrations of pollutants in maternal serum and placenta which is again consistent with

a  transfer  from the  former  to  the  second.  Accordingly,  the  Cp/Cm ratios  of  the  compounds

exhibiting significant  correlations  between these  two matrices  are  < 1 when calculated  over

ng/mL (with  the  only  exception  of  β-HCH)  or  over  ng/g  lipid  (Table  4)  and  the  averaged

distributions  of  these  compounds  between  maternal  and  newborn  serum and  placenta  show

higher relative proportions of these correlated pollutants in maternal serum than in placenta in all

cases  except  β-HCH  when  calculated  over  ng/mL.  However,  in  these  maternal-placental

correlations 4,4’-DDT and none of the PBDEs show significant coefficients which constitutes a

distinct feature from the results of the maternal-fetal concentrations. 

Passive diffusion might control the transport of POPs across membranes (Myllynen et al.

2005) if the concentrations of these compounds tend to distribute uniformly among lipid-rich

tissues (Russell  et  al.  1999; Waliszewski et al.  2001). In the present study, the concentration

ratios between cord serum and maternal serum or placenta and maternal serum are not close to 1

when lipid adjusted (Table 4) which indicates that other processes also influence the distribution

of these compounds among the different tissues.

Pollutant  properties  such  as  molecular  weight,  lipid  solubility  and  protein  binding

(Myllynen et al. 2009) could also determine the transfer of pollutants from mother to fetus to a

great extent (Needham et al. 2011). However, statistical analysis did not show any correlation
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between these concentration ratios and chemical properties of these pollutants such as molecular

weight, molar volume, number of halogen substituents or log octanol water partition coefficient

(Kow) (data non shown).

These results suggest that other processes besides transfer related to physical-chemical

equilibrium are significant for the distribution of these pollutants between mother, placenta and

fetus.

Selective accumulation in cord blood serum or placenta

β-HCH was the only compound which displayed higher concentrations in placenta than in cord

serum (Fig. 2) suggesting that this membrane may act as a partial barrier for this contaminant.

The PCB distributions in maternal and cord blood serum and in placenta were quite similar.

Some previous studies reported decreases of the relative concentrations of the high chlorinated

PCBs in cord serum (Koopman-Esseboom et al. 1994; Soechitram, et al. 2004) which are not

observed in this study nor in other cohort studies (Carrizo et al., 2006; Vizcaino et al., 2010).

Similarly,  in  some  previous  studies  PCB  distributions  dominated  by  the  less  chlorinated

congeners were reported in placenta (Fernandez et al. 2012; Gómara et al. 2012; Ma et al. 2012;

Needham, et al. 2011) and this is not observed in the present study.

In this study, the significant correlations observed between PCBs in maternal serum and

placenta and cord serum showed the highest  Spearman coefficients  among the congeners  of

higher chlorination (Table 3). These strong correlations require a uniform distribution of PCBs

between the three types of matrices as observed in Table 2.

Conversely, the concentrations of the PCB congeners of lower degree of chlorination did

not exhibit significant correlations between the three types of samples. These congeners are less

hydrophobic and more difficult to accumulate in human tissues. The observed distributions show
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concentrations above limit of quantification for all congeners in maternal serum and below limit

of detection for PCB 118 in cord serum and PCB 28 in cord serum and placenta. The significant

correlations of the concentrations of the higher chlorinated PCBs in all three matrices and their

higher abundance in the maternal serum are consistent with the above mentioned distribution

involving a  maternal  source that  transfers  these pollutants to the placenta and the fetal  cord

blood. However, this transfer is not a passive process related to diffusion into the lipid materials

present in these tissues. Normalization to lipid content does not reflect similar values between

these three sample matrices. Some active mechanisms such as the transport of enzymes through

the  membranes  are  likely  associated  to  this  transplacental  transfer.  These  mechanisms  may

explain that compounds such as BDE 209 accumulate in cord blood.

However, some compounds exhibit specific trends. The Cuc/Cm ratios of 4,4’-DDT are

higher than those of the other OCs. The higher 4,4’-DDT concentrations in newborns may result

from a more rapid transformation to more stable metabolites such as 4,4’-DDE in mothers than

fetus.  The  latter  do  not  have  efficient  elimination  mechanisms  of  toxicants  (Alcorn  and

McNamara 2003), once pollutants cross the placenta they do not have the same capacity for

metabolizing these compounds than their  mothers.  High concentrations  of 4,4’-DDT in cord

blood serum in relation to other OCs have also been observed in other studies (Al-Saleh et al.

2012; Muckle et al. 2001; Pathak et al. 2008; Waliszewski et al. 2000b)

Decreasing trends between maternal and fetal PBDE concentration ratios at higher degree

of bromination have been reported in some studies (Frederiksen et al. 2009; Jakobsson, et al.

2012; Meironyté Guvenius, et al. 2003) in which it was concluded that the higher brominated

congeners of these mixtures had more difficulties to cross the placenta. However, none of these

studies analyzed BDE 209 or had sufficiently low detection limits to detect this compound in
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cord blood serum. In the present study, we have observed higher concentration of BDE 209 in

newborns than in their mothers which is in accordance to other studies (Antignac et al. 2009;

Gómara et al. 2007) which reported an enrichment of BDE209 in cord serum. The presence of

BDE209 in cord serum and placenta indicates its bioavailability and transport across placenta

despite its size. In principle, small molecules penetrate membranes more easily than large ones

(Arnot et  al.  2010). However, once large molecules penetrate placenta and reach the fetus it

might be more difficult to eliminate them due to the lower biotransformation capabilities of early

life metabolism (Alcorn and McNamara 2003). BDE 209 was not very frequent in newborns, but

whenever it was found it was the dominant PBDE congeners. 

Similarly, higher Cuc/Cm ratios have been found for BDE 99 than for BDE 47. These

results can be explained by differences in metabolic transformation between congeners. BDE 99

is usually metabolized to a greater extent than BDE 47 in adults (Stapleton et al. 2009). Previous

studies have found high concentrations of BDE 99 in cord blood (Antignac, et al. 2009; Gómara,

et al. 2007; Kim et al. 2012; Mazdai et al. 2003). Similarly, the high prevalence of BDE 154 in

mothers compared to newborns indicates the difference of metabolic capacities of mothers and

fetus. Higher presence of BDE 154 reflects biotransformation of more brominated congeners

such as BDE 183 (Roberts et al. 2011). 

Conclusions

The distributions of most OCs between maternal serum and cord serum and maternal serum and

placenta are significantly correlated. In general, the highest relative concentrations are found in

maternal  serum  and  the  lowest  in  cord  serum.  These  distributions  are  consistent  with  a

predominant maternal source that transfers the pollutants to the placenta and the fetus. However,
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these distributions do not correspond to pollutant passive diffusion among the three types of

tissues according to their lipid content. Conversely, they require an active transplacental transfer

of the compounds possibly in association to the transport of enzymes through the membranes.

The compounds that can be metabolically transformed, namely 4,4’-DDT and several PBDEs,

have been observed to accumulate selectively in cord blood. Once these are able to reach the

fetus they are better  preserved than in  the maternal  tissues.  This difference evidences a low

capacity of fetal metabolism for the degradation of organic pollutants which may lead to the

accumulation of pollutants that usually are found in minor concentrations in adults or in mothers.

POP exposure  assessment  studies  of  newborns  may  overlook  the  effects  of  some  of  these

pollutants if they only consider maternal determinations.
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Figure captions

Fig.  1.  Average  percentage   distribution  of   Persistent  Organic  Pollutants  (POPs)  between

maternal and fetal  serum expressed as ng/ml (a) and lipid adjusted concentrations  (b)

Interval bars correspond to 95% confidence interval.

Fig. 2. Average percentage distribution of Persistent Organic Pollutants (POPs) between maternal

serum, placenta and fetal serum expressed as ng/ml (a) and lipid adjusted concentrations

(b). Interval bars correspond to 95% confidence interval.
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